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Abstract We derive the mean-peld equations arising as the limit of a network of
interacting spiking neurons, as the number of neurons goes to inPnity. The neurons
belong to a bxed number of populations and are represented either by the Hodgkin-
Huxley model or by one of its simplibed version, the FitzHugh-Nagumo model. The
synapses between neurons are either electrical or chemical. The network is assumed
to be fully connected. The maximum conductances vary randomly. Under the con-
dition that all neuronsO initial conditions are drawn independently from the same
law that depends only on the population they belong to, we prove that a propa-
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gation of chaos phenomenon takes place, namely that in the mean-peld limit, any
Pnite number of neurons become independent and, within each population, have
the same probability distribution. This probability distribution is a solution of a set

of implicit equations, either nonlinear stochastic differential equations resembling
the McKean-Vlasov equations or non-local partial differential equations resembling
the McKean-Vlasov-Fokker-Planck equations. We prove the well-posedness of the
McKean-Vlasov equations, i.e. the existence and uniqueness of a solution. We also
show the results of some numerical experiments that indicate that the mean-peld
equations are a good representation of the mean activity of a Pnite size network, even
for modest sizes. These experiments also indicate that the McKean-Vlasov-Fokker-
Planck equations may be a good way to understand the mean-peld dynamics through,
e.g. a bifurcation analysis.

Keywords mean-peld limits propagation of chaosstochastic differential
equations McKean-Vlasov equationsFokker-Planck equationsieural networks
neural assembliesHodgkin-Huxley neuronsFitzHugh-Nagumo neurons

Mathematics Subject Classibcation (200050F99- 60B10- 92B20- 82C32-
82C80- 35Q80

1 Introduction

Cortical activity displays highly complex behaviors which are often characterized by
the presence of noise. Reliable responses to specibc stimuli often arise at the level
of population assemblies (cortical areas or cortical columns) featuring a very large
number of neuronal cells, each of these presenting a highly nonlinear behavior, that
are interconnected in a very intricate fashion. Understanding the global behavior of
large-scale neural assemblies has been a great endeavor in the past decades. One of
the main interests of large-scale modeling is characterizing brain functions, which
most imaging technigues are recording. Moreover, anatomical data recorded in the
cortex reveal the existence of structures, such as the cortical columns, with a diame-
ter of about 50 pm to 1 mm, containing the order of 100 to 100,000 neurons belonging
to a few different types. These columns have specibc functions; for example, in the
human visual area V1, they respond to preferential orientations of bar-shaped visual
stimuli. In this case, information processing does not occur at the scale of individual
neurons but rather corresponds to an activity integrating the individual dynamics of
many interacting neurons and resulting in a mesoscopic signal arising through aver-
aging effects, and this effectively depends on a few effective control parameters. This
vision, inherited from statistical physics, requires that the space scale be large enough
to include sufbciently many neurons and small enough so that the region considered
is homogeneous. This is, in effect, the case of the cortical columns.

In the Peld of mathematics, studying the limits of systems of particle systems in
interaction has been a long-standing problem and presents many technical difbculties.
One of the questions addressed in mathematics was to characterize the limit of the
probability distribution of an inbnite set of interacting diffusion processes, and the
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Ructuations around the limit for a Pnite number of processes. The Prst breakthroughs
to Pnd answers to this question are due to Henry McKean (seeled).[It was

then investigated in various contexts by a large number of authors such as Braun and
Hepp B], Dawson B] and Dobrushin %], and most of the theory was achieved by
Tanaka and collaborator6§f8] and of course Sznitmarl(B12]. When considering

that all particles (in our case, neurons) have the same, independent initial condition,
they are mathematically proved using stochastic theory (the Wasserstein distance,
large deviation techniques) that in the limit where the number of particles tends to
inPnity, any Pnite number of particles behaves independently of the other ones, and
they all present the same probability distribution, which satisbes a nonlinear Markov
equation. Finite-size Buctuations around the limit are derived in a general caég in |
Most of these models use a standard hypothesis of global Lipschitz continuity and
linear growth condition of the drift and diffusion coefbcients of the diffusions, as well
as the Lipschitz continuity of the interaction function. Extensions to discontinuous
c"dlI"g processes including singular interactions (through a local time process) were
developed in11]. Problems involving singular interaction variables (e.g. nonsmooth
functions) are also widely studied in the Peld, but are not relevant in our case.

In the present article, we apply this mathematical approach to the problem of in-
teracting neurons arising in neuroscience. To this end, we extend the theory to en-
compass a wider class of models. This implies the use of locally (instead of globally)
Lipschitz coefpbcients and of a Lyapunov-like growth condition replacing the custom-
ary linear growth assumption for some of the functions appearing in the equations.
The contributions of this article are fourfold:

1. We derive, in arigorous manner, the mean-beld equations resulting from the inter-
action of inbnitely many neurons in the case of widely accepted models of spiking
neurons and synapses.

2. We prove a propagation of chaos property which shows that in the mean-peld
limit, the neurons become independent, in agreement with some recent experimen-
tal work [13] and with the idea that the brain processes information in a somewhat
optimal way.

3. We show, numerically, that the mean-peld limit is a good approximation of the
mean activity of the network even for fairly small sizes of neuronal populations.

4. We suggest, numerically, that the changes in the dynamics of the mean-beld limit
when varying parameters can be understood by studying the mean-peld Fokker-
Planck equation.

We start by reviewing such models in the OSpiking conductance-based modelsO sec-
tion to motivate the present study. It is in the OMean-beld equations for conductance-
based modelsO section that we provide the limit equations describing the behaviors
of an inPnite number of interacting neurons and state and prove the existence and
uniqueness of solutions in the case of conductance-based models. The detailed proof
of the second main theorem, that of the convergence of the network equations to the
mean-Peld limit, is given in the Appendix. In the ONumerical simulationsO section, we
begin to address the difbcult problem of the numerical simulation of the mean-beld
equations and show some results indicating that they may be an efpcient way of rep-
resenting the mean activity of a Pnite-size network as well as to study the changes in
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the dynamics when varying biological parameters. The Pnal ODiscussion and conclu-
sionO section focuses on the conclusions of our mathematical and numerical results
and raises some important questions for future work.

