T. Ignatova, V. Kukekov, E. Laywell, O. Suslov, F. Vrionis et al., Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro, Glia, vol.62, issue.3, pp.193-206, 2002.
DOI : 10.1002/glia.10094

S. Singh, I. Clarke, and M. Terasaki, Identification of a cancer stem cell in human brain tumors, Cancer Res, vol.63, pp.5821-5828, 2003.

S. Singh, C. Hawkins, and I. Clarke, Identification of human brain tumour initiating cells, Nature, vol.64, issue.7015, pp.396-401, 2004.
DOI : 10.1038/nature03128

T. Jacques, A. Swales, and M. Brzozowski, Combinations of genetic mutations in the adult neural stem cell compartment determine brain tumour phenotypes, The EMBO Journal, vol.61, issue.1, pp.222-235, 2010.
DOI : 10.1242/dev.02162

J. Visvader and G. Lindeman, Cancer stem cells in solid tumours: accumulating evidence and unresolved questions, Nature Reviews Cancer, vol.63, issue.10, pp.755-768, 2008.
DOI : 10.1158/0008-5472.CAN-06-3126

J. Mayol, C. Loeuillet, F. Herodin, and D. Wion, Characterisation of normal and cancer stem cells: One experimental paradigm for two kinds of stem cells, BioEssays, vol.22, issue.9, pp.993-1001, 2009.
DOI : 10.1002/bies.200900041

URL : https://hal.archives-ouvertes.fr/inserm-00527767

X. Mao, X. Zhang, and X. Xue, Brain Tumor Stem-Like Cells Identified by Neural Stem Cell Marker CD15, Translational Oncology, vol.2, issue.4, pp.247-257, 2009.
DOI : 10.1593/tlo.09136

S. Bao, Q. Wu, and Z. Li, Targeting Cancer Stem Cells through L1CAM Suppresses Glioma Growth, Cancer Research, vol.68, issue.15, pp.6043-6048, 2008.
DOI : 10.1158/0008-5472.CAN-08-1079

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2739001

S. Miraglia, W. Godfrey, and A. Yin, A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning, Blood, vol.90, pp.5013-5021, 1997.

A. Yin, S. Miraglia, and E. Zanjani, AC133, a novel marker for human hematopoietic stem and progenitor cells, Blood, vol.90, pp.5002-5012, 1997.

D. Corbeil, K. Roper, A. Weigmann, and W. Huttner, AC133 hematopoietic stem cell antigen: human homologue of mouse kidney prominin or distinct member of a novel protein family?, Blood, vol.91, pp.2625-2626, 1998.

G. Ferrandina, M. Petrillo, G. Bonanno, and G. Scambia, Targeting CD133 antigen in cancer, Expert Opinion on Therapeutic Targets, vol.133, issue.7, pp.823-837, 2009.
DOI : 10.1038/sj.leu.2404245

S. Bao, Q. Wu, and R. Mclendon, Glioma stem cells promote radioresistance by preferential activation of the DNA damage response, Nature, vol.8, issue.7120, pp.756-760, 2006.
DOI : 10.1038/nature05236

R. Zobalova, L. Mcdermott, M. Stantic, K. Prokopova, L. Dong et al., CD133-positive cells are resistant to TRAIL due to up-regulation of FLIP, Biochemical and Biophysical Research Communications, vol.373, issue.4, pp.567-571, 2008.
DOI : 10.1016/j.bbrc.2008.06.073

S. Bao, Q. Wu, and S. Sathornsumetee, Stem Cell-like Glioma Cells Promote Tumor Angiogenesis through Vascular Endothelial Growth Factor, Cancer Research, vol.66, issue.16, pp.7843-7848, 2006.
DOI : 10.1158/0008-5472.CAN-06-1010

F. Zeppernick, R. Ahmadi, and B. Campos, Stem Cell Marker CD133 Affects Clinical Outcome in Glioma Patients, Clinical Cancer Research, vol.14, issue.1, pp.123-129, 2008.
DOI : 10.1158/1078-0432.CCR-07-0932

