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Abstract We derive the mean-Þeld equations arising as the limit of a network of
interacting spiking neurons, as the number of neurons goes to inÞnity. The neurons
belong to a Þxed number of populations and are represented either by the Hodgkin-
Huxley model or by one of its simpliÞed version, the FitzHugh-Nagumo model. The
synapses between neurons are either electrical or chemical. The network is assumed
to be fully connected. The maximum conductances vary randomly. Under the con-
dition that all neuronsÕ initial conditions are drawn independently from the same
law that depends only on the population they belong to, we prove that a propa-
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gation of chaos phenomenon takes place, namely that in the mean-Þeld limit, any
Þnite number of neurons become independent and, within each population, have
the same probability distribution. This probability distribution is a solution of a set
of implicit equations, either nonlinear stochastic differential equations resembling
the McKean-Vlasov equations or non-local partial differential equations resembling
the McKean-Vlasov-Fokker-Planck equations. We prove the well-posedness of the
McKean-Vlasov equations, i.e. the existence and uniqueness of a solution. We also
show the results of some numerical experiments that indicate that the mean-Þeld
equations are a good representation of the mean activity of a Þnite size network, even
for modest sizes. These experiments also indicate that the McKean-Vlasov-Fokker-
Planck equations may be a good way to understand the mean-Þeld dynamics through,
e.g. a bifurcation analysis.

Keywords mean-Þeld limits· propagation of chaos· stochastic differential
equations· McKean-Vlasov equations· Fokker-Planck equations· neural networks·
neural assemblies· Hodgkin-Huxley neurons· FitzHugh-Nagumo neurons

Mathematics Subject ClassiÞcation (2000)60F99· 60B10· 92B20· 82C32·
82C80· 35Q80

1 Introduction

Cortical activity displays highly complex behaviors which are often characterized by
the presence of noise. Reliable responses to speciÞc stimuli often arise at the level
of population assemblies (cortical areas or cortical columns) featuring a very large
number of neuronal cells, each of these presenting a highly nonlinear behavior, that
are interconnected in a very intricate fashion. Understanding the global behavior of
large-scale neural assemblies has been a great endeavor in the past decades. One of
the main interests of large-scale modeling is characterizing brain functions, which
most imaging techniques are recording. Moreover, anatomical data recorded in the
cortex reveal the existence of structures, such as the cortical columns, with a diame-
ter of about 50 µm to 1 mm, containing the order of 100 to 100,000 neurons belonging
to a few different types. These columns have speciÞc functions; for example, in the
human visual area V1, they respond to preferential orientations of bar-shaped visual
stimuli. In this case, information processing does not occur at the scale of individual
neurons but rather corresponds to an activity integrating the individual dynamics of
many interacting neurons and resulting in a mesoscopic signal arising through aver-
aging effects, and this effectively depends on a few effective control parameters. This
vision, inherited from statistical physics, requires that the space scale be large enough
to include sufÞciently many neurons and small enough so that the region considered
is homogeneous. This is, in effect, the case of the cortical columns.

In the Þeld of mathematics, studying the limits of systems of particle systems in
interaction has been a long-standing problem and presents many technical difÞculties.
One of the questions addressed in mathematics was to characterize the limit of the
probability distribution of an inÞnite set of interacting diffusion processes, and the
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ßuctuations around the limit for a Þnite number of processes. The Þrst breakthroughs
to Þnd answers to this question are due to Henry McKean (see, e.g. [1, 2]). It was
then investigated in various contexts by a large number of authors such as Braun and
Hepp [3], Dawson [4] and Dobrushin [5], and most of the theory was achieved by
Tanaka and collaborators [6Ð9] and of course Sznitman [10Ð12]. When considering
that all particles (in our case, neurons) have the same, independent initial condition,
they are mathematically proved using stochastic theory (the Wasserstein distance,
large deviation techniques) that in the limit where the number of particles tends to
inÞnity, any Þnite number of particles behaves independently of the other ones, and
they all present the same probability distribution, which satisÞes a nonlinear Markov
equation. Finite-size ßuctuations around the limit are derived in a general case in [10].
Most of these models use a standard hypothesis of global Lipschitz continuity and
linear growth condition of the drift and diffusion coefÞcients of the diffusions, as well
as the Lipschitz continuity of the interaction function. Extensions to discontinuous
cˆdlˆg processes including singular interactions (through a local time process) were
developed in [11]. Problems involving singular interaction variables (e.g. nonsmooth
functions) are also widely studied in the Þeld, but are not relevant in our case.

In the present article, we apply this mathematical approach to the problem of in-
teracting neurons arising in neuroscience. To this end, we extend the theory to en-
compass a wider class of models. This implies the use of locally (instead of globally)
Lipschitz coefÞcients and of a Lyapunov-like growth condition replacing the custom-
ary linear growth assumption for some of the functions appearing in the equations.
The contributions of this article are fourfold:

1. We derive, in a rigorous manner, the mean-Þeld equations resulting from the inter-
action of inÞnitely many neurons in the case of widely accepted models of spiking
neurons and synapses.

2. We prove a propagation of chaos property which shows that in the mean-Þeld
limit, the neurons become independent, in agreement with some recent experimen-
tal work [13] and with the idea that the brain processes information in a somewhat
optimal way.

3. We show, numerically, that the mean-Þeld limit is a good approximation of the
mean activity of the network even for fairly small sizes of neuronal populations.

4. We suggest, numerically, that the changes in the dynamics of the mean-Þeld limit
when varying parameters can be understood by studying the mean-Þeld Fokker-
Planck equation.

We start by reviewing such models in the ÔSpiking conductance-based modelsÕ sec-
tion to motivate the present study. It is in the ÔMean-Þeld equations for conductance-
based modelsÕ section that we provide the limit equations describing the behaviors
of an inÞnite number of interacting neurons and state and prove the existence and
uniqueness of solutions in the case of conductance-based models. The detailed proof
of the second main theorem, that of the convergence of the network equations to the
mean-Þeld limit, is given in the Appendix. In the ÔNumerical simulationsÕ section, we
begin to address the difÞcult problem of the numerical simulation of the mean-Þeld
equations and show some results indicating that they may be an efÞcient way of rep-
resenting the mean activity of a Þnite-size network as well as to study the changes in
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the dynamics when varying biological parameters. The Þnal ÔDiscussion and conclu-
sionÕ section focuses on the conclusions of our mathematical and numerical results
and raises some important questions for future work.

2 Spiking conductance-based models

This section sets the stage for our results. We review in the ÔHodgkin-Huxley modelÕ
section the Hodgkin-Huxley model equations in the case where both the membrane
potential and the ion channel equations include noise. We then proceed in the ÔThe
FitzHugh-Nagumo modelÕ section with the FitzHugh-Nagumo equations in the case
where the membrane potential equation includes noise. We next discuss in the ÔMod-
els of synapses and maximum conductancesÕ section the connectivity models of net-
works of such neurons, starting with the synapses, electrical and chemical, and Þnish-
ing with several stochastic models of the synaptic weights. In the ÔPutting everything
togetherÕ section, we write the network equations in the various cases considered in
the previous section and express them in a general abstract mathematical form that
is the one used for stating and proving the results about the mean-Þeld limits in the
ÔMean-Þeld equations for conductance-based modelsÕ section. Before we jump into
this, we conclude in the ÔMean-Þeld methods in computational neuroscience: a quick
overviewÕ section with a brief overview of the mean-Þeld methods popular in com-
putational neuroscience.

From the mathematical point of view, each neuron is a complex system, whose dy-
namics is often described by a set of stochastic nonlinear differential equations. Such
models aim at reproducing the biophysics of ion channels governing the membrane
potential and therefore the spike emission. This is the case of the classical model of
Hodgkin and Huxley [14] and of its reductions [15Ð17]. Simpler models use discon-
tinuous processes mimicking the spike emission by modeling the membrane voltage
and considering that spikes are emitted when it reaches a given threshold. These are
called integrate-and-Þre models [18, 19] and will not be addressed here. The models
of large networks we deal with here therefore consist of systems of coupled nonlinear
diffusion processes.

2.1 Hodgkin-Huxley model

One of the most important models in computational neuroscience is the Hodgkin-
Huxley model. Using pioneering experimental techniques of that time, Hodgkin and
Huxley [14] determined that the activity of the giant squid axon is controlled by
three major currents: voltage-gated persistent K+ current with four activation gates,
voltage-gated transient Na+ current with three activation gates and one inactivation
gate, and Ohmic leak current,I L , which is carried mostly by chloride ions (ClŠ ). In
this paper, we only use the space-clamped Hodgkin-Huxley model which we slightly
generalize to a stochastic setting in order to better take into account the variability
of the parameters. The advantages of this model are numerous, and one of the most
prominent aspects in its favor is its correspondence with the most widely accepted
formalism to describe the dynamics of the nerve cell membrane. A very extensive
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literature can also be found about the mathematical properties of this system, and it
is now quite well understood.

The basic electrical relation between the membrane potential and the currents is
simply:

C
dV
dt

= I ext(t) Š I K Š I Na Š I L ,

whereI ext(t) is an external current. The detailed expressions forI K , I Na andI L can
be found in several textbooks, e.g. [17, 20]:

I K = ḡKn4(V Š EK),

I Na = ḡNam3h(V Š ENa),

I L = gL(V Š EL),

whereḡK (respectively,̄gNa) is the maximum conductance of the potassium (respec-
tively, the sodium) channel;gL is the conductance of the Ohmic channel; andn (re-
spectively,m) is the activation variable for K+ (respectively, for Na). There are four
(respectively, three) activation gates for the K+ (respectively, the Na) current which
accounts for the power 4 (respectively, 3) in the expression ofI K (respectivelyI Na).
h is the inactivation variable for Na. These activation/deactivation variables, denoted
by x � { n,m,h} in what follows, represent a proportion (they vary between 0 and
1) of open gates. The proportions of open channels are given by the functionsn4

andm3h. The proportions of open gates can be computed through a Markov chain
modeling assuming the gates to open with rate� x(V ) (the dependence inV accounts
for the voltage-gating of the gate) and to close with rate� x(V ). These processes can
be shown to converge, under standard assumptions, towards the following ordinary
differential equations:

�x = � x(V )(1 Š x) Š � x(V )x, x � { n,m,h}.

The functions� x(V ) and � x(V ) are smooth functions whose exact values can be
found in several textbooks such as the ones cited above. Note that half of these six
functions are unbounded when the voltage goes toŠ� , being of the formk1eŠk2V ,
with k1 andk2 as two positive constants. Since these functions have been Þtted to ex-
perimental data corresponding to values of the membrane potential between roughly
Š100 and 100 mVs, it is clear that extremely large in magnitude and negative val-
ues of this variable do not have any physiological meaning. We can therefore safely,
smoothly perturb these functions so that they are upper-bounded by some large (but
Þnite) positive number for these values of the membrane potential. Hence, the func-
tions� x and� x are bounded and Lipschitz continuous forx � { n,m,h}. A more pre-
cise model taking into account the Þnite number of channels through the Langevin
approximation results in the stochastic differential equationa

dxt =
�
� x(V )(1 Š x) Š � x(V )x

�
dt +

�
� x(V )(1 Š x) + � x(V )x�(x)dW x

t ,

aMore precisely, as shown in [79, 80], the convergence is to a larger - 13-dimensional - system with an
invariant four-dimensional manifold on which the solution lives given appropriate initial conditions. See
also [81].
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Fig. 1 Solution of the noiseless Hodgkin-Huxley model.Left: time evolution of the three ion channel
variablesn, m and h. Right: corresponding time evolution of the membrane potential. Parameters are
given in the text.

whereWx
t and x � { n,m,h} are independent standard Brownian motions.� (x) is

a function that vanishes outside(0, 1). This guarantees that the solution remains a
proportion, i.e. lies between 0 and 1 for all times. We deÞne

� x(V , x) =
�

� x(V )(1 Š x) + � x(V )x�(x). (1)

In order to complete our stochastic Hodgkin-Huxley neuron model, we assume
that the external currentI ext(t) is the sum of a deterministic part, noted asI (t) , and
a stochastic part, a white noise with variance� ext built from a standard Brownian
motionWt independent ofWx

t andx � { n,m,h}. Considering the current produced
by the income of ion through these channels, we end up with the following system of
stochastic differential equations:

�
�

�

C dVt =
�
I (t) Š ḡKn4(V Š EK) Š ḡNam3h(V Š ENa) Š ḡL(V Š EL)

�
dt

+ � extdWt ,
dxt =

�
� x(V )(1 Š x) Š � x(V )x

�
dt + � x(V , x)dWx

t , x � { n,m,h}.
(2)

This is a stochastic version of the Hodgkin-Huxley model. The functions� x and� x
are bounded and Lipschitz continuous (see discussion above). The functionsn, m
andh are bounded between 0 and 1; hence, the functionsn4 andm3h are Lipschitz
continuous.

To illustrate the model, we show in Figure1 the time evolution of the three ion
channel variablesn, m and h as well as that of the membrane potentialV for a
constant inputI = 20.0. The system of ordinary differential equations (ODEs) has
been solved using a Runge-Kutta scheme of order 4 with an integration time step
�t = 0.01. In Figure2, we show the same time evolution when noise is added to the
channel variables and the membrane potential.

For the membrane potential, we have used� ext = 3.0 (see Equation2), while for
the noise in the ion channels, we have used the following� function (see Equation1):

� (x) =
�

�e Š�/( 1Š(2xŠ1)2) if 0 < x < 1,
0 if x � 0 � x � 1

(3)

with � = 0.1 and� = 0.5 for all the ion channels. The system of SDEs has been
integrated using the Euler-Maruyama scheme with�t = 0.01.
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Fig. 2 Noisy Hodgkin-Huxley model.Left: time evolution of the three ion channel variablesn, m andh.
Right: corresponding time evolution of the membrane potential. Parameters are given in the text.

Because the Hodgkin-Huxley model is rather complicated and high-dimensional,
many reductions have been proposed, in particular to two dimensions instead of four.
These reduced models include the famous FitzHugh-Nagumo and Morris-Lecar mod-
els. These two models are two-dimensional approximations of the original Hodgkin-
Huxley model based on quantitative observations of the time scale of the dynamics of
each variable and identiÞcation of variables. Most reduced models still comply with
the Lipschitz and linear growth conditions ensuring the existence and uniqueness of
a solution, except for the FitzHugh-Nagumo model which we now introduce.