2 Spiking conductance-based models

This section sets the stage for our results. We review in the OHodgkin-Huxley modelO
section the Hodgkin-Huxley model equations in the case where both the membrane
potential and the ion channel equations include noise. We then proceed in the OThe
FitzHugh-Nagumo modelO section with the FitzHugh-Nagumo equations in the case
where the membrane potential equation includes noise. We next discuss in the OMod-
els of synapses and maximum conductancesO section the connectivity models of net-
works of such neurons, starting with the synapses, electrical and chemical, and Pnish-
ing with several stochastic models of the synaptic weights. In the OPutting everything
togetherO section, we write the network equations in the various cases considered in
the previous section and express them in a general abstract mathematical form that
is the one used for stating and proving the results about the mean-beld limits in the
OMean-beld equations for conductance-based modelsO section. Before we jump into
this, we conclude in the OMean-beld methods in computational neuroscience: a quick
overviewQ section with a brief overview of the mean-beld methods popular in com-
putational neuroscience.

From the mathematical point of view, each neuron is a complex system, whose dy-
namics is often described by a set of stochastic nonlinear differential equations. Such
models aim at reproducing the biophysics of ion channels governing the membrane
potential and therefore the spike emission. This is the case of the classical model of
Hodgkin and Huxley 14] and of its reductions]5P17]. Simpler models use discon-
tinuous processes mimicking the spike emission by modeling the membrane voltage
and considering that spikes are emitted when it reaches a given threshold. These are
called integrate-and-pre models8[ 19] and will not be addressed here. The models
of large networks we deal with here therefore consist of systems of coupled nonlinear
diffusion processes.

2.1 Hodgkin-Huxley model

One of the most important models in computational neuroscience is the Hodgkin-
Huxley model. Using pioneering experimental techniques of that time, Hodgkin and
Huxley [14] determined that the activity of the giant squid axon is controlled by
three major currents: voltage-gated persistehtddrrent with four activation gates,
voltage-gated transient Nacurrent with three activation gates and one inactivation
gate, and Ohmic leak curren,, which is carried mostly by chloride ions (©). In

this paper, we only use the space-clamped Hodgkin-Huxley model which we slightly
generalize to a stochastic setting in order to better take into account the variability
of the parameters. The advantages of this model are numerous, and one of the most
prominent aspects in its favor is its correspondence with the most widely accepted
formalism to describe the dynamics of the nerve cell membrane. A very extensive
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literature can also be found about the mathematical properties of this system, and it
is now quite well understood.
The basic electrical relation between the membrane potential and the currents is

simply:

dv SR -

C——=1%t)S 1k SInaS L,

dt
wherel ®¥t) is an external current. The detailed expressions £oil na andl can
be found in several textbooks, e.d7[ 20]:

Ik = gn*(V S Ek),
Ina= Gnamh(V S Ena),
IL=g.(V SEL),

wheregk (respectivelygna) is the maximum conductance of the potassium (respec-
tively, the sodium) channef), is the conductance of the Ohmic channel; ange-
spectivelym) is the activation variable for K (respectively, for Na). There are four
(respectively, three) activation gates for thé Kespectively, the Na) current which
accounts for the power 4 (respectively, 3) in the expressidig gfespectively na).

h is the inactivation variable for Na. These activation/deactivation variables, denoted
by x { n,m,h} in what follows, represent a proportion (they vary between 0 and
1) of open gates. The proportions of open channels are given by the funofions
andm?3h. The proportions of open gates can be computed through a Markov chain
modeling assuming the gates to open with rgt/ ) (the dependence M accounts

for the voltage-gating of the gate) and to close with rai@/ ). These processes can

be shown to converge, under standard assumptions, towards the following ordinary
differential equations:

x= x(V)(ISX)S x(V)x, x {n,m,nh}

The functions x(V) and x(V) are smooth functions whose exact values can be
found in several textbooks such as the ones cited above. Note that half of these six
functions are unbounded when the voltage goeS to, being of the formk;e>k2V |

with k1 andks as two positive constants. Since these functions have been btted to ex-
perimental data corresponding to values of the membrane potential between roughly
S100 and 100 mVs, it is clear that extremely large in magnitude and negative val-
ues of this variable do not have any physiological meaning. We can therefore safely,
smoothly perturb these functions so that they are upper-bounded by some large (but
Pnite) positive number for these values of the membrane potential. Hence, the func-
tions x and x are bounded and Lipschitz continuous xor{ n,m, h}. A more pre-

cise model taking into account the Pnite number of channels through the Langevin
approximation results in the stochastic differential equétion

dxi = < (V)ASX)S 2 (V)X dt+  ((V)ASX)+ (V)X ()dW ¥,

More precisely, as shown ir79, 80], the convergence is to a larger - 13-dimensional - system with an
invariant four-dimensional manifold on which the solution lives given appropriate initial conditions. See
also B1].
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10 Evolution of a single Hodgkin-Huxley neuron without noise ag Evolution of a single Hodgkin-Huxley neuron without noise
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Fig. 1 Solution of the noiseless Hodgkin-Huxley modeéft time evolution of the three ion channel
variablesn, m and h. Right corresponding time evolution of the membrane potential. Parameters are
given in the text.

whereW andx { n,m,h} are independent standard Brownian motior{s) is
a function that vanishes outsid6, 1). This guarantees that the solution remains a
proportion, i.e. lies between 0 and 1 for all times. We debne

x(V,x) = x(V)(ASx)+ x(V)x (x). @)

In order to complete our stochastic Hodgkin-Huxley neuron model, we assume
that the external curren®*{(t) is the sum of a deterministic part, notedl4s , and
a stochastic part, a white noise with variangg; built from a standard Brownian
motion W; independent ofV* andx { n,m, h}. Considering the current produced
by the income of ion through these channels, we end up with the following system of
stochastic differential equations:

CdVi= 1(t) Sgkn*(V SEk) S gnam®h(V S Ena) S OL(V SEL) dt
+ eXtdW1 . (2)
dxe = x(V)(ASX)S x(V)x dt+ x(V,x)dW, x {n,m,h}.

This is a stochastic version of the Hodgkin-Huxley model. The functignand
are bounded and Lipschitz continuous (see discussion above). The funttions
andh are bounded between 0 and 1; hence, the functidrendm?h are Lipschitz
continuous.

To illustrate the model, we show in Figuiethe time evolution of the three ion
channel variables, m and h as well as that of the membrane potendalfor a
constant input = 20.0. The system of ordinary differential equations (ODES) has
been solved using a Runge-Kutta scheme of order 4 with an integration time step
t = 0.01. In Figure2, we show the same time evolution when noise is added to the
channel variables and the membrane potential.