K. Joo, S. Kim, and X. Jin, Clinical and biological implications of CD133-positive and CD133-negative cells in glioblastomas, Laboratory Investigation, vol.55, issue.8, pp.808-815, 2008.
DOI : 10.1186/1476-4598-5-67

E. Garcion, P. Naveilhan, F. Berger, and D. Wion, Cancer stem cells: Beyond Koch???s postulates, Cancer Letters, vol.278, issue.1, pp.3-8, 2008.
DOI : 10.1016/j.canlet.2008.09.006

URL : https://hal.archives-ouvertes.fr/inserm-01194481

D. Scadden, The stem-cell niche as an entity of action, Nature, vol.16, issue.7097, pp.1075-1079, 2006.
DOI : 10.1038/nature04957

C. Calabrese, H. Poppleton, and M. Kocak, A Perivascular Niche for Brain Tumor Stem Cells, Cancer Cell, vol.11, issue.1, pp.69-82, 2007.
DOI : 10.1016/j.ccr.2006.11.020

Z. Li, S. Bao, and Q. Wu, Hypoxia-Inducible Factors Regulate Tumorigenic Capacity of Glioma Stem Cells, Cancer Cell, vol.15, issue.6, pp.501-513, 2009.
DOI : 10.1016/j.ccr.2009.03.018

F. Pistollato, S. Abbadi, and E. Rampazzo, Intratumoral Hypoxic Gradient Drives Stem Cells Distribution and MGMT Expression in Glioblastoma, STEM CELLS, vol.28, pp.851-862, 2010.
DOI : 10.1002/stem.415

D. Panchision, The role of oxygen in regulating neural stem cells in development and disease, Journal of Cellular Physiology, vol.64, issue.3, pp.562-568, 2009.
DOI : 10.1002/jcp.21812

S. Evans, K. Judy, and I. Dunphy, Hypoxia Is Important in the Biology and Aggression of Human Glial Brain Tumors, Clinical Cancer Research, vol.10, issue.24, pp.8177-8184, 2004.
DOI : 10.1158/1078-0432.CCR-04-1081

N. Platet, S. Liu, and M. Atifi, Influence of oxygen tension on CD133 phenotype in human glioma cell cultures, Cancer Letters, vol.258, issue.2, pp.286-290, 2007.
DOI : 10.1016/j.canlet.2007.09.012

URL : https://hal.archives-ouvertes.fr/inserm-00382779

A. Mccord, M. Jamal, U. Shankavarum, F. Lang, K. Camphausen et al., Physiologic Oxygen Concentration Enhances the Stem-Like Properties of CD133+ Human Glioblastoma Cells In vitro, Molecular Cancer Research, vol.7, issue.4, pp.489-497, 2009.
DOI : 10.1158/1541-7786.MCR-08-0360

J. Vandesompele, D. Preter, K. Pattyn, and F. , Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes, Genome Biol, vol.3, p.34, 2002.

H. Zhong, D. Marzo, A. Laughner, and E. , Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases, Cancer Res, vol.59, pp.5830-5835, 1999.

R. Wenger, D. Stiehl, and G. Camenisch, Integration of Oxygen Signaling at the Consensus HRE, Science Signaling, vol.2005, issue.306, p.12, 2005.
DOI : 10.1126/stke.3062005re12

S. Tazuke, N. Mazure, and J. Sugawara, Hypoxia stimulates insulin-like growth factor binding protein 1 (IGFBP-1) gene expression in HepG2 cells: A possible model for IGFBP-1 expression in fetal hypoxia, Proceedings of the National Academy of Sciences, vol.95, issue.17, pp.10188-10193, 1998.
DOI : 10.1073/pnas.95.17.10188

Y. Yuan, G. Hilliard, T. Ferguson, and D. Millhorn, Cobalt Inhibits the Interaction between Hypoxia-inducible Factor-?? and von Hippel-Lindau Protein by Direct Binding to Hypoxia-inducible Factor-??, Journal of Biological Chemistry, vol.278, issue.18, pp.15911-15916, 2003.
DOI : 10.1074/jbc.M300463200

D. Vordermark and J. Brown, Evaluation of hypoxia-inducible factor-1?? (HIF-1??) as an intrinsic marker of tumor hypoxia in U87 MG human glioblastoma: In vitro and xenograft studies, International Journal of Radiation Oncology*Biology*Physics, vol.56, issue.4, pp.1184-1193, 2003.
DOI : 10.1016/S0360-3016(03)00289-X