2.2 The FitzHugh-Nagumo model

In order to reduce the dimension of the Hodgkin-Huxley model, FitzHugh [15, 16, 21]
introduced a simpliÞed two-dimensional model. The motivation was to isolate con-
ceptually essential mathematical features yielding excitation and transmission prop-
erties from the analysis of the biophysics of sodium and potassium ßows. Nagumo
and collaborators [22] followed up with an electrical system reproducing the dynam-
ics of this model and studied its properties. The model consists of two equations, one
governing a voltage-like variableV having a cubic nonlinearity and a slower recovery
variablew. It can be written as:

�
�V = f (V ) Š w + I ext,
�w = c(V + a Š bw),

(4)

wheref (V ) is a cubic polynomial inV which we choose, without loss of generality,
to be f (V ) = V Š V 3/ 3. The parameterI ext models the input current the neuron
receives; the parametersa, b > 0 andc > 0 describe the kinetics of the recovery
variablew. As in the case of the Hodgkin-Huxley model, the currentI ext is assumed
to be the sum of a deterministic part, notedI , and a stochastic white noise accounting
for the randomness of the environment. The stochastic FitzHugh-Nagumo equation
is deduced from Equation4 and reads:

�
�

�
dVt =

	
Vt Š

V 3
t

3
Š wt + I



dt + � extdWt ,

dwt = c(Vt + a Š bwt ) dt.
(5)
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Fig. 3 Time evolution of the membrane potential and the adaptation variable in the FitzHugh-Nagumo
model.Left: without noise.Right: with noise. See text.

Note that because the functionf (V ) is not globally Lipschitz continuous (only lo-
cally), the well-posedness of the stochastic differential equation (Equation5) does
not follow immediately from the standard theorem which assumes the global Lips-
chitz continuity of the drift and diffusion coefÞcients. This question is settled below
by Proposition1.

We show in Figure3 the time evolution of the adaptation variable and the mem-
brane potential in the case where the inputI is constant and equal to 0.7. The left-
hand side of the Þgure shows the case with no noise while the right-hand side shows
the case where noise of intensity� ext = 0.25 (see Equation5) has been added.

The deterministic model has been solved with a Runge-Kutta method of order 4,
while the stochastic model, with the Euler-Maruyama scheme. In both cases, we have
used an integration time step�t = 0.01.

2.3 Partial conclusion

We have reviewed two main models of space-clamped single neurons: the Hodgkin-
Huxley and FitzHugh-Nagumo models. These models are stochastic, including var-
ious sources of noise: external and internal. The noise sources are supposed to be
independent Brownian processes. We have shown that the resulting stochastic differ-
ential Equations2 and5 were well-posed. As pointed out above, this analysis extends
to a large number of reduced versions of the Hodgkin-Huxley such as those that can
be found in the book [17].

2.4 Models of synapses and maximum conductances

We now study the situation in which several of these neurons are connected to one
another forming a network, which we will assume to be fully connected. LetN be
the total number of neurons. These neurons belong toP populations, e.g. pyramidal
cells or interneurons. If the index of a neuron isi , 1 � i � N , we notep(i) = 	 ,
1 � 	 � P as the population it belongs to. We noteNp(i) as the number of neurons
in populationp(i) . Since we want to be as close to biology as possible while keeping
the possibility of a mathematical analysis of the resulting model, we consider two
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types of simpliÞed, but realistic, synapses: chemical and electrical or gap junctions.
The following material concerning synapses is standard and can be found in text-
books [20]. The new, and we think important, twist is to add noise to our models. To
unify notations, in what follows,i is the index of a postsynaptic neuron belonging to
population	 = p(i) , andj is the index of a presynaptic neuron to neuroni belonging
to population
 = p(j ) .

2.4.1 Chemical synapses

The principle of functioning of chemical synapses is based on the release of a neu-
rotransmitter in the presynaptic neuron synaptic button, which binds to speciÞc re-
ceptors on the postsynaptic cell. This process, similar to the currents described in the
Hodgkin and Huxley model, is governed by the value of the cell membrane potential.
We use the model described in [20, 23], which features a quite realistic biophysical
representation of the processes at work in the spike transmission and is consistent
with the previous formalism used to describe the conductances of other ion channels.
The model emulates the fact that following the arrival of an action potential at the
presynaptic terminal, a neurotransmitter is released in the synaptic cleft and binds
to the postsynaptic receptor with a Þrst order kinetic scheme. Letj be a presynaptic
neuron to the postynaptic neuroni . The synaptic current induced by the synapse from
j to i can be modelled as the product of a conductancegij with a voltage difference:

I syn
ij = Š gij (t)

�
V i Š V ij

rev
�
. (6)

The synaptic reversal potentialsV ij
rev are approximately constant within each popula-

tion: V ij
rev := V 	


rev . The conductancegij is the product of the maximum conductance
Jij (t) with a functiony j (t) that denotes the fraction of open channels and depends
only upon the presynaptic neuronj :

gij (t) = Jij (t)y j (t). (7)

The functiony j (t) is often modelled [20] as satisfying the following ordinary differ-
ential equation:

�y j (t) = aj
r Sj

�
V j ��

1Š y j (t)
�

Š aj
dy j (t).

The positive constantsaj
r andaj

d characterize the rise and decay rates, respectively, of
the synaptic conductance. Their values depend only on the population of the presy-
naptic neuronj , i.e. aj

r := a

r and aj

d := a

d , but may vary signiÞcantly from one

population to the next. For example, gamma-aminobutyric acid (GABA)B synapses
are slow to activate and slow to turn off while the reverse is true for GABAA and
AMPA synapses [20]. Sj (V j ) denotes the concentration of the transmitter released
into the synaptic cleft by a presynaptic spike. We assume that the functionSj is sig-
moidal and that its exact form depends only upon the population of the neuronj . Its
expression is given by (see, e.g. [20]):

S

�
V j �

=
T 


max

1+ eŠ� 
 (V j ŠV 

T )

. (8)
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Destexhe et al. [23] give some typical values of the parametersTmax = 1 mM, VT =
2 mV and 1/� = 5 mV.

Because of the dynamics of ion channels and of their Þnite number, similar to the
channel noise models derived through the Langevin approximation in the Hodgkin-
Huxley model (Equation2), we assume that the proportion of active channels is actu-
ally governed by a stochastic differential equation with diffusion coefÞcient� 
 (V , y)
depending only on the population
 of j of the form (Equation1):

dyj
t =

�
a


r S

�
V j ��

1Š y j (t)
�

Š a

d y j (t)

�
dt + � y



�
V j , y j �

dWj,y
t .

In detail, we have

� y



�
V j , y j �

=
�

a

r S


�
V j

��
1 Š y j

�
+ a


d y j �
�
y j �

. (9)

Remember that the form of the diffusion term guarantees that the solutions to this
equation with appropriate initial conditions stay between 0 and 1. The Brownian mo-
tionsWj,y are assumed to be independent from one neuron to the next.

2.4.2 Electrical synapses

The electrical synapse transmission is rapid and stereotyped and is mainly used to
send simple depolarizing signals for systems requiring the fastest possible response.
At the location of an electrical synapse, the separation between two neurons is very
small (� 3.5 nm). This narrow gap is bridged by thegap junction channels, special-
ized protein structures that conduct the ßow of ionic current from the presynaptic to
the postsynaptic cell (see, e.g. [24]).

Electrical synapses thus work by allowing ionic current to ßow passively through
the gap junction pores from one neuron to another. The usual source of this current
is the potential difference generated locally by the action potential. Without the need
for receptors to recognize chemical messengers, signaling at electrical synapses is
more rapid than that which occurs across chemical synapses, the predominant kind
of junctions between neurons. The relative speed of electrical synapses also allows
for many neurons to Þre synchronously.

We model the current for this type of synapse as

I che
ij = Jij (t)

�
V i Š V j �

, (10)

whereJij (t) is the maximum conductance.

2.4.3 The maximum conductances

As shown in Equations6, 7 and10, we model the current going through the synapse
connecting neuronj to neuroni as being proportional to the maximum conductance
Jij . Because the synaptic transmission through a synapse is affected by the nature
of the environment, the maximum conductances are affected by dynamical random
variations (we do not take into account such phenomena as plasticity). What kind of
models can we consider for these random variations?

The simplest idea is to assume that the maximum conductances are independent

diffusion processes with meanJ̄	

N


and standard deviation
� J

	

N


, i.e. that depend only
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on the populations. The quantities̄J	
 , being conductances, are positive. We write
the following equation:

Ji
 (t) =
J̄	


N

+

� J
	


N

� i,
 (t), (11)

where the� i,
 (t) , i = 1, . . . ,N , 
 = 1, . . . ,P , areNP -independent zero mean unit
variance white noise processes derived fromNP -independent standard Brownian

motionsB i,
 (t) , i.e. � i,
 (t) = dBi,
 (t)
dt , which we also assume to be independent of

all the previously deÞned Brownian motions. The main advantage of this dynamics
is its simplicity. Its main disadvantage is that if we increase the noise level� 	
 , the
probability thatJij (t) becomes negative increases also: this would result in a negative
conductance!

One way to alleviate this problem is to modify the dynamics (Equation11) to
a slightly more complicated one whose solutions do not change sign, such as for
instance, the Cox-Ingersoll-Ross model [25] given by:

dJij (t) = 
 	


	
J̄	


N

Š Jij (t)



dt +

� J
	


N


�
Jij (t) dB i,
 (t). (12)

Note that the right-hand side only depends upon the population
 = p(j ) . Let Jij (0)
be the initial condition, it is known [25] that

E
�
Jij (t)



= Jij (0)eŠ
 	
 t +

J̄	


N


�
1Š eŠ
 	
 t � ,

Var
�
Jij (t)

�
= Jij (0)

(� J
	
 )2

N 2

 
 	


�
eŠ
 	
 t Š eŠ2
 	
 t � +

J̄	
 (� J
	
 )2

2N 3

 
 	


�
1Š eŠ
 	
 t � 2.

This shows that if the initial conditionJij (0) is equal to the meanJ̄	

N


, the mean of

the process is constant over time and equal toJ̄	

N


. Otherwise, if the initial condition

Jij (0) is of the same sign as̄J	
 , i.e. positive, then the long term mean isJ̄	

N


and

the process is guaranteed not to touch 0 if the condition 2N
 
 	
 J̄	
 � (� J
	
 )2 holds

[25]. Note that the long term variance is
J̄	
 (� J

	
 )2

2N 3

 
 	


.

2.5 Putting everything together

We are ready to write the equations of a network of Hodgkin-Huxley or FitzHugh-
Nagumo neurons and study their properties and their limit, if any, when the number
of neurons becomes large. The external current for neuroni has been modelled as the
sum of a deterministic part and a stochastic part:

I ext
i (t) = I i (t) + � i

ext
dWi

t

dt
.

We will assume that the deterministic part is the same for all neurons in the same
population,I i := I 	 , and that the same is true for the variance,� i

ext := � 	
ext. We further

assume that theN Brownian motionsWi
t areN -independent Brownian motions and
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independent of all the other Brownian motions deÞned in the model. In other words,

I ext
i (t) = I 	 (t) + � 	

ext
dWi

t

dt
, 	 = p(i), i = 1, . . . ,N. (13)

We only cover the case of chemical synapses and leave it to the reader to derive the
equations in the simpler case of gap junctions.

2.5.1 Network of FitzHugh-Nagumo neurons

We assume that the parametersai , bi andci in Equation5 of the adaptation variable
wi of neuroni are only functions of the population	 = p(i) .

Simple maximum conductance variation.If we assume that the maximum con-
ductances ßuctuate according to Equation11, the state of thei th neuron in a fully
connected network of FitzHugh-Nagumo neurons with chemical synapses is deter-
mined by the variables(V i ,w i , y i ) that satisfy the following set of 3N stochastic
differential equations:

�
�����������������

�����������������

dV i
t =

	
V i

t Š
(V i

t )3

3
Š wi

t + I 	 (t)



dt

Š

�
P�


 = 1

1
N


�

j,p(j ) = 


J̄	

�
V i

t Š V 	

rev

�
y j

t

�

dt

Š
P�


 = 1

1
N


	 �

j,p(j ) = 


� J
	


�
V i

t Š V 	

rev

�
y j

t



dBi,


t

+ � 	
extdWi

t ,
dwi

t = c	
�
V i

t + a	 Š b	 wi
t
�
dt,

dyi
t =

�
a	

r S	
�
V i

t
��

1Š y i
t
�

Š a	
d y i

t
�
dt + � y

	
�
V i

t , y i
t
�
dWi,y

t .

(14)

S	 (V i
t ) is given by Equation8; � y

	 , by Equation9; andWi,y
t , i = 1, . . . ,N , areN -

independent Brownian processes that model noise in the process of transmitter release
into the synaptic clefts.

Sign-preserving maximum conductance variation.If we assume that the maximum
conductances ßuctuate according to Equation12, the situation is slightly more com-
plicated. In effect, the state space of the neuroni has to be augmented by theP
maximum conductancesJi
 , 
 = 1, . . . ,P . We obtain

�
����������������

����������������

dV i
t =

	
V i

t Š
(V i

t )3

3
Š wi

t + I 	 (t)



dt

Š

�
P�


 = 1

1
N


�

j,p(j ) = 


Jij (t)
�
V i

t Š V 	

rev

�
y j

t

�

dt

+ � 	
extdWi

t ,
dwi

t = c	
�
V i

t + a	 Š b	 wi
t
�
dt,

dyi
t =

�
a	

r S	
�
V i

t
��

1Š y i
t
�

Š a	
d y i

t
�
dt + � y

	
�
V i

t , y i
t
�
dWi,y

t ,

dJi
 (t) = 
 	


	
J̄	


N

Š Ji
 (t)



dt +

� J
	


N


�
Ji
 (t) dB i,
 (t), 
 = 1, . . . , P ,

(15)

which is a set ofN(P + 3) stochastic differential equations.
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2.5.2 Network of Hodgkin-Huxley neurons

We provide a similar description in the case of the Hodgkin-Huxley neurons. We
assume that the functions� i

x and � i
x , x � { n,m,h}, that appear in Equation2 only

depend upon	 = p(i) .
Simple maximum conductance variation.If we assume that the maximum con-

ductances ßuctuate according to Equation11, the state of thei th neuron in a fully
connected network of Hodgkin-Huxley neurons with chemical synapses is therefore
determined by the variables(V i , ni ,mi , h i , y i ) that satisfy the following set of 5N
stochastic differential equations:
�
���������������

���������������

C dVi
t =

�
I 	 (t) Š ḡKn4

i
�
V i

t Š EK
�

Š ḡNam3
i hi

�
V i

t Š ENa
�

Š ḡL
�
V i

t Š EL
��

dt

Š

�
P�


 = 1

1
N


�

j,p(j ) = 


J̄	

�
V i

t Š V 	

rev

�
y j

t

�

dt

Š
P�


 = 1

1
N


	 �

j,p(j ) = 


� J
	


�
V i

t Š V 	

rev

�
y j

t



dBi,


t

+ � 	
extdWi

t ,
dxi (t) =

�
� 	

x
�
V i � (1 Š xi ) Š � x

�
V i � xi

�
dt + � x

�
V i , x i

�
dWx,i

t , x � { n,m,h},

dyi
t =

�
a	

r S	
�
V i

t
��

1Š y i
t
�

Š a	
d y i

t
�
dt + � y

	
�
V i

t , y i
t
�
dWi,y

t .