For the membrane potential, we have used = 3.0 (see EquatioR), while for
the noise in the ion channels, we have used the followifignction (see Equatiot):

x) = e S 1851 fo<x< 1, 3)
0 ifx 0 x 1

with = 0.1 and = 0.5 for all the ion channels. The system of SDEs has been
integrated using the Euler-Maruyama scheme with= 0.01.
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Fig. 2 Noisy Hodgkin-Huxley modelLeft time evolution of the three ion channel variabfesn andh.
Right corresponding time evolution of the membrane potential. Parameters are given in the text.

Because the Hodgkin-Huxley model is rather complicated and high-dimensional,
many reductions have been proposed, in particular to two dimensions instead of four.
These reduced models include the famous FitzHugh-Nagumo and Morris-Lecar mod-
els. These two models are two-dimensional approximations of the original Hodgkin-
Huxley model based on quantitative observations of the time scale of the dynamics of
each variable and identibcation of variables. Most reduced models still comply with
the Lipschitz and linear growth conditions ensuring the existence and uniqueness of
a solution, except for the FitzHugh-Nagumo model which we now introduce.

2.2 The FitzHugh-Nagumo model

In order to reduce the dimension of the Hodgkin-Huxley model, FitzHugh[6, 21]
introduced a simplibed two-dimensional model. The motivation was to isolate con-
ceptually essential mathematical features yielding excitation and transmission prop-
erties from the analysis of the biophysics of sodium and potassium RBows. Nagumo
and collaborators?] followed up with an electrical system reproducing the dynam-
ics of this model and studied its properties. The model consists of two equations, one
governing a voltage-like variabk having a cubic nonlinearity and a slower recovery
variablew. It can be written as:

V=f(V) Sw+ e @)
w=c(V+ asS bw),
wheref (V) is a cubic polynomial iV which we choose, without loss of generality,
to bef(V) = V S V3 3. The parameter®! models the input current the neuron
receives; the parameteas b > 0 andc > 0 describe the kinetics of the recovery
variablew. As in the case of the Hodgkin-Huxley model, the currefit is assumed
to be the sum of a deterministic part, notednd a stochastic white noise accounting
for the randomness of the environment. The stochastic FitzHugh-Nagumo equation
is deduced from Equatiohand reads:

NAVARS
dv; = VtS?tSWﬁI dt+ eqdW, )

dw; = c(V; + as bw;) dt.
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Fig. 3 Time evolution of the membrane potential and the adaptation variable in the FitzHugh-Nagumo
model.Left without noise Right with noise. See text.

Note that because the functiév ) is notglobally Lipschitz continuous (only lo-
cally), the well-posedness of the stochastic differential equation (Equatidoes
not follow immediately from the standard theorem which assumes the global Lips-
chitz continuity of the drift and diffusion coefbcients. This question is settled below
by Propositioril.

We show in Figure3 the time evolution of the adaptation variable and the mem-
brane potential in the case where the inpus$ constant and equal ta@Q The left-
hand side of the bgure shows the case with no noise while the right-hand side shows
the case where noise of intensity; = 0.25 (see EquatioB) has been added.

The deterministic model has been solved with a Runge-Kutta method of order 4,
while the stochastic model, with the Euler-Maruyama scheme. In both cases, we have
used an integration time step = 0.01.

2.3 Partial conclusion

We have reviewed two main models of space-clamped single neurons: the Hodgkin-
Huxley and FitzHugh-Nagumo models. These models are stochastic, including var-
ious sources of noise: external and internal. The noise sources are supposed to be
independent Brownian processes. We have shown that the resulting stochastic differ-
ential Equation® and5 were well-posed. As pointed out above, this analysis extends

to a large number of reduced versions of the Hodgkin-Huxley such as those that can
be found in the book1[7].

2.4 Models of synapses and maximum conductances

We now study the situation in which several of these neurons are connected to one
another forming a network, which we will assume to be fully connectedN_ée

the total number of neurons. These neurons beloig) pwpulations, e.g. pyramidal

cells or interneurons. If the index of a neuronijsl i N, we notep(i) = ,

1 P as the population it belongs to. We ndtg) as the number of neurons

in populationp(i) . Since we want to be as close to biology as possible while keeping
the possibility of a mathematical analysis of the resulting model, we consider two
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types of simplibed, but realistic, synapses: chemical and electrical or gap junctions.
The following material concerning synapses is standard and can be found in text-
books R0]. The new, and we think important, twist is to add noise to our models. To
unify notations, in what follows, is the index of a postsynaptic neuron belonging to
population = p(i), andj is the index of a presynaptic neuron to neurdrelonging

to population = p(j) .

2.4.1 Chemical synapses

The principle of functioning of chemical synapses is based on the release of a neu-
rotransmitter in the presynaptic neuron synaptic button, which binds to specibc re-
ceptors on the postsynaptic cell. This process, similar to the currents described in the
Hodgkin and Huxley model, is governed by the value of the cell membrane potential.
We use the model described &g, 23], which features a quite realistic biophysical
representation of the processes at work in the spike transmission and is consistent
with the previous formalism used to describe the conductances of other ion channels.
The model emulates the fact that following the arrival of an action potential at the
presynaptic terminal, a neurotransmitter is released in the synaptic cleft and binds
to the postsynaptic receptor with a brst order kinetic schemq. beta presynaptic
neuron to the postynaptic neurorlThe synaptic current induced by the synapse from
] toi can be modelled as the product of a conductagjcevith a voltage difference:
177"=S gj ©) V'S Viy - (6)
The synaptic reversal potentialg,, are approximately constant within each popula-
tion: Viby := Viev. The conductancg; is the product of the maximum conductance
Jjj (t) with a functiony! (t) that denotes the fraction of open channels and depends
only upon the presynaptic neurpn

gi (t) = Jj Oy ). @)

The functiony! (t) is often modelledZ0] as satisfying the following ordinary differ-
ential equation:

yy=asg vi 15yl Say .

The positive constants anda{j characterize the rise and decay rates, respectively, of
the synaptic conductance. Their values depend only on the population of the presy-
naptic neurorj , i.e.a = a andaﬂj = ay, but may vary signipcantly from one
population to the next. For example, gamma-aminobutyric acid (GABAhapses

are slow to activate and slow to turn off while the reverse is true for GABAd
AMPA synapsesZ(]. § (V1) denotes the concentration of the transmitter released
into the synaptic cleft by a presynaptic spike. We assume that the furgtisnsig-
moidal and that its exact form depends only upon the population of the nguitn
expression is given by (see, e.g0]):

s vl = Tm—ax (8)
1+ &S (VISvy)’
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Destexhe et al.Z3] give some typical values of the paramet@gx= 1 mM, V1 =
2mVandl =5mV.

