

Local sequence determinants of two in-frame triplet deletion/duplication hotspots in the RHD/RHCE genes

Jian-Min Chen, David Cooper, Claude Férec

▶ To cite this version:

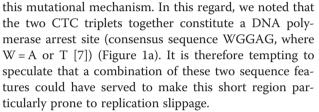
Jian-Min Chen, David Cooper, Claude Férec. Local sequence determinants of two in-frame triplet deletion/duplication hotspots in the RHD/RHCE genes. Human Genomics, 2012, 6 (1), pp.8. inserm-00733875

HAL Id: inserm-00733875 https://inserm.hal.science/inserm-00733875

Submitted on 19 Sep 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

LETTER TO THE EDITOR


Open Access

Local sequence determinants of two in-frame triplet deletion/duplication hotspots in the *RHD/RHCE* genes

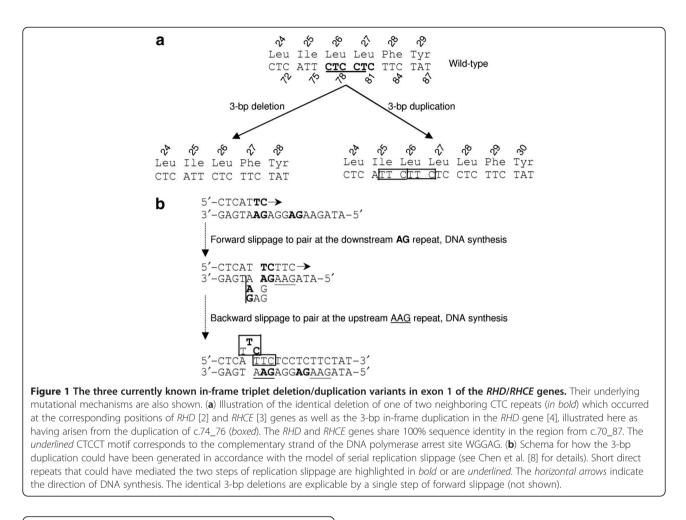
Jian-Min Chen^{1*}, David N Cooper² and Claude Férec¹

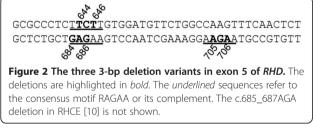
Different types of human gene mutation can vary in size quite dramatically (e.g., single nucleotide substitutions vs. copy number variations), but what they all have in common is that their occurrence is often closely bound up with specific characteristics of the local DNA sequence environment [1]. Here, we highlight the importance of local sequence features that underlie the two inframe triplet deletion/duplication hotspots in the *cis*-linked, highly homologous *RHD* and *RHCE* paralogs.

The first hotspot refers to an 8-bp sequence tract in exon 1 of the RHD and RHCE genes, in which three different variants were reported (Figure 1a) [2-4]. The first variant is a deletion of one of two juxtaposed CTC triplets in the RHD gene, which gives rise to an in-frame deletion of a single amino acid, Leu27 [2]. The second variant is identical to the first but occurred at the analogous location in the RHCE gene [3]. Henceforth, we shall employ the term 'deduplication' [5], which emphasizes the identity of the deleted sequence and the sequence immediately abutting the site of the deletion, to describe this particular type of microdeletion (<21 bp in length in accordance with Ball et al. [6]). Deduplication accounts for a significant proportion of disease-causing microdeletions; indeed, for microdeletion events of 2-5 bp, 38 % were found to be deduplications [6]. Replication slippage is currently regarded as the major mechanism underlying the generation of deduplications: the primer strand containing the newly synthesized first direct repeat dissociates from the template strand and then misaligns (slipping forward) at the second direct repeat; continued DNA synthesis then leads to the deletion of one of the two direct repeats. It should be pointed out that while direct repeats are a prerequisite for replication slippage, they are certainly not the sole determinant of

Recently, Pereira and colleagues reported the first inframe triplet duplication in the RHD gene; this duplication affected the same short region as the aforementioned two deduplications in exon 1 (Figure 1a) [4]. As pointed out by the original authors, this duplication could have resulted from either a duplication of c.74-76TTC or c.75 77TCT. These authors emphasized the importance of a DNA motif (i.e., TTCTC that was identified by analogy to previously reported deletionpredisposing DNA motifs in the RHD gene [9]) in generating this duplication but did not provide a model to explain how this duplication could have been generated. Given that the sequence tract in question is prone to replication slippage, we surmised that this duplication might also be explicable in terms of such a mechanism. Indeed, as illustrated in Figure 1b, it can be readily explained by the model of serial replication slippage [8], invoking one step of forward slippage and one step of backward slippage.