(16)

Sign-preserving maximum conductance variation.If we assume that the maximum
conductances ßuctuate according to Equation12, we use the same idea as in the
FitzHugh-Nagumo case of augmenting the state space of each individual neuron and
obtain the following set of(5 + P )N stochastic differential equations:
�
��������������

��������������

C dVi
t =

�
I 	 (t) Š ḡKn4

i
�
V i

t Š EK
�

Š ¯gNam3
i hi

�
V i

t Š ENa
�

Š ḡL
�
V i

t Š EL
��

dt

Š

�
P�


 = 1

1
N


�

j,p(j ) = 


Jij (t)
�
V i

t Š V 	

rev

�
y j

t

�

dt

+ � 	
extdWi

t ,
dxi (t) =

�
� 	

x
�
V i

t
�
(1 Š xi ) Š � 	

x
�
V i

t
�
xi

�
dt + � x

�
V i

t , x i
�
dWx,i

t , x � { n,m,h},

dyi
t =

�
a	

r S	
�
V i

t
��

1Š y i
t
�

Š a	
d y i

t
�
dt + � y

	
�
V i

t , y i
t
�
dWi,y

t ,

dJi
 (t) = 
 	


	
J̄	


N

Š Ji
 (t)



dt +

� J
	


N


�
Ji
 (t) dB i,
 (t), 
 = 1, . . . ,P .

(17)

2.5.3 Partial conclusion

Equations14 to 17have a quite similar structure. They are well-posed, i.e. given any
initial condition, and any timeT > 0, they have a unique solution on[0,T ] which
is square-integrable. A little bit of care has to be taken when choosing these initial
conditions for some of the parameters, i.e.n, m andh, which take values between 0
and 1, and the maximum conductances when one wants to preserve their signs.

In order to prepare the grounds for the ÔMean-Þeld equations for conductance-
based modelsÕ section, we explore a bit more the aforementioned common struc-
ture. Let us Þrst consider the case of the simple maximum conductance variations
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for the FitzHugh-Nagumo network. Looking at Equation14, we deÞne the three-
dimensional state vector of neuroni to be X i

t = (V i
t ,w i

t , y
i
t ). Let us now deÞne

f 	 : R × R3 � R3, 	 = 1, . . . ,P , by

f 	
�
t,X i

t
�

=

�

�
�

V i
t Š

(V i
t )3

3
Š wi

t + I 	 (t)

c	
�
V i

t + a	 Š b	 wi
t
�

a	
r S	

�
V i

t
��

1 Š y i
t
�

Š a	
d y i

t

�

�
� .

Let us next deÞneg	 : R × R3 � R3× 2 by

g	
�
t,X i

t
�

=

� � 	
ext 0
0 0
0 � y

	
�
V i

t , y i
t
�

�

.

It appears that the intrinsic dynamics of the neuroni is conveniently described by the
equation

dX i
t = f 	

�
t,X i

t
�
dt + g	

�
t,X i

t
�
�

dWi
t

dWi,y
t

�
.

We next deÞne the functionsb	
 : R3 × R3 � R3, for 	, 
 = 1, . . . ,P , by

b	

�
X i

t ,X
j
t
�

=

�

�
Š J̄	


�
V i

t Š V 	

rev

�
y j

t
0
0

�

�

and the function� 	
 : R3 × R3 � R3× 1 by

� 	

�
X i

t ,X
j
t
�

=

�

�
Š � J

	

�
V i

t Š V 	

rev

�
y j

t
0
0

�

� .

It appears that the full dynamics of the neuroni , corresponding to Equation14, can
be described compactly by

dX i
t = f 	

�
t,X i

t
�
dt + g	

�
t,X i

t
�
�

dWi
t

dWi,y
t

�
+

P�


 = 1

1
N


�

j,p(j ) = 


b	

�
X i

t ,X
j
t
�
dt

+
P�


 = 1

1
N


�

j,p(j ) = 


� 	

�
X i

t ,X
j
t
�
dBi,


t .

(18)

Let us now move to the case of the sign-preserving variation of the maximum con-
ductances, still for the FitzHugh-Nagumo neurons. The state of each neuron is now
P+ 3-dimensional: we deÞneX i

t = (V i
t ,w i

t , y
i
t , J i 1(t), . . . , J iP (t)) . We then deÞne

the functionsf 	 : R × RP+ 3 � RP+ 3, 	 = 1, . . . ,P , by

f 	
�
t,X i

t
�

=

�

�
�
�
�
�
�
�

V i
t Š

(V i
t )3

3
Š wi

t + I 	 (t)

c	
�
V i

t + a	 Š b	 wi
t
�

a	
r S	

�
V i

t
��

1Š y i
t
�

Š a	
d y i

t


 	


	
J̄	


N

Š Ji
 (t)



, 
 = 1, . . . ,P

�

�
�
�
�
�
�
�
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and the functionsg	 : R × RP+ 3 � R(P + 3)× (P + 2) by

g	
�
t,X i

t
�

=

�

�
�
�
�
�
�
�
�
�
�
�

� 	
ext 0 0 · · · 0
0 0 0 · · · 0
0 � y

	
�
V i

t , y i
t
�

0 · · · 0

0 0
� J

	 1

N1

�
Ji 1(t) · · · 0

...
...

...
...

...

0 0 0 · · ·
� J

	P

NP

�
JiP (t)

�

�
�
�
�
�
�
�
�
�
�
�

.

It appears that the intrinsic dynamics of the neuroni isolated from the other neurons
is conveniently described by the equation

dX i
t = f 	

�
t,X i

t
�
dt + g	

�
t,X i

t
�

�

�
�
�
�
�
�

dWi
t

dWi,y
t

dBi, 1
t
...

dBi,P
t

�

�
�
�
�
�
�

.

Let us Þnally deÞne the functionsb	
 : RP+ 3 × RP+ 3 � RP+ 3, for 	, 
 = 1, . . . ,P ,
by

b	

�
X i

t ,X
j
t
�

=

�

�
�
�

ŠJij (t)
�
V i

t Š V 	

rev

�
y j

t
0
...
0

�

�
�
� .

It appears that the full dynamics of the neuroni , corresponding to Equation15 can
be described compactly by

dX i
t = f 	

�
t,X i

t
�
dt + g	

�
t,X i

t
�

�

�
�
�
�
�
�

dWi
t

dWi,y
t

dBi, 1
t
...

dBi,P
t

�

�
�
�
�
�
�

+
P�


 = 1

1
N


�

j,p(j ) = 


b	

�
X i

t ,X
j
t
�
dt.

(19)

We let the reader apply the same machinery to the network of Hodgkin-Huxley
neurons.

Let us noted as the positive integer equal to the dimension of the state space in
Equation18(d = 3) or19(d = 3+ P) or in the corresponding cases for the Hodgkin-
Huxley model (d = 5 andd = 5+ P). The reader will easily check that the following
four assumptions hold for both models:

(H1) Locally Lipschitz dynamics: For all 	 � { 1, . . . ,P }, the functionsf 	 andg	 are
uniformly locally Lipschitz continuous with respect to the second variable. In
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detail, for allU > 0, there existsKU > 0 independent oft � [ 0,T ] such that
for all x, y � Bd

U , the ball ofRd of radiusU:

	 f 	 (t, x) Š f 	 (t, y) 	 + 	 g	 (t, x) Š g	 (t, y) 	 � KU 	 x Š y	 , 	 = 1, . . . ,P .

(H2) Locally Lipschitz interactions: For all 	, 
 � { 1, . . . ,P }, the functionsb	
 and
� 	
 are locally Lipschitz continuous. In detail, for allU > 0, there existsL U >
0 such that for allx, y, x 
, y 
 � Bd

U , we have:
�
� b	
 (x, y) Š b	


�
x 
, y 
� �� +

�
� � 	
 (x, y) Š � 	


�
x 
, y 
� ��

� L U
� �� x Š x 
�� +

�
� y Š y 
�� �

.

(H3) Linear growth of the interactions: There exists a�K > 0 such that

max
� �� b	
 (x, z)

�
� 2,

�
� � 	
 (x, z)

�
� 2�

� �K
�
1+ 	 x	 2�

.

(H4) Monotone growth of the dynamics: We assume thatf 	 andg	 satisfy the fol-
lowing monotonous condition for all	 = 1, . . . ,P :

xT f 	 (t, x) +
1
2

�
� g	 (t, x)

�
� 2 � K

�
1 + 	 x	 2�

. (20)

These assumptions are central to the proofs of Theorems2 and4.
They imply the following proposition stating that the system of stochastic differ-

ential equations (Equation19) is well-posed:

Proposition 1 Let T > 0 be a Þxed time. If |I 	 (t)| � I m on [0,T ], for 	 = 1, . . . ,P ,
Equations18and19together with an initial conditionX i

0 � L2(Rd), i = 1, . . . ,N of
square-integrable random variables, have a unique strong solution which belongs to
L2([0,T ]; RdN ).

Proof The proof uses Theorem 3.5 in chapter 2 in [26] whose conditions are easily
shown to follow from hypotheses2.5.3to (H2). �

The caseN = 1 implies that Equations2 and 5, describing the stochastic
FitzHugh-Nagumo and Hodgkin-Huxley neurons, are well-posed.

We are interested in the behavior of the solutions of these equations as the number
of neurons tends to inÞnity. This problem has been long-standing in neuroscience,
arousing the interest of many researchers in different domains. We discuss the differ-
ent approaches developed in the Þeld in the next subsection.

2.6 Mean-Þeld methods in computational neuroscience: a quick overview

Obtaining the equations of evolution of the effective mean-Þeld from microscopic dy-
namics is a very complex problem. Many approximate solutions have been provided,
mostly based on the statistical physics literature.

Many models describing the emergent behavior arising from the interaction of
neurons in large-scale networks have relied on continuum limits ever since the semi-
nal work of Amari, and Wilson and Cowan [27Ð30]. Such models represent the activ-
ity of the network by macroscopic variables, e.g. the population-averaged Þring rate,
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which are generally assumed to be deterministic. When the spatial dimension is not
taken into account in the equations, they are referred to as neural masses, otherwise as
neural Þelds. The equations that relate these variables are ordinary differential equa-
tions for neural masses and integrodifferential equations for neural Þelds. In the sec-
ond case, they fall in a category studied in [31] or can be seen as ordinary differential
equations deÞned on speciÞc functional spaces [32]. Many analytical and numerical
results have been derived from these equations and related to cortical phenomena, for
instance, for the problem of spatio-temporal pattern formation in spatially extended
models (see, e.g. [33Ð36]). The use of bifurcation theory has also proven to be quite
powerful [37, 38]. Despite all its qualities, this approach implicitly makes the as-
sumption that the effect of noise vanishes at the mesoscopic and macroscopic scales
and hence that the behavior of such populations of neurons is deterministic.

A different approach has been to study regimes where the activity is uncorrelated.
A number of computational studies on the integrate-and-Þre neuron showed that un-
der certain conditions, neurons in large assemblies end up Þring asynchronously,
producing null correlations [39Ð41]. In these regimes, the correlations in the Þring
activity decrease towards zero in the limit where the number of neurons tends to in-
Þnity. The emergent global activity of the population in this limit is deterministic
and evolves according to a mean-Þeld Þring rate equation. However, according to the
theory, these states only exist in the limit where the number of neurons is inÞnite,
thereby raising the question of how the Þniteness of the number of neurons impacts
the existence and behavior of asynchronous states. The study of Þnite-size effects for
asynchronous states is generally not reduced to the study of mean Þring rates and
can include higher order moments of Þring activity [42Ð44]. In order to go beyond
asynchronous states and take into account the stochastic nature of the Þring and un-
derstand how this activity scales as the network size increases, different approaches
have been developed, such as the population density method and related approaches
[45]. Most of these approaches involve expansions in terms of the moments of the
corresponding random variables, and the moment hierarchy needs to be truncated
which is not a simple task that can raise a number of difÞcult technical issues (see,
e.g. [46]).

However, increasingly many researchers now believe that the different intrinsic or
extrinsic noise sources are part of the neuronal signal, and rather than being a pure
disturbing effect related to the intrinsically noisy biological substrate of the neural
system, they suggest that noise conveys information that can be an important principle
of brain function [47]. At the level of a single cell, various studies have shown that
the Þring statistics are highly stochastic with probability distributions close to the
Poisson distributions [48], and several computational studies conÞrmed the stochastic
nature of single-cell Þrings [49Ð51]. How the variability at the single-neuron level
affects the dynamics of cortical networks is less well established. Theoretically, the
interaction of a large number of neurons that Þre stochastic spike trains can naturally
produce correlations in the Þring activity of the population. For instance, power laws
in the scaling of avalanche-size distributions has been studied both via models and
experiments [52Ð55]. In these regimes, the randomness plays a central role.

In order to study the effect of the stochastic nature of the Þring in large networks,
many authors strived to introduce randomness in a tractable form. Some of the models
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proposed in the area are based on the deÞnition of a Markov chain governing the Þr-
ing dynamics of the neurons in the network, where the transition probability satisÞes
a differential equation, themaster equation. Seminal works of the application of such
modeling for neuroscience date back to the early 1990s and have been recently de-
veloped by several authors [43, 56Ð59]. Most of these approaches are proved correct
in some parameter regions using statistical physics tools such as path integrals and
Van-Kampen expansions, and their analysis often involve a moment expansion and
truncation. Using a different approach, a static mean-Þeld study of multi-population
network activity was developed by Treves in [60]. This author did not consider exter-
nal inputs but incorporated dynamical synaptic currents and adaptation effects. His
analysis was completed in [39], where the authors proved, using a Fokker-Planck
formalism, the stability of an asynchronous state in the network. Later on, Gerst-
ner in [61] built a new approach to characterize the mean-Þeld dynamics for the spike
response model, via the introduction of suitable kernels propagating the collective ac-
tivity of a neural population in time. Another approach is based on the use of large de-
viation techniques to study large networks of neurons [62]. This approach is inspired
by the work on spin-glass dynamics, e.g. [63]. It takes into account the randomness
of the maximum conductances and the noise at various levels. The individual neuron
models are rate models, hence already mean-Þeld models. The mean-Þeld equations
are not rigorously derived from the network equations in the limit of an inÞnite num-
ber of neurons, but they are shown to have a unique, non-Markov solution, i.e. with
inÞnite memory, for each initial condition.