Because of the dynamics of ion channels and of their Pnite number, similar to the
channel noise models derived through the Langevin approximation in the Hodgkin-
Huxley model (EquatioR), we assume that the proportion of active channels is actu-
ally governed by a stochastic differential equation with diffusion coefbcief\ , y)
depending only on the populationof j of the form (Equatiori):

dyl = &S Vi 18yi(t) Say (t) dt+ Y Vviyl dw.

In detail, we have

YViyl = as Vio1Syl +ayl Y. 9
Remember that the form of the diffusion term guarantees that the solutions to this

equation with appropriate initial conditions stay between 0 and 1. The Brownian mo-
tionsW!Y are assumed to be independent from one neuron to the next.

2.4.2 Electrical synapses

The electrical synapse transmission is rapid and stereotyped and is mainly used to
send simple depolarizing signals for systems requiring the fastest possible response.
At the location of an electrical synapse, the separation between two neurons is very
small ( 3.5 nm). This narrow gap is bridged by thap junction channe|sspecial-

ized protein structures that conduct the Bow of ionic current from the presynaptic to
the postsynaptic cell (see, e.g4]).

Electrical synapses thus work by allowing ionic current to RBow passively through
the gap junction pores from one neuron to another. The usual source of this current
is the potential difference generated locally by the action potential. Without the need
for receptors to recognize chemical messengers, signaling at electrical synapses is
more rapid than that which occurs across chemical synapses, the predominant kind
of junctions between neurons. The relative speed of electrical synapses also allows
for many neurons to bre synchronously.

We model the current for this type of synapse as

Ihe= 35 (t) VI S VI, (10)

whereJj (t) is the maximum conductance.
2.4.3 The maximum conductances

As shown in Equation6, 7 and10, we model the current going through the synapse
connecting neurop to neuroni as being proportional to the maximum conductance
Jjj . Because the synaptic transmission through a synapse is affected by the nature
of the environment, the maximum conductances are affected by dynamical random
variations (we do not take into account such phenomena as plasticity). What kind of
models can we consider for these random variations?

The simplest idea is to assume that the maximum conductances are independent

J
diffusion processes with meei,-]@— and standard deviatiog—, i.e. that depend only
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on the populations. The quantitié_s , being conductances, are positive. We write
the following equation:

J o
J )= —+ — " (1), 11
=t O (12)
wherethe ' (t),i=1,...,N, =1,...,P,areNP-independent zero mean unit

variance white noise processes derived frii -independent standard Brownian

motionsB'" (t), i.e. " (t) = dB't'j—t(t), which we also assume to be independent of
all the previously debPned Brownian motions. The main advantage of this dynamics
is its simplicity. Its main disadvantage is that if we increase the noise levelthe
probability thatlj (t) becomes negative increases also: this would result in a negative
conductance!

One way to alleviate this problem is to modify the dynamics (Equatitnto
a slightly more complicated one whose solutions do not change sign, such as for
instance, the Cox-Ingersoll-Ross mod&h|[given by:

- J
dJj (t) = ‘IJ\I— S Jj (t) dt+ N Jj (t)dB" (t). (12)

Note that the right-hand side only depends upon the populatirmp(j) . Let Jj (0)
be the initial condition, it is knownZp] that

. J L
EJij(t):Jij(O)eS t+N—18eS v

(J)ZStVSZt ‘]_(J)ZVStZ
Var \]“ (t) = ‘]|J (O)NZ— € Se + W 1S e .

This shows that if the initial conditiod; (0) is equal to the mea%—, the mean of
the process is constant over time and equail‘_%o Otherwise, if the initial condition
Jjj (0) is of the same sign as ,ie. positive, then the long term mean%& and
the process is guaranteed not to touch O if the condithén 2 J ( ?)2holds

1 J 2
[25]. Note that the long term variance%N(g—).

2.5 Putting everything together

We are ready to write the equations of a network of Hodgkin-Huxley or FitzHugh-
Nagumo neurons and study their properties and their limit, if any, when the number
of neurons becomes large. The external current for nelunais been modelled as the
sum of a deterministic part and a stochastic part:

o dw
t — t
) = 1) + (IaxtT'
We will assume that the deterministic part is the same for all neurons in the same
population]; := | , and that the same is true for the variangg, := 4, We further

assume that th Brownian motionsA{ areN -independent Brownian motions and
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independent of all the other Brownian motions debned in the model. In other words,
dw .
184t =1 () + EXtd—tt’ = p(),i =1,...,N. (13)
We only cover the case of chemical synapses and leave it to the reader to derive the
equations in the simpler case of gap junctions.

2.5.1 Network of FitzHugh-Nagumo neurons

We assume that the parametaysh; andc; in Equation5 of the adaptation variable
w' of neuroni are only functions of the population= p(i) .

Simple maximum conductance variatidhwe assume that the maximum con-
ductances RBuctuate according to Equatldnthe state of théth neuron in a fully
connected network of FitzHugh-Nagumo neurons with chemical synapses is deter-
mined by the variablegv',w',y') that satisfy the following set of\8 stochastic
differential equations:

. (V3 L
dV{ = V{S%SW{+I (t) dt
X 1 RV j
S N J WV SVe vyl dt
=1 jp() =
P
5 1 . ) ) (14)
S N YV SViey yl dB!
=1 jpG) =
+ e dW,

dwi=c V/+a Sbw| dt,
dy = &S V{ 1Sy Sagy dt+ Y Viy; dw”.
S (V) is given by Equatior8; Y, by Equationd; andW,” , i = 1,...,N, areN-
independent Brownian processes that model noise in the process of transmitter release
into the synaptic clefts.
Sign-preserving maximum conductance variatlbwe assume that the maximum

conductances Ructuate according to Equatirthe situation is slightly more com-
plicated. In effect, the state space of the neuirdras to be augmented by tfe

maximum conductancek , = 1,...,P.We obtain
. AV -
dv{ = V/$ ( é) Swi+1 () dt
Py . _
S — Jij () V! S Viey yi dt
=1 jpG) =
+ e dW, (15)

dwi=c V/+a Sbw dt, _
dy= aS W 18y Sagy di+ Y iyl dw,
— J

dJi (t) = ‘I]\l—éJi ® dt+ — 3 ®)dB" (t), =1,...,P,

which is a set oN (P + 3) stochastic differential equations.
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2.5.2 Network of Hodgkin-Huxley neurons

We provide a similar description in the case of the Hodgkin-Huxley neurons. We
assume that the functiong and ,, x { n,m,h}, that appear in Equatio only
depend upon = p(i) .