P. Vaupel, D. Kelleher, and M. Hockel, Oxygenation status of malignant tumors: Pathogenesis of hypoxia and significance for tumor therapy, Seminars in Oncology, vol.28, pp.29-35, 2001.
DOI : 10.1016/S0093-7754(01)90210-6

J. Lee, S. Kotliarova, and Y. Kotliarov, Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines, Cancer Cell, vol.9, issue.5, pp.391-403, 2006.
DOI : 10.1016/j.ccr.2006.03.030

A. Shervington and C. Lu, Expression of Multidrug Resistance Genes in Normal and Cancer Stem Cells, Cancer Investigation, vol.81, issue.5, pp.535-542, 2008.
DOI : 10.1177/002215540205000203

X. Huang, Q. Le, and A. Giaccia, MiR-210 ??? micromanager of the hypoxia pathway, Trends in Molecular Medicine, vol.16, issue.5, pp.230-237, 2010.
DOI : 10.1016/j.molmed.2010.03.004

F. Pistollato, H. Chen, and B. Rood, Hypoxia and HIF1?? Repress the Differentiative Effects of BMPs in High-Grade Glioma, Stem Cells, vol.24, issue.1, pp.7-17, 2009.
DOI : 10.1634/stemcells.2008-0402

R. Dringen, B. Pfeiffer, and B. Hamprecht, Synthesis of the antioxidant glutathione in neurons: supply by astrocytes of CysGly as precursor for neuronal glutathione, J Neurosci, vol.19, pp.562-569, 1999.

F. King, C. Ritner, and W. Liszewski, Subpopulations of Human Embryonic Stem Cells With Distinct Tissue-Specific Fates Can Be Selected From Pluripotent Cultures, Stem Cells and Development, vol.18, issue.10, pp.1441-1450, 2009.
DOI : 10.1089/scd.2009.0012

Y. Wu and P. Wu, CD133 as a Marker for Cancer Stem Cells: Progresses and Concerns, Stem Cells and Development, vol.18, issue.8, pp.1127-1134, 2009.
DOI : 10.1089/scd.2008.0338

A. Llaguno, S. Chen, J. Kwon, and C. , Malignant Astrocytomas Originate from Neural Stem/Progenitor Cells in a Somatic Tumor Suppressor Mouse Model, Cancer Cell, vol.15, issue.3, pp.45-56, 2009.
DOI : 10.1016/j.ccr.2009.02.008

Y. Wang, J. Yang, and H. Zheng, Expression of Mutant p53 Proteins Implicates a Lineage Relationship between Neural Stem Cells and Malignant Astrocytic Glioma in a Murine Model, Cancer Cell, vol.15, issue.6, pp.514-526, 2009.
DOI : 10.1016/j.ccr.2009.04.001

R. Hill, Identifying Cancer Stem Cells in Solid Tumors: Case Not Proven, Cancer Research, vol.66, issue.4, pp.1890-1895, 2006.
DOI : 10.1158/0008-5472.CAN-05-3450

J. Adams and A. Strasser, Is Tumor Growth Sustained by Rare Cancer Stem Cells or Dominant Clones?, Cancer Research, vol.68, issue.11, pp.4018-4021, 2008.
DOI : 10.1158/0008-5472.CAN-07-6334

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.465.7556

S. Piccirillo, B. Reynolds, and N. Zanetti, Bone morphogenetic proteins inhibit the tumorigenic potential of human brain tumour-initiating cells, Nature, vol.156, issue.7120, pp.761-765, 2006.
DOI : 10.1038/nature05349

A. Ogden, A. Waziri, and R. Lochhead, Identification of A2B5+CD133??? Tumor-Initiating Cells in Adult Human Gliomas, Neurosurgery, vol.62, issue.2, pp.505-514, 2008.
DOI : 10.1227/01.neu.0000316019.28421.95

J. Wang, P. Sakariassen, and O. Tsinkalovsky, CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells, International Journal of Cancer, vol.11, issue.4, pp.761-768, 2008.
DOI : 10.1002/ijc.23130