Brunel and Hakim considered a network of integrate-and-Þre neurons connected
with constant maximum conductances [41]. In the case of sparse connectivity, sta-
tionarity, and in a regime where individual neurons emit spikes at a low rate, they
were able to analytically study the dynamics of the network and to show that it ex-
hibits a sharp transition between a stationary regime and a regime of fast collective
oscillations weakly synchronized. Their approach was based on a perturbative analy-
sis of the Fokker-Planck equation. A similar formalism was used in [44] which, when
complemented with self-consistency equations, resulted in the dynamical description
of the mean-Þeld equations of the network and was extended to a multi population
network. Finally, Chizhov and Graham [64] have recently proposed a new method
based on a population density approach allowing to characterize the mesoscopic be-
havior of neuron populations in conductance-based models.

Let us Þnish this very short and incomplete survey by mentioning the work of
Sompolinsky and colleagues. Assuming a linear intrinsic dynamics for the individual
neurons described by a rate model and random centered maximum conductances for
the connections, they showed [65, 66] that the system undergoes a phase transition
between two different stationary regimes: a ÔtrivialÕ regime where the system has
a unique null and uncorrelated solution, and a ÔchaoticÕ regime in which the Þring
rate converges towards a non-zero value and correlations stabilize on a speciÞc curve
which they were able to characterize.

All these approaches have in common that they are not based on the most widely
accepted microscopic dynamics (such as the ones represented by the Hodgkin-Huxley
equations or some of their simpliÞcations) and/or involve approximations or moment
closures. Our approach is distinct in that it aims at deriving rigorously and without
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approximations the mean-Þeld equations of populations of neurons whose individual
neurons are described by biological, if not correct at least plausible, representations.
The price to pay is the complexity of the resulting mean-Þeld equations. The spe-
ciÞc study of their solutions is therefore a crucial step, which will be developed in
forthcoming papers.

3 Mean-Þeld equations for conductance-based models

In this section, we give a general formulation of the neural network models introduced
in the previous section and use it in a probabilistic framework to address the problem
of the asymptotic behavior of the networks, as the number of neuronsN goes to
inÞnity. In other words, we derive the limit in law ofN -interacting neurons, each of
which satisfying a nonlinear stochastic differential equation of the type described in
the ÔSpiking conductance-based modelsÕ section. In the remainder of this section, we
work in a complete probability space(�, F , P) satisfying the usual conditions and
endow with a Þltration(F t )t .

3.1 Setting of the problem

We recall that the neurons in the network fall into different populationsP. The pop-
ulations differ through the intrinsic properties of their neurons and the input they
receive. We assume that the number of neurons in each population	 � { 1, . . . ,P },
denoted byN	 , increases as the network size increases and moreover that the asymp-
totic proportion of neurons in population	 is nontrivial, i.e.N	 /N � � 	 � (0, 1) as
N goes to inÞnityb.

We use the notations introduced in the ÔPartial conclusionÕ section, and the reader
should refer to this section to give a concrete meaning to the rather abstract (but
required by the mathematics) setting that we now establish.

Each neuroni in population	 is described by a state vector noted asX i,N
t in Rd

and has an intrinsic dynamics governed by a drift functionf 	 : R × Rd �� Rd and a
diffusion matrixg	 : R × Rd �� Rd× m assumed uniformly locally Lipschitz continu-
ous with respect to the second variable. For a neuroni in population	 , the dynamics
of thed-dimensional process(X i

t ) governing the evolution of the membrane potential
and additional variables (adaptation, ionic concentrations), when there is no interac-
tion, is governed by the equation:

dX i,N
t = f 	

�
t,X i,N

t
�
dt + g	

�
t,X i,N

t
�
dWi

t .

Moreover, we assume, as it is the case for all the models described in the ÔSpiking
conductance-based modelsÕ section, that the solutions of this stochastic differential
equation exist for all time.

bAs we will see in the proof, most properties are valid as soon asN	 tends to inÞnity asN goes to inÞnity
for all 	 � { 1, . . . ,P }, the previous assumption will allow quantifying the speed of convergence towards
the asymptotic regime.
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When included in the network, these processes interact with those of all the other
neurons through a set of continuous functions that only depend on the population
	 = p(i) , the neuroni belongs to and the populations
 of the presynaptic neurons.
These functions,b	
 (x, y) : Rd × Rd �� Rd, are scaled by the coefÞcients 1/N 
 ,
so the maximal interaction is independent of the size of the network (in particular,
neither diverging nor vanishing asN goes to inÞnity).

As discussed in the ÔSpiking conductance-based modelsÕ section, due to the
stochastic nature of ionic currents and the noise effects linked with the discrete nature
of charge carriers, the maximum conductances are perturbed dynamically through the
N × P-independent Brownian motionsB i,	

t of dimension� that were previously in-
troduced. The interaction between the neurons and the noise term is represented by
the function� 	
 : Rd × Rd �� Rd× � .

In order to introduce the stochastic current and stochastic maximum conductances,
we deÞne two independent sequences of independentm- and� -dimensional Brown-
ian motions noted as(W i

t )i � N and(B i	
t )i � N,	 �{ 1···P} which are adapted to the Þltra-

tion F t .
The resulting equation for thei th neuron, including the noisy interactions, reads:

dX i,N
t = f 	

�
t,X i,N

t
�
dt +

P�


 = 1

1
N


�

j,p(j ) = 


b	

�
X i,N

t ,X j,N
t

�
dt

+ g	
�
t,X i,N

t
�
dWi

t +
P�


 = 1

1
N


�

j,p(j ) = 


� 	

�
X i,N

t ,X j,N
t

�
dBi


t .

(21)

Note that this implies thatX i,N andX j,N have the same law wheneverp(i) = p(j ) ,
given identically distributed initial conditions.

These equations are similar to the equations studied in another context by a num-
ber of mathematicians, among which are McKean, Tanaka and Sznitman (see the
ÔIntroductionÕ section), in that they involve a very large number of particles (here,
particles are neurons) in interaction. Motivated by the study of the McKean-Vlasov
equations, these authors studied special cases of equations (Equation21). This theory,
referred to as the kinetic theory, is chießy interested in the study of the thermodynam-
ics questions. They show the property that in the limit where the number of particles
tends to inÞnity, provided that the initial state of each particle is drawn independently
from the same law, each particle behaves independently and has the same law, which
is given by an implicit stochastic equation. They also evaluate the ßuctuations around
this limit under diverse conditions [1, 2, 6, 7, 9Ð11]. Some extensions to biological
problems where the drift term is not globally Lipschitz but satisÞes the monotone
growth condition (Equation20) were studied in [67]. This is the approach we under-
take here.

3.2 Convergence of the network equations to the mean-Þeld equations and
properties of those equations

We now show that the same type of phenomena that were predicted for systems of
interacting particles happen in networks of neurons. In detail, we prove that in the
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limit of large populations, the network displays the property of propagation of chaos.
This means that any Þnite number of diffusion processes become independent, and all
neurons belonging to a given population	 have asymptotically the same probability
distribution, which is the solution of the following mean-Þeld equation:

dX̄ 	
t = f 	

�
t, X̄ 	

t
�
dt +

P�


 = 1

EZ̄

�
b	


�
X̄ 	

t , Z̄ 

t

�

dt

+ g	
�
t, X̄ 	

t
�
dW	

t +
P�


 = 1

EZ̄

�
� 	


�
X̄ 	

t , Z̄ 

t

�

dB	


t , 	 = 1, . . . ,P ,

(22)

whereZ̄ is a process independent ofX̄ that has the same law, andEZ̄ denotes the ex-
pectation under the law of̄Z . In other words, the mean-Þeld equation can be written,
denoting bydm


t (z) the law ofZ̄ 

t (hence, also of̄X 


t ):

dX̄ 	
t = f 	

�
t, X̄ 	

t
�
dt +

P�


 = 1

	 �

Rd
b	


�
X̄ 	

t , z
�
dm


t (z)



dt

+ g	
�
t, X̄ 	

t
�
dW	

t +
P�


 = 1

	 �

Rd
� 	


�
X̄ 	

t , z
�
dm


t (z)



dB	

t .

(23)

In these equations,W	
t , for 	 = 1· · ·P , are independent, standard,m-dimensional

Brownian motions. Let us point out the fact that the right-hand side of Equations22
and23 depends on the law of the solution; this fact is sometimes referred to as Ôthe
processX̄ is attracted by its own lawÕ. This equation is also classically written as
the McKean-Vlasov-Fokker-Planck equation on the probability distributionp of the
solution. This equation which we use in the ÔNumerical simulationsÕ section can be
easily derived from Equation22. Let p 	 (t, z), z = (z1, . . . , zd), be the probability
density at timet of the solutionX̄ 	

t to Equation22 (this is equivalent todm	
t (z) =

p 	 (t, z) dz), then we have:

� tp 	 (t, z) = Š divz

��

f 	 (t, z) +
P�


 = 1

�
b	
 (z, y)p 
 (t, y) dy

�

p 	 (t, z)

�

+
1
2

d�

i,j = 1

� 2

�z i �z j

�
D 	

ij (z)p 	 (t, z)
�
, 	 = 1, . . . ,P ,

(24)

where thed × d matrix D 	 is given by

D 	 (z) =
P�


 = 1

EZ
�
� 	
 (z,Z)



ET

Z
�
� 	
 (z,Z)



+ g	 (t, z)gT

	 (t, z)

with

EZ
�
� 	
 (z,Z)



=

�
� 	
 (z, y)p 
 (t, y) dy.

The P equations (Equation24) yield the probability densities of the solutions̄X 	
t

of the mean-Þeld equations (Equation22). Because of the propagation of chaos re-
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sult, theX̄ 	
t are statistically independent, but their probability functions are clearly

functionally dependent.
We now spend some time on notations in order to obtain a somewhat more

compact form of Equation22. We deÞneX̄ t to be thedP-dimensional process
X̄ t = (X̄ 	

t ; 	 = 1· · ·P ). We similarly deÞnef , g, b and� as the concatenations of
functionsf 	 , g	 , b	,� and� 	,
 , respectively. In details,f (t, X̄) = (f 	 (t, X̄ 	

t ); 	 =
1· · ·P ), b(X,Y ) = (

� P

 = 1 b	
 (X 	 ,Y 
 ); 	 = 1· · ·P ) andW = (W 	 ; 	 = 1· · ·P ).

The term of noisy synaptic interactions requires a more careful treatment. We deÞne
� = (� 	
 ; 	, 
 = 1· · ·P ) � (Rd× � )P× P andB = (B 	
 ; 	, 
 = 1· · ·P ) � (R� )P× P ,
and the product� of an elementM � (Rd× � )P× P and an elementX � (R� )P× P as
the element of(Rd)P :

(M � X) 	 =
�




M 	
 X 	
 .

We obtain the equivalent compact mean-Þeld equation:

dX̄ t =
�
f (t, X̄ t ) + EZ̄

�
b(X̄ t , Z̄ t )


�
dt

+ g(t, X̄ t ) dWt + EZ̄

�
�( X̄ t , Z̄ t )



� dBt .

(25)

Equations22and24are implicit equations on the law of̄X t .
We now state the main theoretical results of the paper as two theorems. The Þrst

theorem is about the well-posedness of the mean-Þeld equation (Equation22). The
second is about the convergence of the solutions of the network equations to those
of the mean-Þeld equations. Since the proof of the second theorem involves similar
ideas to those used in the proof of the Þrst, it is given in the Appendix.

Theorem 2 Under assumptions(H1) to (H4), there exists a unique solution to the
mean-Þeld equation(Equation22) on [0,T ] for anyT > 0.

Let us denote byM (C) the set of probability distributions onCthe set continuous
functions[0,T ] �� (Rd)P , andM 2(C) the space of square-integrable processes. Let
(W 	 ; 	 = 1· · ·P ) (respectively,(B 	
 ; 	, 
 = 1· · ·P )) also be a family ofP (respec-
tively, P2)-independent,m (respectively� )-dimensional, adapted standard Brownian
motions on(�, F ,P ). Let us also noteX0 � M (Rd)P as the (random) initial con-
dition of the mean-Þeld equation. We introduce the map� acting on stochastic pro-
cesses and deÞned by:

� :

�
��������������

��������������

M (C) �� M (C),
X ��

�
Yt =

�
Y	

t , 	 = 1· · ·P
 �

t with

Y	
t = X 	

0 +
� t

0

�

f 	
�
s,X 	

s
�

+
P�


 = 1

EZ
�
b	


�
X 	

s , Z 

s

�

�

ds

+
� t

0
g	

�
s,X 	

s
�
dW	

s

+
P�


 = 1

� t

0
EZ

�
� 	


�
X 	

s , Z 

s

�

dB	


s , 	 = 1, . . . ,P .
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We have introduced in the previous formula the processZ t with the same law as and
independent ofX t . There is a trivial identiÞcation between the solutions of the mean-
Þeld equation (Equation22) and the Þxed points of the map� : any Þxed point of�
provides a solution for Equation22, and conversely, any solution of Equation22 is a
Þxed point of� .

The following lemma is useful to prove the theorem:

Lemma 3 Let X0 � L2((Rd)P ) be a square-integrable random variable. Let X be
a solution of the mean-Þeld equation(Equation22) with initial condition X0. Un-
der assumptions(H3) and(H4), there exists a constantC(T ) > 0 depending on the
parameters of the system and on the horizonT , such that:

E
�
	 X t 	 2


� C(T ), 
 t � [ 0,T ].

Proof Using the It™ formula for	 X t 	 2, we have:

	 X t 	 2 = 	 X0	 2 + 2
� t

0

	
X T

s f (s,X s) +
1
2

�
� g(s,Xs)

�
� 2

+ X T
s EZ

�
b(Xs, Z s)



+

1
2

�
� EZ

�
�(X s, Z s)


 �� 2



ds+ Nt ,

whereNt is a stochastic integral, hence with a null expectation,E[Nt ] = 0.
This expression involves the termxT b(x, z). Because of assumption (H3), we

clearly have:
!
!xT b(x, z)

!
! � 	 x	

�
� b(x, z)

�
� � 	 x	

�
�K
�
1+ 	 x	 2

�
�

�
�K
�
1 + 	 x	 2�

.