Simple maximum conductance variatidhwe assume that the maximum con-
ductances Ructuate according to Equatldnthe state of théth neuron in a fully
connected network of Hodgkin-Huxley neurons with chemical synapses is therefore
determined by the variablg¥',n',m', h',y") that satisfy the following set ofé
stochastic differential equations:

cdV/ = I ®)Sagn! V{ SEx Sgnam’hi V/ SEna SaL V{ SEL dt

P

S Ni J V! SV yl dt
=1 jp0) =

s L P Vi8S Viey yl dBL (16)

N t rev Yt B

=1 jpg) =

+ oW,

dxi(t)= VI (18x)S x VI x dt+ » Vixi dW*', x {n,m,h}

dy= a S V{ 1Sy Sagy dt+ Y Vi,yf dw”.

Sign-preserving maximum conductance variatlbwe assume that the maximum
conductances Ructuate according to Equafti@nwe use the same idea as in the

FitzHugh-Nagumo case of augmenting the state space of each individual neuron and
obtain the following set of5+ P)N stochastic differential equations:

cdVi = I (t)Sagkn! V{ SEk Sgnam’hi V{ SEna SaL V SEL dt
P
y 1 . i
S — Jj () V{ S Viey yi  dt
=1 jp() =
+ extd\Ntl' (17)

dx®) =,V A8x)8 Vi x dt+ » V{,xi dW, x {n,m,h},
dy = aS V{ 18y Sagy; dt+ Y Viy; dw?,
- J

$J (t) dt+ o U ®dB" (), =1,...,P.

dJ (t)= L—

2.5.3 Partial conclusion

Equationsl4to 17 have a quite similar structure. They are well-posed, i.e. given any
initial condition, and any tim& > 0, they have a unique solution ¢@, T] which
is square-integrable. A little bit of care has to be taken when choosing these initial
conditions for some of the parameters, hem andh, which take values between O
and 1, and the maximum conductances when one wants to preserve their signs.

In order to prepare the grounds for the OMean-beld equations for conductance-
based modelsO section, we explore a bit more the aforementioned common struc-
ture. Let us brst consider the case of the simple maximum conductance variations
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for the FitzHugh-Nagumo network. Looking at Equatib# we debne the three-
dimensional state vector of neurdnto be X{ = (V{,w},y{). Let us now debPne
f :RxR® R3 =1,...,P, by

(Vt )® &

VARS Swi+1 (1)
c Vt +a Sbwl

8 S V{ 1Sy Sagy

Letus nextdebng :Rx R® R¥?2py

. ext O
g tXf = 0 0
0 YViy

It appears that the intrinsic dynamics of the neur@conveniently described by the
equation

; i CdwW
dxi=f t,X! dt+g tX! it
t t g t thl,y
We next debne the functiols :R3x R® RS for, =1,...,P, by
o ST Vi S Ve V!
b X{,X{ = 0
0

and the function :R3x R® R¥1lpy
o s J Vti S Vrev y{
Xi,X{ = 0
0

It appears that the full dynamics of the neuigrorresponding to Equatialy, can
be described compactly by

: , o dW 1 o
dX{=f tX| dt+g tX| dwify N b X! X! dt
t — (i) —
o Xt X{ dBy
=1 jp() =

Let us now move to the case of the sign-preserving variation of the maximum con-
ductances, still for the FitzZHugh-Nagumo neurons. The state of each neuron is now
P+ 3-dimensional: we debr! = (V{,wi,y!,Ji1(t),...,Jip (t)). We then debne
the functiond :Rx RP*3  RP*3 =1 .. P, by

(Vt )3

(VRS Swi+l (t)

c Vt+a Sbwt

[—
FoX a S 4 1SYt Sadyt
J .
TSI O, =1..P
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and the functiong :Rx RP*3 R(P*+3x(P+2) py

ext 0 0 0
0 0 0 0
0 YViyl 0 0
J
- 1 T
: 3 :
0 0 0 ... _P Jip (t)

Np
It appears that the intrinsic dynamics of the neurdsolated from the other neurons
is conveniently described by the equation
dW
dwyY
dxi=f tX! dt+g t,x! dB"’

dB!P
Let us bnally debne the functiohs :RP*3x RP*3  RP*3 for , =1,...,P,
by
SJij (t) Vti S Vrev Y%
iyl 0
b Xxi,xi = )
0

It appears that the full dynamics of the neuigrrorresponding to Equatiotb can
be described compactly by

dWy
dwgY
dxi=f tXidt+g t x| dB’?
: 19
dB}” o
P 1 ) ]
o b X{,Xi dt.
=1 jp() =

We let the reader apply the same machinery to the network of Hodgkin-Huxley
neurons.

Let us noted as the positive integer equal to the dimension of the state space in
Equation18(d = 3) or19(d = 3+ P) orin the corresponding cases for the Hodgkin-

Huxley model f = 5 andd = 5+ P). The reader will easily check that the following
four assumptions hold for both models:

(H1) Locally Lipschitz dynamicgorall { 1,...,P}, thefunctiond andg are
uniformly locally Lipschitz continuous with respect to the second variable. In
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detail, for allU > 0, there existKy > 0 independent of [ O, T] such that
forallx,y BJ, the ball ofRY of radiusU:

f (t,x)Sf (t,y) + g (t,x)Sg (t,y) Ky xSy, =1,...,P.

(H2) Locally Lipschitz interactiong~or all , {1,...,P}, the functiond and
are locally Lipschitz continuous. In detail, for &ll> 0, there exist& y >
0 such that for alk,y,x ,y BS,we have:

b (x,y)Sb x,y + xy)S  x.y
Lu xSx + ySy

(H3) Linear growth of the interactiond here exists & > 0 such that
max b (x,2) 2, (x,2) 2 K1+ x 2.