The second hotspot refers to a 63-bp region of exon 5 in the *RHD* and *RHCE* genes, in which four in-frame triplet deletions (c.644_646delTCT [3], c.684_686delGAG, and c.705_707delAGA [9] in *RHD*; c.685_687delAGA [10] in *RHCE*) were reported (Figure 2). Several distinct DNA repeats or motifs (e.g., GAGAA and GAAGA) have previously been implicated in the generation of three of these four variants [9]. A comparative evaluation of the four variants led us to propose a consensus motif RAGAA (R = A or G) (Figure 2). Since only the c.644_646delTCT variant can be explained in terms of replication slippage, it may be that RAGAA is associated with a recombination-




© 2012 Chen et al.; licensee Biomed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

^{*} Correspondence: Jian-Min.Chen@univ-brest.fr

¹Etablissement Français du Sang (EFS) – Bretagne and INSERM, U1078, Brest, France

Full list of author information is available at the end of the article

predisposing activity that is distinct from the DNA polymerase arrest site WGGAG. In other words, the different local sequence contexts in exons 1 and 5 of *RHD* and *RHCE* could predispose to subtly different mutational processes.

Author details

¹Etablissement Français du Sang (EFS) – Bretagne and INSERM, U1078, Brest, France. ²Institute of Medical Genetics, Cardiff University, Cardiff CF14 4XN, UK.

Received: 10 May 2012 Accepted: 14 May 2012 Published: 2 August 2012

References

 Cooper DN, Bacolla A, Férec C, Vasquez KM, Kehrer-Sawatzki H, Chen JM: On the sequence-directed nature of human gene mutation: the role of genomic architecture and the local DNA sequence environment in mediating gene mutations underlying human inherited disease. *Hum Mutat* 2012, **32**:1075–1099.

- Tilley L, Rodrigues MJ, Malde R, Marais I: Two novel RhD variants caused by triplet deletions in the RHD gene. Transfus Med 2007, 17:32.
- Döscher A, Vogt C, Bittner R, Gerdes I, Petershofen EK, Wagner FF: RHCE alleles detected after weak and/or discrepant results in automated Rh blood grouping of blood donors in Northern Germany. Transfusion 2009, 49:1803–1811.
- Pereira JC, Rodrigues MJ, Tilley L, Poole J, Chabert T, Ribeiro ML: RhD variant caused by an in-frame triplet duplication in the RHD gene. *Transfusion* 2011, 51:570–573.
- 5. Kondrashov AS, Rogozin IB: Context of deletions and insertions in human coding sequences. *Hum Mutat* 2004, 23:177–185.
- Ball EV, Stenson PD, Abeysinghe SS, Krawczak M, Cooper DN, Chuzhanova NA: Microdeletions and microinsertions causing human genetic disease: common mechanisms of mutagenesis and the role of local DNA sequence complexity. *Hum Mutat* 2005, 26:205–213.
- Chuzhanova N, Chen JM, Bacolla A, Patrinos GP, Férec C, Wells RD, Cooper DN: Gene conversion causing human inherited disease: evidence for involvement of non-B-DNA-forming sequences and recombinationpromoting motifs in DNA breakage and repair. *Hum Mutat* 2009, 30:1189–1198.
- Chen JM, Chuzhanova N, Stenson PD, Férec C, Cooper DN: Complex gene rearrangements caused by serial replication slippage. *Hum Mutat* 2005, 26:125–134.
- Flegel WA, Eicher NI, Doescher A, Hustinx H, Gowland P, Mansouri Taleghani B, Petershofen EK, Bauerfeind U, Ernst M, von Zabern I, Schrezenmeier H, Wagner FF: In-frame triplet deletions in *RHD* alter the D antigen phenotype. *Transfusion* 2006, 46:2156–2161.

 Chen YX, Peng J, Novaretti M, Reid ME, Huang CH: Deletion of arginine codon 229 in the Rhce gene alters e and f but not c antigen expression. *Transfusion* 2004, 44:391–398.

doi:10.1186/1479-7364-6-8

Cite this article as: Chen *et al.*: Local sequence determinants of two inframe triplet deletion/duplication hotspots in the *RHD/RHCE* genes. *Human Genomics* 2012 **6**:8.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

BioMed Central

(

Submit your manuscript at www.biomedcentral.com/submit