It also involves the termxT f (t, x) + 1
2 	 g(t, x) 	 2 which, because of assumption (H4),

is upperbounded byK( 1+ 	 x	 2). Finally, assumption (H3) again allows us to upper-
bound the term1

2 	 EZ [�(X s, Z s)]	 2 by �K
2 (1 + 	 Xs	 2).

Finally, we obtain

E
�
1+ 	 X t 	 2


� E
�
1+ 	 X0	 2


+ 2
	

K +
�K
2

+
�

�K

 � t

0
E

�
1 + 	 Xs	 2


ds.

Using GronwallÕs inequality, we deduce theL2 boundedness of the solutions of the
mean-Þeld equations. �

This lemma puts us in a position to prove the existence and uniqueness theorem:

Proof We start by showing the existence of solutions and then prove the uniqueness
property. We recall that by the application of Lemma3, the solutions will all have
bounded second-order moment.

Existence. LetX 0 = (X 0
t = { X 0	

t , 	 = 1· · ·P}) � M (C) be a given stochastic pro-
cess, and deÞne the sequence of probability distributions(X k)k� 0 on M (C) deÞned
by induction byX k+ 1 = �(X k). DeÞne also a sequence of processesZ k, k � 0, in-
dependent of the sequence of processesX k and having the same law. We note this as
ÔX andZ i.i.d.Õ below. We stop the processes at the time� k

U the Þrst hitting time of
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the norm ofX k to the constant valueU. For convenience, we will make an abuse of
notation in the proof and denoteX k

t = X k
t� � k

U
. This implies thatX k

t belongs toBd
U ,

the ball of radiusU centered at the origin inRd, for all timest � [ 0,T ].
Using the notations introduced for Equation25, we decompose the difference

X k+ 1
t Š X k

t as follows:

X k+ 1
t Š X k

t =
� t

0

�
f

�
s,Xk

s
�

Š f
�
s,XkŠ1

s
��

ds
" #$ %

At

+
� t

0
EZ

�
b
�
X k

s, Z k
s
�

Š b
�
X kŠ1

s , Z kŠ1
s

�

ds

" #$ %
Bt

+
� t

0

�
g

�
s,Xk

s
�

Š g
�
s,XkŠ1

s
��

dWs

" #$ %
Ct

+
� t

0
EZ

�
�

�
X k

s, Z k
s
�

Š �
�
X kŠ1

s , Z kŠ1
s

�

� dBs

" #$ %
D t

and Þnd an upperbound forM k
t := E[sups� t 	 X k+ 1

s Š X k
s 	 2] by Þnding upperbounds

for the corresponding norms of the four termsAt , Bt , Ct andD t . Applying the dis-
crete Cauchy-Schwartz inequality, we have:

�
� X k+ 1

t Š X k
t

�
� 2 � 4

�
	 At 	 2 + 	 Bt 	 2 + 	 Ct 	 2 + 	 D t 	 2�

and treat each term separately. The upperbounds for the Þrst two terms are ob-
tained using the Cauchy-Schwartz inequality, those of the last two terms using the
Burkholder-Davis-Gundy martingale moment inequality.

The termAt is easily controlled using the Cauchy-Schwarz inequality and the use
of assumption (H1):

	 As	 2 � K 2
U T

� s

0

�
� X k

u Š X kŠ1
u

�
� 2 du.

Taking the sup of both sides of the last inequality, we obtain

sup
s� t

	 As	 2 � K 2
U T

� t

0

�
� X k

s Š X kŠ1
s

�
� 2 ds� K 2

U T
� t

0
sup
u� s

�
� X k

u Š X kŠ1
u

�
� 2 ds,

from which follows the fact that

E
&
sup
s� t

	 As	 2
'

� K 2
U T

� t

0
E

&
sup
u� s

�
� X k

u Š X kŠ1
u

�
� 2

'
ds.

The termBt is controlled using the Cauchy-Schwartz inequality, assumption (H2),
and the fact that the processesX andZ are independent with the same law:

	 Bs	 2 � 2T L2
U

� s

0

� �� X k
u Š X kŠ1

u

�
� 2 + E

� �� X k
u Š X kŠ1

u

�
� 2
�

du.
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Taking the sup of both sides of the last inequality, we obtain

sup
s� t

	 Bs	 2 � 2T L2
U

� t

0

(
sup
u� s

�
� X k

u Š X kŠ1
u

�
� 2 + E

&
sup
u� s

�
� X k

u Š X kŠ1
u

�
� 2

')
ds,

from which follows the fact that

E
&
sup
s� t

	 Bs	 2
'

� 4T L2
U

� t

0
E

&
sup
u� s

�
� X k

u Š X kŠ1
u

�
� 2

'
ds.

The termCt is controlled using the fact that it is a martingale and applying the
Burkholder-Davis-Gundy martingale moment inequality and assumption (H1):

E
&
sup
s� t

	 Cs	 2
'

� 4K 2
U

� t

0
E

&
sup
u� s

�
� X k

u Š X kŠ1
u

�
� 2

'
ds.

The termD t is also controlled using the fact that it is a martingale and applying the
Burkholder-Davis-Gundy martingale moment inequality and assumption (H2):

E
&
sup
s� t

	 D t 	 2
'

� 16L 2
U

� t

0
E

&
sup
u� s

�
� X k

u Š X kŠ1
u

�
� 2

'
ds.

Putting all of these together, we get:

E
&
sup
s� t

�
� X k+ 1

s Š X k
s

�
� 2

'

� 4(T + 4)
�
K 2

U + 4L 2
U

� � t

0
E

&
sup
u� s

�
� X k

u Š X kŠ1
u

�
� 2

'
ds.

(26)

From the relationM k
t � K 



* t
0 M kŠ1

s ds with K 

 = 4(T + 4)(K 2
U + 4L 2

U ), we get
by an immediate recursion:

M k
t �

�
K 

 � k

� t

0

� s1

0
· · ·

� skŠ1

0
M 0

sk
ds1 · · · dsk

�
(K 

)ktk

k!
M 0

T

(27)

andM 0
T is Þnite because the processes are bounded. The BienaymŽ-Tchebychev in-

equality and Equation27now give

P
	

sup
s� t

�
� X k+ 1

s Š X k
s

�
� 2 >

1
22(k+ 1)



� 4

(4K 

t)k

k!
M 0

T

and this upper bound is the term of a convergent series. The Borel-Cantelli lemma
stems that for almost any� � � , there exists a positive integerk0(�) (� denotes an
element of the probability space� ) such that

sup
s� t

�
� X k+ 1

s Š X k
s

�
� 2 �

1
22(k+ 1) , 
 k � k0(�)

and hence

sup
s� t

�
� X k+ 1

s Š X k
s

�
� �

1
2k+ 1 , 
 k � k0(�).
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It follows that with probability 1, the partial sums:

X 0
t +

n�

k= 0

�
X k+ 1

t Š X k
t
�

= X n
t

are uniformly (int � [ 0,T ]) convergent. Denote the thus deÞned limit byX̄ t . It is
clearly continuous andF t -adapted. On the other hand, the inequality (Equation27)
shows that for every Þxedt, the sequence{X n

t }n� 1 is a Cauchy sequence inL2.
Lemma3 shows thatX̄ � M 2(C).

It is easy to show using routine methods thatX̄ indeed satisÞes Equation22.
To complete the proof, we use a standard truncation property. This method re-

places the functionf by the truncated function:

f U (t, x) =
�

f (t, x), 	 x	 � U,
f

�
t,Ux/ 	 x	

�
, 	 x	 > U ,

and similarly forg. The functionsf U andgU are globally Lipchitz continuous; hence,
the previous proof shows that there exists a unique solutionX̄U to equations (Equa-
tion 22) associated with the truncated functions. This solution satisÞes the equation

X̄U (t) = X0 +
� t

0

�
f U

�
t, X̄U (s)

�
+ EZ̄

�
b
�
X̄U (s), Z̄s

�
�
ds

+
� t

0
gU

�
t, X̄U (s)

�
dWs +

� t

0
EZ̄

�
�

�
X̄U (s), Z̄s

�

� dBs, t � [ 0,T ].

(28)

Let us now deÞne the stopping time as

� U = inf
�
t � [ 0,T ],

�
� X̄U (t)

�
� � U

 
.

It is easy to show that

X̄U (t) = X̄U 
 (t) if 0 � t � � U ,U 
 � U, (29)

implying that the sequence of stopping times� U is increasing. Using Lemma3 which
implies that the solution to Equation22 is almost surely bounded, for almost all� �
� , there existsU0(�) such that� U = T for all U � U0. Now, deÞneX̄(t) = X̄U0(t) ,
t � [ 0,T ]. Because of Equation29, we haveX̄(t � � U ) = X̄U (t � � U ), and it follows
from Equation28 that

X̄(t � � U ) = X0 +
� t � � U

0

�
f U (s, X̄s) + EZ̄

�
b(X̄s, Z̄s)


�
ds+

� t � � U

0
gU (s, X̄s) dWs

+
� t � � U

0
EZ̄

�
�

�
X̄U (s), Z̄s

�

� dBs

= X0 +
� t � � U

0

�
f (s, X̄s) + EZ̄

�
b(X̄s, Z̄s)


�
ds+

� t � � U

0
g(s,X̄s) dWs

+
� t � � U

0
EZ̄

�
�

�
X̄U (s), Z̄s

�

� dBs,

and lettingU � � , we have shown the existence of solution to Equation22 which,
by Lemma3, is square-integrable.
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Uniqueness. Assume thatX andY are two solutions of the mean-Þeld equations
(Equation22). From Lemma3, we know that both solutions are inM 2(C). Moreover,
using the bound Equation26, we directly obtain the inequality:

E
&
sup
s� t

	 Xs Š Ys	 2
'

� K 


� t

0
E

&
sup
u� s

	 Xu Š Yu	 2
'

ds

which, by GronwallÕs theorem, directly implies that

E
&
sup
s� t

	 Xs Š Ys	 2
'

= 0

which ends the proof. �

We have proved the well-posedness of the mean-Þeld equations. It remains to show
that the solutions to the network equations converge to the solutions of the mean-Þeld
equations. This is what is achieved in the next theorem.

Theorem 4 Under assumptions(H1) to (H4), the following holds true:

€ Convergencec: For each neuroni of population	 , the law of the multidimensional
processX i,N converges towards the law of the solution of the mean-Þeld equation
related to population	 , namelyX̄ 	 .

€ Propagation of chaos:For anyk � N� , and anyk-tuple (i 1, . . . , i k), the law of the
process(X i1,N

t , . . . , X in,N
t , t � T ) converges towardsd mp(i 1)

t � · · · � mp(i n)
t , i.e.

the asymptotic processes have the law of the solution of the mean-Þeld equations
and are all independent.

This theorem has important implications in neuroscience that we discuss in the
ÔDiscussion and conclusionÕ section. Its proof is given in the Appendix.

4 Numerical simulations

At this point, we have provided a compact description of the activity of the network
when the number of neurons tends to inÞnity. However, the structure of the solutions
of these equations is complicated to understand from the implicit mean-Þeld equa-
tions (Equation22) and of their variants (such as the McKean-Vlasov-Fokker-Planck
equations (Equation24)). In this section, we present some classical ways to numer-
ically approximate the solutions to these equations and give some indications about
the rate of convergence and the accuracy of the simulation. These numerical schemes
allow us to compute and visualize the solutions. We then compare the results of the
two schemes for a network of FitzHugh-Nagumo neurons belonging to a single pop-
ulation and show their good agreement.

The main difÞculty one faces when developing numerical schemes for Equa-
tions 22 and24 is that they are non-local. By this, we mean that in the case of the

cThe type of convergence is speciÞed in the proof given in the Appendix.
dThe notationm	

t was introduced right after Equation22.
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McKean-Vlasov equations, they contain the expectation of a certain function under
the law of the solution to the equations (see Equation22). In the case of the cor-
responding Fokker-Planck equation, it contains integrals of the probability density
functions which is a solution to the equation (see Equation24).

4.1 Numerical simulations of the McKean-Vlasov equations

The fact that the McKean-Vlasov equations involve an expectation of a certain func-
tion under the law of the solution of the equation makes them particularly hard to
simulate directly. One is often reduced to use Monte Carlo simulations to compute
this expectation, which amounts to simulating the solution of the network equations
themselves (see [68]). This is the method we used. In its simplest fashion, it consists
of a Monte Carlo simulation where one numerically solves theN network equations
(Equation21) with the classical Euler-Maruyama method a number of times with dif-
ferent initial conditions, and averages the trajectories of the solutions over the number
of simulations.

In detail, let �t > 0 andN � N� . The discrete-time dynamics implemented in
the stochastic numerical simulations consists of simulatingM times aP-population
discrete-time process( �X i

n, n � T /�t, i = 1· · ·N), solution of the recursion, fori in
population	 :

�X i,r
n+ 1 = �X i,r

n + �t

+

f 	
�
t, �X i,r

n
�
dt +

P�


 = 1

1
N


N
�

j = 1,p(j ) = 


b	

�

�X i,r
n , �X j,r

n
�
,

+
�

�t

+

g	
�
t, �X i,r

n
�
� i,r

n+ 1 (30)

+
P�


 = 1

1
N


N
�

j = 1,p(j ) = 


� 	

�

�X i,r
n , �X j,r

n
�

· � i

n+ 1

,

,

where� i,r
n and� i
 ,r

n are independentd- and� -dimensional standard normal random
variables. The initial conditions�X i,r

1 , i = 1, . . . ,N , are drawn independently from
the same law within each population for each Monte Carlo simulationr = 1, . . . ,M .
One then chooses one neuroni 	 in each population	 = 1, . . . ,P . If the sizeN of
the population is large enough, Theorem4 states that the law, noted asp 	 (t,X) ,
of X i 	 should be close to that of the solution̄X 	 of the mean-Þeld equations for
	 = 1, . . . ,P . Hence, in effect, simulating the network is a good approximation (see
below) of the simulation of the mean-Þeld or McKean-Vlasov equations [68, 69].
An approximation ofp 	 (t,X) can be obtained from the Monte Carlo simulations by
quantizing the phase space and incrementing the count of each bin whenever the tra-
jectory of thei 	 neuron at timet falls into that particular bin. The resulting histogram
can then be compared to the solution of the McKean-Vlasov-Fokker-Planck equation
(Equation24) corresponding to population	 whose numerical solution is described
next.