(H4) Monotone growth of the dynamicd/e assume thét andg satisfy the fol-
lowing monotonous condition forall=1,...,P:

i (t,x)+% g@tx) % K1+ x?2. (20)

These assumptions are central to the proofs of Theofsmnsl4.
They imply the following proposition stating that the system of stochastic differ-
ential equations (Equatidlg) is well-posed:

Proposition 1 LetT > 0 be a bxed timef || (t)] Imon[0,T],for =1,...,P,
Equationsl8 and19 together with an initial conditiorX L2(RY),i=1,...,N of
square-integrable random variablgsave a unique strong solution which belongs to
L([0, T]; RYN).

Proof The proof uses Theorem 3.5 in chapter 226][whose conditions are easily
shown to follow from hypothesex5.3to (H2).

The caseN = 1 implies that Equation® and 5, describing the stochastic
FitzHugh-Nagumo and Hodgkin-Huxley neurons, are well-posed.

We are interested in the behavior of the solutions of these equations as the number
of neurons tends to inPnity. This problem has been long-standing in neuroscience,
arousing the interest of many researchers in different domains. We discuss the differ-
ent approaches developed in the beld in the next subsection.

2.6 Mean-beld methods in computational neuroscience: a quick overview

Obtaining the equations of evolution of the effective mean-peld from microscopic dy-
namics is a very complex problem. Many approximate solutions have been provided,
mostly based on the statistical physics literature.

Many models describing the emergent behavior arising from the interaction of
neurons in large-scale networks have relied on continuum limits ever since the semi-
nal work of Amari, and Wilson and CowaBTEBQ]. Such models represent the activ-
ity of the network by macroscopic variables, e.g. the population-averaged bring rate,
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which are generally assumed to be deterministic. When the spatial dimension is not
taken into account in the equations, they are referred to as neural masses, otherwise as
neural belds. The equations that relate these variables are ordinary differential equa-
tions for neural masses and integrodifferential equations for neural belds. In the sec-
ond case, they fall in a category studied3i][or can be seen as ordinary differential
equations debned on specibc functional spa@8s flany analytical and numerical
results have been derived from these equations and related to cortical phenomena, for
instance, for the problem of spatio-temporal pattern formation in spatially extended
models (see, e.g3BEBE]). The use of bifurcation theory has also proven to be quite
powerful [37, 38]. Despite all its qualities, this approach implicitly makes the as-
sumption that the effect of noise vanishes at the mesoscopic and macroscopic scales
and hence that the behavior of such populations of neurons is deterministic.

A different approach has been to study regimes where the activity is uncorrelated.
A number of computational studies on the integrate-and-Pre neuron showed that un-
der certain conditions, neurons in large assemblies end up Pring asynchronously,
producing null correlations3PP41]. In these regimes, the correlations in the bring
activity decrease towards zero in the limit where the number of neurons tends to in-
Pnity. The emergent global activity of the population in this limit is deterministic
and evolves according to a mean-beld bring rate equation. However, according to the
theory, these states only exist in the limit where the number of neurons is inPnite,
thereby raising the question of how the bniteness of the number of neurons impacts
the existence and behavior of asynchronous states. The study of Pnite-size effects for
asynchronous states is generally not reduced to the study of mean bring rates and
can include higher order moments of bring activié14]. In order to go beyond
asynchronous states and take into account the stochastic nature of the bring and un-
derstand how this activity scales as the network size increases, different approaches
have been developed, such as the population density method and related approaches
[45]. Most of these approaches involve expansions in terms of the moments of the
corresponding random variables, and the moment hierarchy needs to be truncated
which is not a simple task that can raise a number of difbcult technical issues (see,
e.g. e).

However, increasingly many researchers now believe that the different intrinsic or
extrinsic noise sources are part of the neuronal signal, and rather than being a pure
disturbing effect related to the intrinsically noisy biological substrate of the neural
system, they suggest that noise conveys information that can be an important principle
of brain function B7]. At the level of a single cell, various studies have shown that
the bring statistics are highly stochastic with probability distributions close to the
Poisson distributionsig], and several computational studies conbrmed the stochastic
nature of single-cell bPringg4PEB1]. How the variability at the single-neuron level
affects the dynamics of cortical networks is less well established. Theoretically, the
interaction of a large number of neurons that bre stochastic spike trains can naturally
produce correlations in the bring activity of the population. For instance, power laws
in the scaling of avalanche-size distributions has been studied both via models and
experiments§2B65]. In these regimes, the randomness plays a central role.

In order to study the effect of the stochastic nature of the Pring in large networks,
many authors strived to introduce randomness in a tractable form. Some of the models
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proposed in the area are based on the debnition of a Markov chain governing the br-
ing dynamics of the neurons in the network, where the transition probability satisbes
a differential equation, themaster equationSeminal works of the application of such
modeling for neuroscience date back to the early 1990s and have been recently de-
veloped by several author43, 56E69]. Most of these approaches are proved correct

in some parameter regions using statistical physics tools such as path integrals and
Van-Kampen expansions, and their analysis often involve a moment expansion and
truncation. Using a different approach, a static mean-peld study of multi-population
network activity was developed by Treves 60]. This author did not consider exter-

nal inputs but incorporated dynamical synaptic currents and adaptation effects. His
analysis was completed ir89], where the authors proved, using a Fokker-Planck
formalism, the stability of an asynchronous state in the network. Later on, Gerst-
ner in [61] built a new approach to characterize the mean-peld dynamics for the spike
response model, via the introduction of suitable kernels propagating the collective ac-
tivity of a neural population in time. Another approach is based on the use of large de-
viation techniques to study large networks of neurd@.[This approach is inspired

by the work on spin-glass dynamics, e.g3[ It takes into account the randomness

of the maximum conductances and the noise at various levels. The individual neuron
models are rate models, hence already mean-peld models. The mean-beld equations
are not rigorously derived from the network equations in the limit of an inbPnite num-
ber of neurons, but they are shown to have a unique, non-Markov solution, i.e. with
inbnite memory, for each initial condition.

Brunel and Hakim considered a network of integrate-and-bre neurons connected
with constant maximum conductanceH]. In the case of sparse connectivity, sta-
tionarity, and in a regime where individual neurons emit spikes at a low rate, they
were able to analytically study the dynamics of the network and to show that it ex-
hibits a sharp transition between a stationary regime and a regime of fast collective
oscillations weakly synchronized. Their approach was based on a perturbative analy-
sis of the Fokker-Planck equation. A similar formalism was used4hyhich, when
complemented with self-consistency equations, resulted in the dynamical description
of the mean-Peld equations of the network and was extended to a multi population
network. Finally, Chizhov and Grahar64] have recently proposed a new method
based on a population density approach allowing to characterize the mesoscopic be-
havior of neuron populations in conductance-based models.