A. Soeda, M. Park, and D. Lee, Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1??, Oncogene, vol.60, issue.45, pp.3949-3959, 2009.
DOI : 10.1038/onc.2009.252

E. Bar, A. Lin, V. Mahairaki, W. Matsui, and C. Eberhart, Hypoxia Increases the Expression of Stem-Cell Markers and Promotes Clonogenicity in Glioblastoma Neurospheres, The American Journal of Pathology, vol.177, issue.3, pp.1491-1502, 2010.
DOI : 10.2353/ajpath.2010.091021

K. Matsumoto, T. Arao, and K. Tanaka, mTOR Signal and Hypoxia-Inducible Factor-1?? Regulate CD133 Expression in Cancer Cells, Cancer Research, vol.69, issue.18, pp.7160-7164, 2009.
DOI : 10.1158/0008-5472.CAN-09-1289

J. Heddleston, Z. Li, R. Mclendon, A. Hjelmeland, and J. Rich, The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype, Cell Cycle, vol.8, issue.20, pp.3274-3284, 2009.
DOI : 10.4161/cc.8.20.9701

J. Lopez-barneo, R. Pardal, and P. Ortega-saenz, Cellular Mechanism of Oxygen Sensing, Annual Review of Physiology, vol.63, issue.1, pp.259-287, 2001.
DOI : 10.1146/annurev.physiol.63.1.259

Z. Arany, S. Foo, and Y. Ma, HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1??, Nature, vol.10, issue.7181, pp.1008-1012, 2008.
DOI : 10.1038/nature06613

L. Liu, T. Cash, R. Jones, B. Keith, C. Thompson et al., Hypoxia-Induced Energy Stress Regulates mRNA Translation and Cell Growth, Molecular Cell, vol.21, issue.4, pp.521-531, 2006.
DOI : 10.1016/j.molcel.2006.01.010

URL : http://doi.org/10.1016/j.molcel.2006.01.010

K. Tabu, K. Sasai, and T. Kimura, Promoter hypomethylation regulates CD133 expression in human gliomas, Cell Research, vol.98, issue.10, pp.1037-1046, 2008.
DOI : 10.1002/ijc.1423

J. Yi, H. Tsai, and S. Glockner, Abnormal DNA Methylation of CD133 in Colorectal and Glioblastoma Tumors, Cancer Research, vol.68, issue.19, pp.8094-8103, 2008.
DOI : 10.1158/0008-5472.CAN-07-6208

D. Wion, T. Christen, E. Barbier, and J. Coles, PO2 Matters in Stem Cell Culture, Cell Stem Cell, vol.5, issue.3, pp.242-243, 2009.
DOI : 10.1016/j.stem.2009.08.009

URL : https://hal.archives-ouvertes.fr/inserm-00527773

L. Lillien and H. Raphael, BMP and FGF regulate the development of EGF-responsive neural progenitor cells, Development, vol.127, pp.4993-5005, 2000.

R. Chen, M. Nishimura, and S. Bumbaca, A Hierarchy of Self-Renewing Tumor-Initiating Cell Types in Glioblastoma, Cancer Cell, vol.17, issue.4, pp.362-375, 2010.
DOI : 10.1016/j.ccr.2009.12.049

K. Kemper, M. Sprick, D. Bree, and M. , The AC133 Epitope, but not the CD133 Protein, Is Lost upon Cancer Stem Cell Differentiation, Cancer Research, vol.70, issue.2, pp.719-729, 2010.
DOI : 10.1158/0008-5472.CAN-09-1820

B. Campos, F. Wan, and M. Farhadi, Differentiation Therapy Exerts Antitumor Effects on Stem-like Glioma Cells, Clinical Cancer Research, vol.16, issue.10, pp.2715-2728, 2010.
DOI : 10.1158/1078-0432.CCR-09-1800

Y. Soda, T. Marumoto, and D. Friedmann-morvinski, Transdifferentiation of glioblastoma cells into vascular endothelial cells, Proceedings of the National Academy of Sciences, vol.108, issue.11, pp.4274-4280, 2011.
DOI : 10.1073/pnas.1016030108