The mean square error between the solution of the numerical recursion (Equa-
tion 30) �X i

n and the solution of the mean-Þeld equations (Equation22) X̄ i
n�t is of
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orderO(
�

�t + 1/
�

N), the Þrst term being related to the error made by approxi-
mating the solution of the network of sizeN , X i,N

n�t by an Euler-Maruyama method,
and the second term, to the convergence ofX i,N

n�t towards the mean-Þeld equation
X̄ i

n�t when considering globally Lipschitz continuous dynamics (see proof of The-
orem4 in the Appendix). In our case, as shown before, the dynamics is only locally
Lipschitz continuous. Finding efÞcient and provably convergent numerical schemes
to approximate the solutions of such stochastic differential equations is an area of
active research. There exist proofs that some schemes are divergent [70] or conver-
gent [71] for some types of drift and diffusion coefÞcients. Since our equations are
not included in either case, we conjecture convergence since we did not observe any
divergence and leave the proof for future work.

4.2 Numerical simulations of the McKean-Vlasov-Fokker-Planck equation

For solving the McKean-Vlasov-Fokker-Planck equation (Equation24), we have
used themethod of lines[72, 73]. Its basic idea is to discretize the phase space and to
keep the time continuous. In this way, the valuesp 	 (t,X) , 	 = 1, . . . ,P of the prob-
ability density function of population	 at each sample pointX of the phase space
are the solutions ofP ODEs where the independent variable is the time. Each sample
point in the phase space generatesP ODEs, resulting in a system of coupled ODEs.
The solutions to this system yield the values of the probability density functionsp 	
solution of (Equation24) at the sample points. The computation of the integral terms
that appear in the McKean-Vlasov-Fokker-Planck equation is achieved through a re-
cursive scheme, the Newton-Cotes method of order 6 [74]. The dimensionality of the
space being large and numerical errors increasing with the dimensionality of the inte-
grand, such precise integration schemes are necessary. For an arbitrary real function
f to be integrated between the valuesx1 andx2, this numerical scheme reads:

� x2

x1

f (x)dx �
5

288
�x

M/ 5�

i = 1

�
19f

�
x1 + (5i Š 5)�x

�
+ 75f

�
x1 + (5i Š 4)�x

�

+ 50f
�
x1 + (5i Š 3)�x

�
+ 50f

�
x1 + (5i Š 2)�x

�

+ 75f
�
x1 + (5i Š 1)�x

�
+ 19f (x 1 + 5i�x)



,

where�x is the integration step, andM = (x2 Š x1)/�x is chosen to be an integer
multiple of 5.

The discretization of the derivatives with respect to the phase space parameters is
done through the following fourth-order central difference scheme:

df (x)
dx

�
f (x Š 2�x) Š 8f (x Š �x) + 8f (x + �x) Š f (x + 2�x)

12�x
,

for the Þrst-order derivatives, and

d2f (x)
dx2 �

�
Š f (x Š 2�x) + 16f (x Š �x)

Š 30f (x) + 16f (x + �x) Š f (x + 2�x)
�
/
�
12�x 2�

for the second-order derivatives (see [75]).
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Finally, we have used a Runge-Kutta method of order 2 (RK2) for the numerical
integration of the resulting system of ODEs. This method is of the explicit kind for
ordinary differential equations, and it is described by the followingButcher tableau:

0
2/ 3 2/ 3

1/ 4 3/ 4

4.3 Comparison between the solutions to the network and the mean-Þeld equations

We illustrate these ideas with the example of a network of 100 FitzHugh-Nagumo
neurons belonging to one, excitatory, population. We also use chemical synapses with
the variation of the weights described by (Equation11). We choose a Þnite volume,
outside of which we assume that the probability density function (p.d.f.) is zero. We
then discretize this volume withnV nwnY points deÞned by

nV
def= (VmaxŠ Vmin)/�V ,

nw
def= (wmaxŠ wmin)/�w,

ny
def= (ymaxŠ ymin)/�y,

whereVmin, Vmax, wmin, wmax, ymin andymax deÞne the volume in which we solve
the network equations and estimate the histogram deÞned in the ÔNumerical simu-
lations of the McKean-Vlasov equationsÕ section, while�V , �w and �y are the
quantization steps in each dimension of the phase space. For the simulation of the
McKean-Vlasov-Fokker-Planck equation, instead, we use Dirichlet boundary condi-
tions and assume the probability and its partial derivatives to be 0 on the boundary
and outside the volume.

In general, the total number of coupled ODEs that we have to solve for the
McKean-Vlasov-Fokker-Planck equation with the method of lines is the product
P nV nwny (in our case, we choseP = 1). This can become fairly large if we increase
the precision of the phase space discretization. Moreover, increasing the precision
of the simulation in the phase space, in order to ensure the numerical stability of
the method of lines, requires to decrease the time step�t used in the RK2 scheme.
This can strongly impact the efÞciency of the numerical method (see the ÔNumerical
simulations with GPUsÕ section).

In the simulations shown in the left-hand parts of Figures4 and5, we have used
one population of 100 excitatory FitzHugh-Nagumo neurons connected with chem-
ical synapses. We performed 10,000 Monte Carlo simulations of the network equa-
tions (Equation14) with the Euler-Maruyama method in order to approximate the
probability density. The model for the time variation of the synaptic weights is the
simple model. The p.d.f.p(0,V ,w, y) of the initial condition is Gaussian and reads

p(0,V ,w, y)

=
1

(2�) 3/ 2� V0� w0� y0

eŠ(V ŠV 0)2/( 2� 2
V0

)Š(wŠw0)2/( 2� 2
w0

)Š(yŠy0)2/( 2� 2
y0

).
(31)
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Fig. 4 Joint probability distribution.(V ,w) computed with the Monte Carlo algorithm for the network
equations (Equation14) (left) compared with the solution of the McKean-Vlasov-Fokker-Planck equation
(Equation24) (right), sampled at four timestÞn. Parameters are given in Table1, with a currentI = 0.4
corresponding to a stable limit cycle. Initial conditions (Þrst column of Table1) are concentrated inside
this limit cycle. The two distributions are similar and centered around the limit cycle with two peaks (see
text).
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Fig. 5 Joint probability distribution.(V , y) computed with the Monte Carlo algorithm for the network
equations (Equation14) (left) compared with the solution of the McKean-Vlasov-Fokker-Planck equation
(Equation24) (right), sampled at four timestÞn. Parameters are given in Table1, with a currentI = 0.4
corresponding to a stable limit cycle. Initial conditions (Þrst column of Table1) are concentrated inside
this limit cycle. The two distributions are similar and centered around the limit cycle with two peaks (see
text).
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Table 1 Parameters used in the simulations of the neural network and for solving the McKean-Vlasov-
Fokker-Planck equation

Initial condition Phase space FitzHugh-
Nagumo

Synaptic
weights

Synapse

tÞn = [ 0.5, 1.2, 1.5, 2.2],
�t = 0.01 (mean Þeld),
0.1 (network)

Vmin = Š 3 a = 0.7 J = 1 Vrev = 1

Vmax = 3 b = 0.8 � J = 0.2 ar = 1

�V = 0.1 c = 0.08 ad = 1

V0 = 0.0 wmin = Š 2 I = 0.4 Tmax = 1

� V0 = 0.4 wmax = 2 � ext = 0 � = 0.2

w0 = 0.5 �w = 0.1 VT = 2

� w0 = 0.4 ymin = 0 � = 0.1

y0 = 0.3 ymax = 1 � = 0.5

� y0 = 0.05 �y = 0.06

Results are shown in Figures4 and5 (see text).

The parameters are given in the Þrst column of Table1. In this table, the pa-
rametertÞn is the time at which we stop the computation of the trajectories in the
case of the network equations and the computation of the solution of the McKean-
Vlasov-Fokker-Planck equation in the case of the mean-Þeld equations. The sequence
[0.5, 1.2, 1.5, 2.2] indicates that we compute the solutions at those four time instants
corresponding to the four rows of Figures4 and5. The phase space has been quan-
tized with the parameters shown in the second column of the same table to solve
the McKean-Vlasov-Fokker-Planck equation. This quantization has also been used
to build the histograms that represent the marginal probability densities with respect
to the pairs(V ,w) and(V, y) of coordinates of the state vector of a particular neu-
ron. These histograms have then been interpolated to build the surfaces shown in the
left-hand side of Figures4 and5. The parameters of the FitzHugh-Nagumo model
are the same for each neuron of the population: they are shown in the third column of
Table1.

The parameters for the noisy model of maximum conductances of Equation11are
shown in the fourth column of the table. For these values ofJ and� J , the probability
that the maximum conductances change sign is very small. Finally, the parameters
of the chemical synapses are shown in the sixth column. The parameters� and �
are those of the� function (Equation3). The solutions are computed over an interval
of tÞn = 0.5, 1.2, 1.5, 2.2 time units with a time sampling of�t = 0.1 for the net-
work and�t = 0.01 for the McKean-Vlasov-Fokker-Planck equation. The rest of the
parameters are the typical values for the FitzHugh-Nagumo equations.

The marginals estimated from the trajectories of the network solutions are then
compared to those obtained from the numerical solution of the McKean-Vlasov-
Fokker-Planck equation (see Figures4 and5 right), using the method of lines ex-
plained above and starting from the same initial conditions (Equation31) as the neu-
ral network.

We have used the valueI = 0.4 for the external current (this value corresponds to
the existence of a stable limit cycle for the isolated FitzHugh-Nagumo neuron), and
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Fig. 6 Projection of 100 trajectories in the(V ,w) (top left), (V , y) (top right) and(w,y) (bottom) planes.
The limit cycle is especially visible in the(V ,w) projection (red curves). The initial conditions split the
trajectories into two classes corresponding to the two peaks shown in Figures4 and5. The parameters are
the same as those used to generate these two pictures.

the initial conditions have the valuesV 0 = 0, w0 = 0.5 andy0 = 0.3; therefore, the
initial points of the trajectories in the phase space are concentrated inside the limit
cycle. We therefore expect that the solutions of the neural network and the McKean-
Vlasov-Fokker-Planck equation will concentrate their mass around the limit cycle.
This is what is observed in Figures4 and5, where the simulation of the neural net-
work (left-hand side) is in very good agreement with the results of the simulation of
the McKean-Vlasov-Fokker-Planck equation (right-hand side). Note that the densi-
ties display two peaks. These two peaks correspond to the fact that depending upon
the position of the initial condition with respect to the nullclines of the FitzHugh-
Nagumo equations, the points in the phase space follow two different classes of tra-
jectories, as shown in Figure6. The two peaks then rotate along the limit cycle in the
(V ,w) space (see also the ÔNumerical simulations with GPUsÕ section).

Figures4 and 5 show a qualitative similarity between the marginal probabil-
ity density functions obtained by simulating the network and those obtained by
solving the Fokker-Planck equation corresponding to the mean-Þeld equations.
To make this more quantitative, we computed the Kullback-Leibler divergence
DKL (pNetwork||pMVFP) between the two distributions.

We performed 10,000 Monte Carlo simulations of the network equations up to
tÞn = 10 for increasing values of the network sizeN . As shown in Figure7, the
Kullback-Leibler divergence does decrease with increasing values ofN , thereby con-
Þrming the fact that even for relatively small values ofN , the average behavior of
the network is well represented by the mean-Þeld system described by the McKean-
Vlasov-Fokker-Planck equation.
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Fig. 7 Variation of the
Kullback-Leibler divergence.
Variation of the
Kullback-Leibler divergence
between the marginal
probability density function
p(t,V ,w) estimated from the
network equations and
computed from the
McKean-Vlasov-Fokker-Planck
equation as a function of the
network size. We have
performed 10,000 Monte Carlo
simulations of the network
equations up to timetÞn= 10.0.

4.4 Numerical simulations with GPUs

Unfortunately, the algorithm for solving the McKean-Vlasov-Fokker-Planck equation
described in the previous section is computationally very expensive. In fact, when
the number of points in the discretized grid of the(V ,w, y) phase space is big, i.e.
when the discretization steps�V , �w and�y are small, we also need to keep�t
small enough in order to guarantee the stability of the algorithm. This implies that the
number of equations that must be solved has to be large and moreover that they must
be solved with a small time step if we want to keep the numerical errors small. This
will inevitably slow down the simulations. We have dealt with this problem by using
a more powerful hardware, the graphical processing units (GPUs).

We have changed the Runge-Kutta scheme of order 2 used for the simulations
shown in the ÔNumerical simulations of the McKean-Vlasov-Fokker-Planck equa-
tionÕ section and adopted a more accurate Runge-Kutta scheme of order 4. This was
done because with the more powerful machine, each computation of the right-hand
side of the equation is faster, making it possible to use four calls per time step instead
of two in the previous method. Hence, the parallel hardware allowed us to use a more
accurate method.

One of the purposes of the numerical study is to get a feeling for how the different
parameters, in particular those related to the sources of noise, inßuence the solutions
of the McKean-Vlasov-Fokker-Planck equation. This is meant to prepare the ground
for the study of the bifurcation of these solutions with respect to these parameters,
as was done in [76] in a different context. For this preliminary study, we varied the
input currentI and the parameter� ext controlling the intensity of the noise on the
membrane potential in Equations14. The McKean-Vlasov-Fokker-Planck equation
writes in this case:e

eWe have included a small noise (controlled by the parameter� w ) on the adaptation variablew. This does
not change the previous analysis, in particular proposition1, but makes the McKean-Vlasov-Fokker-Planck
equation well-posed in a cube of the state space with 0 boundary value, see e.g. [82].
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Table 2 Parameters used in the simulations of the McKean-Vlasov-Fokker-Planck equation on GPUs

Initial condition Phase space Stochastic
FN neuron

Synaptic
weights

�t = 0.0025, 0.0012 Vmin = Š 4 a = 0.7 J = 1

V0 = 0.0 Vmax = 4 b = 0.8 � J = 0.01

� V0 = 0.2 �V = 0.027 c = 0.08

w0 = Š 0.5 wmin = Š 3 I = 0.4, 0.7

� w0 = 0.2 wmax = 3 � ext = 0.27, 0.45

y0 = 0.3 �w = 0.02 � w = 0.0007

� y0 = 0.05 ymin = 0

ymax = 1

�y = 0.003

The simulations are shown in Figures8 and9 and in Additional Þles 1, 2, 3 and 4.

�
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.

The simulations were run with the� function (Equation3); the initial condition
described by Equation31and the parameters are shown in Table2. These parameters
are similar to those used in the previous numerical simulations, but they differ in the
size of the grid which is larger in this case.