Let us Pnish this very short and incomplete survey by mentioning the work of
Sompolinsky and colleagues. Assuming a linear intrinsic dynamics for the individual
neurons described by a rate model and random centered maximum conductances for
the connections, they showe@ 66] that the system undergoes a phase transition
between two different stationary regimes: a Otrivial® reglme where the system has
a unique null and uncorrelated solution, and a OchaoticO regime in which the bring
rate converges towards a non-zero value and correlations stabilize on a specibc curve
which they were able to characterize.

All these approaches have in common that they are not based on the most widely
accepted microscopic dynamics (such as the ones represented by the Hodgkin-Huxley
equations or some of their simplipcations) and/or involve approximations or moment
closures. Our approach is distinct in that it aims at deriving rigorously and without
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approximations the mean-beld equations of populations of neurons whose individual
neurons are described by biological, if not correct at least plausible, representations.
The price to pay is the complexity of the resulting mean-peld equations. The spe-
cibc study of their solutions is therefore a crucial step, which will be developed in
forthcoming papers.

3 Mean-pbeld equations for conductance-based models

In this section, we give a general formulation of the neural network models introduced

in the previous section and use it in a probabilistic framework to address the problem

of the asymptotic behavior of the networks, as the number of neudogses to

inPnity. In other words, we derive the limit in law df-interacting neurons, each of

which satisfying a nonlinear stochastic differential equation of the type described in
the OSpiking conductance-based modelsO section. In the remainder of this section, we
work in a complete probability spade F, P) satisfying the usual conditions and
endow with a pltratiorfF);.

3.1 Setting of the problem

We recall that the neurons in the network fall into different populati®en3he pop-
ulations differ through the intrinsic properties of their neurons and the input they
receive. We assume that the number of neurons in each populatipd, ..., P},
denoted byN , increases as the network size increases and moreover that the asymp-
totic proportion of neurons in populationis nontrivial, i.e.N /N (0,1) as

N goes to inpnit}.

We use the notations introduced in the OPartial conclusionO section, and the reader
should refer to this section to give a concrete meaning to the rather abstract (but
required by the mathematics) setting that we now establish. _

Each neuron in population is described by a state vector notec%ié\' in RY
and has an intrinsic dynamics governed by a drift funcfionR x RY  RY and a
diffusion matrixg :Rx R4 R¥™ assumed uniformly locally Lipschitz continu-
ous with respect to the second variable. For a neurompopulation , the dynamics
of thed-dimensional proceqX}) governing the evolution of the membrane potential
and additional variables (adaptation, ionic concentrations), when there is no interac-
tion, is governed by the equation:

dxiN=f t,xiN dt+g t,x!N dw.

Moreover, we assume, as it is the case for all the models described in the OSpiking
conductance-based modelsO section, that the solutions of this stochastic differential
equation exist for all time.

bAs we will see in the proof, most properties are valid as sodd agends to inPnity adl goes to inbnity
forall {1,..., P}, the previous assumption will allow quantifying the speed of convergence towards
the asymptotic regime.
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When included in the network, these processes interact with those of all the other

neurons through a set of continuous functions that only depend on the population
= p(i), the neuron belongs to and the populationsof the presynaptic neurons.

These functionsb (x,y) :R9 x R4 RY, are scaled by the coefbcienté\1 ,

so the maximal interaction is independent of the size of the network (in particular,

neither diverging nor vanishing & goes to inPnity).

As discussed in the OSpiking conductance-based models® section, due to the
stochastic nature of ionic currents and the noise effects linked with the discrete nature
of charge carriers, the maximum conductances are perturbed dynamically through the
N x P-independent Brownian motio®’ of dimension that were previously in-
troduced. The interaction between the neurons and the noise term is represented by
the functon :RY9x R4 RI* |

In order to introduce the stochastic current and stochastic maximum conductances,
we debne two independent sequences of indepemaleand -dimensional Brown-
ian motions noted a@\{);i n and(B{ )i n, {1--p} Which are adapted to the bltra-
tion Fy.

The resulting equation for thieh neuron, including the noisy interactions, reads:

. . P 1 ) :
dxiN =t ¢, xIN dt+ 5 b xWN xIN gt
=1 PI,D(J) = 1)
+g t,XIN dw + 1 XN xIN gl
=1 jp0) =

Note that this implies thax"N andX/N have the same law wheneva() = p(j) ,
given identically distributed initial conditions.

These equations are similar to the equations studied in another context by a num-
ber of mathematicians, among which are McKean, Tanaka and Sznitman (see the
Olntroductiond section), in that they involve a very large number of particles (here,
particles are neurons) in interaction. Motivated by the study of the McKean-Vlasov
equations, these authors studied special cases of equations (EQIxtibinis theory,
referred to as the kinetic theory, is chieRy interested in the study of the thermodynam-
ics questions. They show the property that in the limit where the number of particles
tends to inpnity, provided that the initial state of each particle is drawn independently
from the same law, each particle behaves independently and has the same law, which
is given by an implicit stochastic equation. They also evaluate the Buctuations around
this limit under diverse conditiond |2, 6, 7, 9B11]. Some extensions to biological
problems where the drift term is not globally Lipschitz but satisPes the monotone
growth condition (Equatio20) were studied in§7]. This is the approach we under-
take here.