Four snapshots of the solution are shown in Figure8 (corresponding to the values
I = 0.4 and� ext = 0.27 of the external input current and of the standard deviation of
the noise on the membrane potential), and three are shown in Figure9 (corresponding
to the valuesI = 0.7 and� ext = 0.45). In the Þgures, the left column corresponds to
the values of the marginalp(t,V ,w) , and the right column corresponds to the values
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Fig. 8 Marginals of the solutions to the McKean-Vlasov-Fokker-Planck equation. Marginals with respect
to theV andw variables (left) and to theV andy variables (right) of the solution of the McKean-VlasovÐ
Fokker-Planck equation. TheÞrst rowshows the initial condition; thesecond, the marginals at time 30.0;
thethird, the marginals at time 50.0; and thefourth, the stationary (large time) solutions. The input current
I is equal to 0.4 and� ext = 0.27. These are screenshots at different times of movies available as Additional
Þles 1 and 2.
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Fig. 9 Marginals of the solutions to the McKean-Vlasov-Fokker-Planck equation. Marginals with respect
to theV andw variables (left) and to theV andy variables (right) of the solution of the McKean-VlasovÐ
Fokker-Planck equation. TheÞrst rowshows the marginals at time 30.0, thesecondthe marginals at time
50.0 and the third the stationary (large time) solutions. The input currentI is equal to 0.7 and� ext = 0.45.
These are screenshots at different times of movies available as Additional Þles 3 and 4.

of the marginalp(t,V , y) . Both are necessary to get an idea of the shape of the full
distributionp(t,V ,w, y) . The Þrst row of Figure8 shows the initial conditions. They
are the same for the results shown in Figure9. The second, third and fourth rows of
Figure8 show the time instantst = 30.0, t = 50.0 and at convergence (the time units
differ from those of the previous section, but it is irrelevant to this discussion). The
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Fig. 10 Marginals of the solutions to the McKean-Vlasov-Fokker-Planck equation at convergence.
Marginals with respect to theV and w variables (left) and to theV and y variables (right) of the so-
lution of the McKean-Vlasov-Fokker-Planck equation at convergence. The parameters are those in Table1
except for the input currentI which is equal toŠ0.8, � ext = 0.45 andtÞn = 2.2. Compare with the last
row of Figure9 (see text).

three rows of Figure9 show the time instantst = 30.0, t = 50.0 and at convergence.
In both cases, the solution appears to converge to a stationary distribution whose mass
is distributed over a ÔblurredÕ version of the limit cycle of the isolated neuron. The
ÔblurrinessÕ increases with the variance of the noise. The four movies for these two
cases are available as Additional Þles 1, 2, 3 and 4.

The results shown in Figures8 and 9 and in Additional Þles 1, 2, 3 and 4
were obtained using two machines, each with seven nVidia Tesla C2050 cards, six
2.66 GHz dual-Xeon X5650 processors and 72G of ram. The communication inside
each machine was done using the lpthreads library and between machines using MPI
calls. The mean execution time per time step using the parameters already described
is 0.05 s.

The reader interested in more details in the numerical implementations and in the
gains that can be achieved by the use of GPUs can consult [77].

In Figure10, we show a solution to the McKean-Vlasov-Fokker-Planck equation
which is qualitatively quite different from the solutions shown in Figures8 and9: The
stationary solution is concentrated at a point in(V ,w, y) space. This is an indication
that perhaps, between the valuesŠ0.8 and 0.4 of the input current, the solutions
to the McKean-Vlasov-Fokker-Planck equation have bifurcated. The numerical tools
we have developed may be a way to build an intuition to guide a rigorous analysis of
these phenomena.

5 Discussion and conclusion

In this article, we addressed the problem of the limit in law of networks of biolog-
ically inspired neurons as the number of neurons tends to inÞnity. We emphasized
the necessity of dealing with biologically inspired models and discussed at length the
type of models relevant to this study. We chose to address the case conductance-based
network models that are a relevant description of the neuronal activity. Mathemati-
cal results on the analysis of these diffusion processes in interaction resulted to the
replacement of a set ofNP d-dimensional coupled equations (the network equa-
tions) in the limit of largeN s by P d-dimensional mean-Þeld equations describing
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the global behavior of the network. However, the price to pay for this reduction was
the fact that the resulting mean-Þeld equations are nonstandard stochastic differential
equations, similar to the McKean-Vlasov equations. These can be expressed either as
implicit equations on the law of the solution or, in terms of probability density func-
tion through the McKean-Vlasov-Fokker-Planck equations, as a nonlinear, non-local
partial differential equation. These equations are, in general, hard to study theoreti-
cally.

Besides the fact that we explicitly model real spiking neurons, the mathematical
part of our work differs from that of previous authors such as McKean, Tanaka and
Sznitman (see the ÔIntroductionÕ section) because we are considering several popula-
tions with the effect that the analysis is signiÞcantly more complicated. Our hypothe-
ses are also more general, e.g. the drift and diffusion functions are nontrivial and
satisfy the general condition (H4) which is more general than the usual linear growth
condition. Also, they are only assumed locally (and not globally) Lipschitz contin-
uous to be able to deal, for example, with the FitzHugh-Nagumo model. A locally
Lipschitz continuous case was recently addressed in a different context for a model
of swarming in [67].

Proofs of our results, for somewhat stronger hypotheses than ours and in special
cases, are scattered in the literature, as brießy reviewed in the ÔIntroductionÕ and ÔSet-
ting of the problemÕ sections. Our main contribution is that we provide a complete,
self-sufÞcient proof in a fairly general case by gathering all the ingredients that are
required for our neuroscience applications. In particular, the case of the FitzHugh-
Nagumo model where the drift function does not satisfy the linear growth condition
involves a generalization of previous works using the more general growth condi-
tion (H4).

The simulation of these equations can itself be very costly. We, hence, addressed
in the ÔNumerical simulationsÕ section numerical methods to compute the solutions
of these equations, in the probabilistic framework, using the convergence result of the
network equations to the mean-Þeld limit and standard integration methods of differ-
ential equations or in the Fokker-Planck framework. The simulations performed for
different values of the external input current parameter and one of the parameters
controlling the noise allowed us to show that the spatio-temporal shape of the proba-
bility density function describing the solution of the McKean-Vlasov-Fokker-Planck
equation was sensitive to the variations of these parameters, as shown in Figures8
and9. However, we did not address the full characterization of the dynamics of the
solutions in the present article. This appears to be a complex question that will be
the subject of future work. It is known that for different McKean-Vlasov equations,
stationary solutions of these equations do not necessarily exist and, when they do,
are not necessarily unique (see [78]). A very particular case of these equations was
treated in [76] where the authors consider that the functionf 	 is linear,g	 is con-
stant andb	� (x, y) = S� (y). This model, known as the Þring-rate model, is shown
in that paper to have the Gaussian solutions when the initial data is Gaussian, and
the dynamics of the solutions can be exactly reduced to a set of 2P-coupled ordinary
differential equations governing the mean and the standard deviation of the solution.
Under these assumptions, a complete study of the solutions is possible, and the de-
pendence upon the parameters can be understood through bifurcation analysis. The
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authors show that intrinsic noise levels govern the dynamics, creating or destroying
Þxed points and periodic orbits.

The mean-Þeld description has also deep theoretical implications in neuroscience.
Indeed, it points towards the fact that neurons encode their responses to stimuli
through probability distributions. This type of coding was evoked by several au-
thors [47], and the mean-Þeld approach shows that under some mild conditions, this
phenomenon arises: all neurons belonging to a particular population can be seen as
independent realizations of the same process, governed by the mean-Þeld equation.
The relevance of this phenomenon is reinforced by the fact that it has recently been
observed experimentally that neurons had correlation levels signiÞcantly below what
had been previously reported [13]. This independence has deep implications on the
efÞciency of neural coding which the propagation of chaos theory accounts for. To
illustrate this phenomenon, we have performed the following simulations. Consider-
ing a network of 2, 10 and 100 FitzHugh-Nagumo neurons, we have simulated 2,000
times the network equations over some time interval[0, 100]. We have picked at ran-
dom a pair of neurons and computed the time variation of the cross-correlation of
the values of their state variables. The results are shown in Figure11. It appears that
the propagation of chaos is observable for relatively small values of the number of
neurons in the network, thus indicating once more that the theory developed in this
paper in the limit case of an inÞnite number of neurons is quite robust to Þnite-size
effects.f

Fig. 11 Variations over time of the cross-correlation of(V ,w, y) variables of several FitzHugh-Nagumo
neurons in a network.Top left: 2 neurons.Top right: 10 neurons.Bottom: 100 neurons. The cross-correla-
tion decreases steadily with the number of neurons in the network.

fNote that we did not estimate the correlation within larger networks since, as predicted by Theorem4, it
will be smaller and smaller, requiring an increasingly large number of Monte Carlo simulations.
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The present study develops theoretical arguments to derive the mean-Þeld equa-
tions resulting from the activity of large neuron ensembles. However, the rigorous
and formal approach developed here does not allow direct characterization of brain
states. The paper, however, opens the way to rigorous analysis of the dynamics of
large neuron ensembles through derivations of different quantities that may be rele-
vant. A Þrst approach could be to derive the equations of the successive moments of
the solutions. Truncating this expansion would yield systems of ordinary differential
equations that can give approximate information on the solution. However, the choice
of the number of moments taken into account is still an open question that can raise
several deep questions [46].

Appendix 1: Proof of Theorem4

In this appendix, we prove the convergence of the network equations towards the
mean-Þeld equations (Equation22) and of the propagation of chaos property. The
proof follows standard proofs in the domain as generally done, in particular by Tanaka
or Sznitman [6, 10], adapted to our particular case where we consider a non-zero drift
function and a time- and space-dependent diffusion function. It is based on the very
powerful coupling argument, which identiÞes the almost sure limit of the processX i

as the number of neurons tends to inÞnity, as popularized by Sznitman in [12], but
whose idea dates back from the 1970s (for instance, Dobrushin uses it in [5]). This
process is exactly the solution of the mean-Þeld equation driven by the same Brown-
ian motion asX i and with the same initial condition random variable. In our case, this
leads us to introduce the sequence of independent stochastic processes(X̄ i

t )i = 1···N
having the same law as̄X 	 , 	 = p(i) , solution of the mean-Þeld equation:

dX̄ i
t = f 	

�
t, X̄ i

t
�
dt +
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 = 1

EZ
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b	


�
X̄ i

t , Z
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dt

+ g	
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dWi

t +
P�
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EZ
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�
X̄ i

t , Z


t

�

dBi

t ,

(33)

with initial condition X̄ i
0 = X i

0, the initial condition of the neuroni in the network,
which was assumed to be independent and identically distributed.(W i

t ) and(B i
t ) are

the Brownian motions involved in the network equation (Equation21). As described
previously,Z = (Z 1, . . . , Z P ) is a process independent ofX̄ that has the same law.
Denoting, as described previously, the probability distribution ofX̄ 	

t solution of the
mean-Þeld equation (Equation22) by m	

t , the law of the collection of processes(X̄ ik
t )

for some Þxedk � N� , namelymp(i 1) � · · · � mp(i k) , is shown to be the limit of the
process(X i

t ) solution of the network equations (Equation21) asN goes to inÞnity.
We recall, for completeness, Theorem4:

Theorem 4 Under assumptions(H1) to (H4), the following holds true:

€ Convergence:For each neuroni of population	 , the law of the multidimensional
processX i,N converges towards the law of the solution of the mean-Þeld equation
related to population	 , namelyX̄ 	 .
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€ Propagation of chaos:For anyk � N� , and anyk-uplet (i 1, . . . , i k), the law of the
process(X i1,N

t , . . . ,X in,N
t , t � T ) converges towardsmp(i 1)

t � · · · � mp(i n)
t , i.e. the

asymptotic processes have the law of the solution of the mean-Þeld equations and
are all independent.

Proof On our way, we also prove that

max
i = 1···N

NE
&
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�
� X i,N

s Š X̄ i
s

�
� 2

'
< � , (34)

which implies, in particular, convergence in law of the process(X i,N
t , t � T ) towards

(X̄ 	
t , t � T ) solution of the mean-Þeld equations (Equation22).
The proof basically consists of thoroughly analyzing the difference between the

two processes asN tends to inÞnity. The difference is the sum of eight terms (we
dropped the indexN for the sake of simplicity of notations) denoted byAt through
Ht :
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It is important to note that the probability distribution of these terms does not depend
on the neuroni . We are interested in the limit, asN goes to inÞnity, of the quantity
E[sups� T 	 X i,N

s Š X̄ i
s	

2]. We decompose this expression into the sum of the eight
terms involved in Equation35 using HšlderÕs inequality and upperbound each term
separately. The termsAt andBt are treated exactly as in the proof of Theorem2.
We start by assuming thatf andg are uniformly globallyK Lipschitz continuous
with respect to the second variable. The locally Lipschitz case is treated in the same
manner as done in the proof of Theorem2 (1) by stopping the process at time� U ,
(2) by using the Lipschitz continuity off and g in the ball of radiusU and (3)
by a truncation argument and using the almost sure boundedness of the solutions
extending the convergence to the locally Lipschitz case.

As seen previously, we have:
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Hence, we have:
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The termsFt and Gt are treated in the same fashion, but instead of using the
Cauchy-Schwartz inequality, the Burkholder-Davis-Gundy martingale moment in-
equality are used. ForFt , in detail,
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Similarly, for Gt , we obtain:
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We are left with the problem of controlling the termsEt andHt that involve sums
of processes with bounded second moment, thanks to Proposition3 and assump-
tion (H3). We have:
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and using the Burkholder-Davis-Gundy martingale moment inequality,
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Each of these two expressions involves an expectation which we write:
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All the terms of the sum corresponding to indexesj andk such that the three condi-
tions j �= i , k �= i andj �= k are satisÞed are null since in that case,X̄ i
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expanding further and renaming the secondz variable toy in the last term, we obtain:
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gNote thati �= j andi �= k as soon asp(i) �= p(j ) = p(k) = 
 . In the case wherep(i) = 
 , it is easy to
check that whenj (respectively,k) is equal toi , all terms such thatk �= j (respectively,j �= k) are equal
to 0.
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which is indeed equal to 0 by the Fubini theorem.
Therefore, there are no more than 3N
 non-null terms in the sum, and all the

terms have the same value (that depends on� ), which is bounded by Lemma3 and
assumption (H3). We denote the supremum of these 2P2 values for� � { b	
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 }
across all possible pairs of populations byC/ 3 , and the smallest value of theN
 , 
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for some positive constantsK1 andK2. Using GronwallÕs inequality, we obtain:
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for some positive constantK3. The right-hand side of this inequality tends to zero
asN goes to inÞnity proving the propagation of chaos property. In order to show a
convergence with speed 1/

�
N as stated in the theorem, we use the fact:

max
i = 1···N

NE
&
sup
s� T

�
� X i,N

s Š X̄ i
s

�
� 2

'
� K3

N
Nmin

,

and the right-hand side of the inequality is bounded for allN s because of the hypoth-
esis limN��

N	
N = c	 � (0, 1) for 	 = 1· · ·P . This ends the proof. �

Competing interests

The authors declare that they have no competing interests.

AuthorsÕ contributions

JB and DF developed the code for solving the stochastic differential equations, the McKean-Vlasov equa-
tions and the McKean-Vlasov-Fokker-Planck equations. They ran the numerical experiments and gener-
ated all the Þgures. DF derived some of the McKean-Vlasov equations in a heuristic fashion. OF and JT
developed the models, proved the theorems and wrote the paper. All authors read and approved the Þnal
manuscript.

Acknowledgements This work was partially supported by the ERC grant #227747 NerVi, the FACETS-
ITN Marie-Curie Initial Training Network #237955 and the IP project BrainScaleS #269921.



Page 48 of 50 Baladron et al.

References

1. McKean H:A class of Markov processes associated with nonlinear parabolic equations. Proc
Natl Acad Sci USA1966,56(6):1907-1911.

2. McKean H:Propagation of chaos for a class of non-linear parabolic equations. In Stochastic Dif-
ferential Equations. Arlington: Air Force OfÞce Sci. Res.; 1967:41-57. [Lecture Series in Differential
Equations, vol. 7.]

3. Braun W, Hepp K:The Vlasov dynamics and its ßuctuations in the 1/n limit of interacting classi-
cal particles. Commun Math Phys1977,56(2):101-113,

4. Dawson D:Critical dynamics and ßuctuations for a mean-Þeld model of cooperative behavior. J
Stat Phys1983,31:29-85.

5. Dobrushin RL:Prescribing a system of random variables by conditional distributions. Theory
Probab Appl1970,15:458-486.

6. Tanaka H:Probabilistic treatment of the Boltzmann equation of Maxwellian molecules. Probab
Theory Relat Fields1978,46:67-105

7. Tanaka H, Hitsuda M:Central limit theorem for a simple diffusion model of interacting particles.
Hiroshima Math J1981,11(2):415-423.

8. Tanaka H:Some probabilistic problems in the spatially homogeneous Boltzmann equation. In
Theory and Application of Random Fields Lecture Notes in Control and Information Sciences. Edited
by Kallianpur G. Berlin: Springer; 1983:258-267.

9. Tanaka H:Limit theorems for certain diffusion processes with interaction. Stochastic Analysis.
Amsterdam: North-Holland; 1984:469-488. [North-Holland Mathematical Library, vol. 32.]

10. Sznitman A:Nonlinear reßecting diffusion process, and the propagation of chaos and ßuctua-
tions associated. J Funct Anal1984,56(3):311-336.

11. Sznitman A:A propagation of chaos result for BurgersÕ equation. Probab Theory Relat Fields
1986,71(4):581-613.

12. Sznitman AS:Topics in propagation of chaos. In Ecole dÕEtŽ de ProbabilitŽs de Saint-Flour XIX
1989. Edited by Burkholder D, Pardoux E, Sznitman AS. Berlin: Springer; 1991:165-251. [Lecture
Notes in Math., vol. 1464.]

13. Ecker A, Berens P, Keliris G, Bethge M, Logothetis N, Tolias A:Decorrelated neuronal Þring in
cortical microcircuits . Science2010,327(5965):584.

14. Hodgkin A, Huxley A:A quantitative description of membrane current and its application to
conduction and excitation in nerve. J Physiol1952,117:500-544.

15. Fitzhugh R:Theoretical effect of temperature on threshold in the Hodgkin-Huxley nerve model.
J Gen Physiol1966,49(5):989-1005.

16. FitzHugh R:Mathematical models of excitation and propagation in nerve. In Biological Engi-
neering. Edited by Schwan HP. New York: McGraw-Hill Book Co.; 1969:1-85.

17. Izhikevich EM:Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting.
Cambridge: MIT Press; 2007.

18. Lapicque L:Recherches quantitatifs sur lÕexcitation des nerfs traitee comme une polarisation.
J. Physiol. Paris1907,9:620-635.

19. Tuckwell HC:Introduction to Theoretical Neurobiology. Cambridge: Cambridge University Press;
1988.

20. Ermentrout GB, Terman D:Foundations of Mathematical Neuroscience.Berlin: Springer; 2010. [In-
terdisciplinary Applied Mathematics]

21. FitzHugh R:Mathematical models of threshold phenomena in the nerve membrane. Bull Math
Biol 1955,17(4):257-278.

22. Nagumo J, Arimoto S, Yoshizawa S:An active pulse transmission line simulating nerve axon. Proc
IRE 1962,50:2061-2070.

23. Destexhe A, Mainen Z, Sejnowski T:Synthesis of models for excitable membranes, synaptic
transmission and neuromodulation using a common kinetic formalism. J Comput Neurosci1994,
1(3):195-230.

24. Kandel ER, Schwartz JH, Jessel TM:Principles of Neural Science. 4th edition. New York: McGraw-
Hill; 2000.

25. Cox JC, Ingersoll JC Jr, Ross SA:A theory of the term structure of interest rates. Econometrica
1985,53(2):385-407.

26. Mao X:Stochastic Differential Equations and Applications. 2nd edition. Chichester: Horwood; 2008.
27. Amari S:Characteristics of random nets of analog neuron-like elements. IEEE Trans Syst Man

Cybern1972,2(5):643-657.



Journal of Mathematical Neuroscience (2012) 2:10 Page 49 of 50

28. Amari S:Dynamics of pattern formation in lateral-inhibition type neural Þelds. Biol Cybern
1977,27(2):77-87.

29. Wilson H, Cowan J:Excitatory and inhibitory interactions in localized populations of model
neurons. Biophys J1972,12:1-24.

30. Wilson H, Cowan J:A mathematical theory of the functional dynamics of cortical and thalamic
nervous tissue. Biol Cybern1973,13(2):55-80.

31. Hammerstein A:Nichtlineare Integralgleichungen nebst Anwendungen. Acta Math1930,54:117-
176.

32. Faugeras O, Grimbert F, Slotine JJ:Absolute stability and complete synchronization in a class of
neural Þelds models. SIAM J Appl Math2008,61:205-250.

33. Coombes S, Owen MR:Bumps, breathers, and waves in a neural network with spike frequency
adaptation. Phys Rev Lett2005,94(14):148102.

34. Ermentrout B:Neural networks as spatio-temporal pattern-forming systems. Rep Prog Phys1998,
61:353-430.

35. Ermentrout G, Cowan J:Temporal oscillations in neuronal nets. J Math Biol1979,7(3):265-280.
36. Laing C, Troy W, Gutkin B, Ermentrout G:Multiple bumps in a neuronal model of working mem-

ory. SIAM J Appl Math2002,63:62-97.
37. Chossat P, Faugeras O:Hyperbolic planforms in relation to visual edges and textures perception.

PLoS Comput Biol2009,5(12):e1000625.
38. Veltz R, Faugeras O:Local/global analysis of the stationary solutions of some neural Þeld equa-

tions. SIAM J Appl Dyn Syst2010,9(3):954-998.
39. Abbott L, Van Vreeswijk C:Asynchronous states in networks of pulse-coupled neuron. Phys Rev

1993,48:1483-1490.
40. Amit D, Brunel N:Model of global spontaneous activity and local structured delay activity dur-

ing delay periods in the cerebral cortex. Cereb Cortex1997,7:237-252.
41. Brunel N, Hakim V:Fast global oscillations in networks of integrate-and-Þre neurons with low

Þring rates. Neural Comput1999,11:1621-1671.
42. Brunel N:Dynamics of sparsely connected networks of excitatory and inhibitory spiking neu-

rons. J Comput Neurosci2000,8:183-208.
43. El Boustani S, Destexhe A:A master equation formalism for macroscopic modeling of asyn-

chronous irregular activity states. Neural Comput2009,21:46-100.
44. Mattia M, Del Giudice P:Population dynamics of interacting spiking neurons. Phys Rev E, Stat

Nonlinear Soft Matter Phys2002,66(5):51917.
45. Cai D, Tao L, Shelley M, McLaughlin DW:An effective kinetic representation of ßuctuation-

driven neuronal networks with application to simple and complex cells in visual cortex. Proc
Natl Acad Sci USA2004,101(20):7757-7762.

46. Ly C, Tranchina D:Critical analysis of dimension reduction by a moment closure method in a
population density approach to neural network modeling. Neural Comput2007,19(8):2032-2092.

47. Rolls ET, Deco G:The Noisy Brain: Stochastic Dynamics as a Principle of Brain Function. Oxford:
Oxford University Press; 2010.

48. Softky WR, Koch C:The highly irregular Þring of cortical cells is inconsistent with temporal
integration of random EPSPs. J Neurosci1993,13:334-350.

49. Brunel N, Latham P:Firing rate of noisy quadratic integrate-and-Þre neurons. Neural Comput
2003,15:2281-2306.

50. Plesser HE:Aspects of signal processing in noisy neurons. PhD thesis.Georg-August-UniversitŠt;
1999.

51. Touboul J, Faugeras O:First hitting time of double integral processes to curved boundaries. Adv
Appl Probab2008,40(2):501-528.

52. Beggs JM, Plenz D:Neuronal avalanches are diverse and precise activity patterns that are stable
for many hours in cortical slice cultures. J Neurosci2004,24(22):5216-5229.

53. Benayoun M, Cowan JD, van Drongelen W, Wallace E:Avalanches in a stochastic model of spiking
neurons. PLoS Comput Biol2010,6(7):e1000846.

54. Levina A, Herrmann JM, Geisel T:Phase transitions towards criticality in a neural system with
adaptive interactions. Phys Rev Lett2009,102(11):118110.

55. Touboul J, Destexhe A:Can power-law scaling and neuronal avalanches arise from stochastic
dynamics?PLoS ONE2010,5(2):e8982.

56. Bressloff P:Stochastic neural Þeld theory and the system-size expansion. SIAM J Appl Math2009,
70:1488-1521.



Page 50 of 50 Baladron et al.

57. Buice MA, Cowan JD:Field-theoretic approach to ßuctuation effects in neural networks. Phys
Rev E, Stat Nonlinear Soft Matter Phys2007,75(5):051919.

58. Buice M, Cowan J, Chow C:Systematic ßuctuation expansion for neural network activity equa-
tions. Neural Comput2010,22(2):377-426.

59. Ohira T, Cowan J:Master-equation approach to stochastic neurodynamics. Phys Rev E, Stat Non-
linear Soft Matter Phys1993,48(3):2259-2266.

60. Treves A:Mean-Þeld analysis of neuronal spike dynamics. Network1993,4(3):259-284.
61. Gerstner W:Time structure of the activity in neural network models. Phys Rev E, Stat Nonlinear

Soft Matter Phys1995,51:738-758.
62. Faugeras O, Touboul J, Cessac B:A constructive mean-Þeld analysis of multi-population neu-

ral networks with random synaptic weights and stochastic inputs. Front Comput Neurosci2009.
doi:10.3389/neuro.10.001.2009.

63. Guionnet A:Averaged and quenched propagation of chaos for spin glass dynamics. Probab The-
ory Relat Fields1997,109(2):183-215.

64. Chizhov AV, Graham LJ:Population model of hippocampal pyramidal neurons, linking to re-
fractory density approach to conductance-based neurons. Phys Rev E, Stat Nonlinear Soft Matter
Phys2007,75:011924.

65. Sompolinsky H, Crisanti A, Sommers H:Chaos in random neural networks. Phys Rev Lett1988,
61(3):259-262.

66. Sompolinsky H, Zippelius A:Relaxational dynamics of the Edwards-Anderson model and the
mean-Þeld theory of spin-glasses. Phys Rev B, Condens Matter Mater Phys1982,25(11):6860-
6875.

67. Bolley F, Ca–izo JA, Carrillo JA:Stochastic mean-Þeld limit: non-Lipschitz forces and swarming.
Math Models Methods Appl Sci2011,21(11):2179-2210.

68. Talay D, Vaillant O:A stochastic particle method with random weights for the computation of
statistical solutions of McKean-Vlasov equations. Ann Appl Probab2003,13:140-180.

69. Bossy M, Talay D:A stochastic particle method for the McKean-Vlasov and the Burgers equa-
tion. Math Comput1997,66(217):157-192.

70. Hutzenthaler M, Jentzen A, Kloeden P:Strong and weak divergence in Þnite time of EulerÕs
method for stochastic differential equations with non-globally Lipschitz continuous coefÞcients.
Proc R Soc, Math Phys Eng Sci2011,467(2130):1563-1576.

71. Hutzenthaler M, Jentzen A:Convergence of the stochastic Euler scheme for locally Lipschitz
coefÞcients. Found Comput Math2011,11(6):657-706.

72. Schiesser W:The Numerical Method of Lines: Integration of Partial Differential Equations. San
Diego: Academic Press; 1991.

73. Schiesser WE, GrifÞths GW:A Compendium of Partial Differential Equation Models: Method of
Lines Analysis with Matlab. 1st edition. New York: Cambridge University Press; 2009.

74. Ueberhuber CW:Numerical Computation 2: Methods, Software, and Analysis. Berlin: Springer;
1997.

75. Morton KW, Mayers DF:Numerical Solution of Partial Differential Equations: An Introduction. Cam-
bridge: Cambridge University Press; 2005.

76. Touboul J, Hermann G, Faugeras O:Noise-induced behaviors in neural mean Þeld dynamics. SIAM
J Appl Dyn Syst2012,11(1):49-81.

77. Baladron J, Fasoli D, Faugeras O: Three applications of GPU computing in neuroscience.Comput Sci
Eng2012,14:40-47.

78. Herrmann S, Tugaut J:Non-uniqueness of stationary measures for self-stabilizing processes. Stoch
Process Appl2010,120(7):1215-1246.

79. Pakdaman K, Thieullen M, Wainrib G:Fluid limit theorems for stochastic hybrid systems with
application to neuron models. Adv Appl Probab2010,42(3):761-794.

80. Wainrib G:Randomness in neurons: a multiscale probabilistic analysis. PhD thesis.Ecole Poly-
technique; 2010.

81. Goldwyn JH, Imennov NS, Famulare M, Shea-Brown E:Stochastic differential equation models
for ion channel noise in Hodgkin-Huxley neurons. Phys Rev E, Stat Nonlinear Soft Matter Phys
2011,83(4):041908.

82. Evans LC:Partial Differential Equations. Providence: American Mathematical Society; 1998. [Grad-
uate Studies in Mathematics, vol. 19.]


	Mean-field description and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons
	Abstract