3.2 Convergence of the network equations to the mean-peld equations and
properties of those equations

We now show that the same type of phenomena that were predicted for systems of
interacting particles happen in networks of neurons. In detail, we prove that in the
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limit of large populations, the network displays the property of propagation of chaos.
This means that any bPnite number of diffusion processes become independent, and all
neurons belonging to a given populatiorhave asymptotically the same probability
distribution, which is the solution of the following mean-peld equation:
— — P J— —
daxX; =f t,X; dt+ E;b X,,Z; dt
- (22)
+9 t,X; dW + Ey  X,Z; dB , =1,..,P,
=1

whereZ is a process independentXfthat has the same law, aig- denotes the ex-
pectation under the law & . In other words, the mean-beld equation can be written,
denoting bydm, (z) the law ofZ; (hence, also oX; ):

P
dX, = f t,X, dt+ b X,z dm (2) dt
=1 R
B b B (23)
+g tX; dW + Xi,z dm (z) dB;
=1 Rd

In these equationdy, , for = 1..-P, are independent, standard;dimensional
Brownian motions. Let us point out the fact that the right-hand side of Equai®ns
and23 depends on the law of the solution; this fact is sometimes referred to as Othe
processX is attracted by its own lawQ. This equation is also classically written as
the McKean-Vlasov-Fokker-Planck equation on the probability distribytiaf the
solution. This equation which we use in the ONumerical simulationsO section can be
easily derived from Equatio@2. Letp (t,z), z= (z1,...,24), be the probability
density at timet of the solutionX, to Equation22 (this is equivalent tam, (z) =

p (t,z)dz), then we have:

P
tp (t,2)=Sdiv, f (t,2)+ b (zyp (ty)dy p (t.2)
=1
: (24)
+I _ Dy@p )., =1..P
2”_ Z|ZJ ij ’ ’ gueay ’
ij=1
where thed x d matrixD is given by
=]
D@= E (@2E (@2 +9t29" (2
=1
with
Ez (z2) = (z,y)p (ty)dy.

The P equations (Equatio24) yield the probability densities of the solutioDE
of the mean-peld equations (Equati®?). Because of the propagation of chaos re-
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sult, theX, are statistically independent, but their probability functions are clearly
functionally dependent.

We now spend some time on notations in order to obtain a somewhat more
compact form of Equatior22. We debneX; to be thedP-dimensional process
Xt= (X;; =1---P). We similarly debné , g, band as the concatenations of
functionsf ,g ,b, and | ,respectively. In detaild,(t, X) = (f (t,X;); =
1---P),bX,Y)=( P_;b (X ,Y); =1---P)andW= (W ; =1---P).

The term of noisy synaptic interactions requires a more careful treatment. We debne

=( ;, =1---P) (R”)®PandB=B ;, =1---P) (R)P*P,
and the product of an elemenM (R%* )P*P and an elemerX (R )P*P as
the element ofRY)P:

M X) = M X

We obtain the equivalent compact mean-peld equation:

dX¢= f(t, X¢)+ Ez b(X(,Z;) dt
~ o (25)
+g(t, X)dWi + E7 (Xt,Zt)  dBt.

Equation22 and24 are implicit equations on the law of;.

We now state the main theoretical results of the paper as two theorems. The brst
theorem is about the well-posedness of the mean-beld equation (Eg2atidrne
second is about the convergence of the solutions of the network equations to those
of the mean-beld equations. Since the proof of the second theorem involves similar
ideas to those used in the proof of the brst, it is given in the Appendix.

Theorem 2 Under assumptionéH1) to (H4), there exists a unique solution to the
mean-beld equatiofiequation22) on[0, T] foranyT > 0.

Let us denote b (C) the set of probability distributions ddithe set continuous
functions[0,T]  (RY)P, andM 2(C) the space of square-integrable processes. Let
(W ; =1---P)(respectively(B ;, = 1---P))alsobe afamilyoP (respec-
tively, P2)-independentn (respectively )-dimensional, adapted standard Brownian
motions on(, F,P). Let us also not&Xg M (RY)P as the (random) initial con-
dition of the mean-bpeld equation. We introduce the magcting on stochastic pro-
cesses and debned by:

M(© MO,
X Y=Y, =1-P , with
t P

Y, =Xo+ f sX¢+ Ezb X,Zs ds
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We have introduced in the previous formula the procgswith the same law as and
independent oK. There is a trivial identibcation between the solutions of the mean-
Peld equation (Equatio??) and the bxed points of the map any bxed point of
provides a solution for Equatid2®, and conversely, any solution of Equati®Bis a
Pxed point of .

The following lemma is useful to prove the theorem:

Lemma 3 LetXg L2((RY)P) be a square-integrable random variableet X be
a solution of the mean-pbeld equatiflquation22) with initial condition Xq. Un-
der assumptiongH3) and (H4), there exists a constai@(T ) > 0 depending on the
parameters of the system and on the horiZgisuch that

E Xy 2 C(T), t[OT].

Proof Using the It™ formula foiX; 2, we have:

t
1
Xt 2= Xo 2+2  XIf(s,X o)+ 5 9(,Xs) 2
0

1
+XJEz b(Xs.Z9) + 5 Ez (XsZs) ° ds+ Ny,

whereN; is a stochastic integral, hence with a null expectatie]iN;] = O.
This expression involves the terrl b(x, z). Because of assumption (H3), we
clearly have:

| | -
'xTb(x,z)! x b(x,z) x K1+ x 2 K 1+ x 2.

It also involves the term T f (t, x) +% g(t,x) 2which, because of assumption (H4),
is upperbounded bi¢(1+ x 2). Finally, assumption (H3) again allows us to upper-
bound the term Ez[ (X s5,Zs)] 2by 5(1+ Xs 2).
Finally, we obtain
K — t
El+ X{ 2 E1+ X02+2K+E+ K E1l+ Xs 2 ds.
0

Using GronwallOs inequality, we deduce Itfeboundedness of the solutions of the
mean-beld equations.

This lemma puts us in a position to prove the existence and uniqueness theorem:

Proof We start by showing the existence of solutions and then prove the uniqueness
property. We recall that by the application of Lemi®athe solutions will all have
bounded second-order moment.

ExistenceLetX?= (X2={X?, =1-.-P}) M (C) be agiven stochastic pro-
cess, and debne the sequence of probability distribugkl o on M (C) debned
by induction byX**1= (X K). Debne also a sequence of procesgesk 0, in-
dependent of the sequence of proceséeand having the same law. We note this as
& andZ i.i.d.O below. We stop the processes at the t'l'fjnﬂne prst hitting time of
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the norm ofX K to the constant valud . For convenience, we will make an abuse of
notation in the proof and denobétk = X{‘ « - This implies thatX{‘ belongs toBY,
U

the ball of radiudJ centered at the origin iRY, for all timest [ 0,T].
Using the notations introduced for Equati@b, we decompose the difference
k+1 & vk .

Xi ~ S X{ as follows:

t -
X{FIExk=" f s,xXk §f 5,x551 ds
w0 #q; %
At

t - “
+  Ez b XK zk §pxk1zkel (s
"0 #4 %
Bt

t -
+ gs,xXk Sgs, xSt dwg
w0 #4 %
Ci

t o “
+ Ez XKzk§ x&S1zK1 o (B
w0 #4 %
Dt

and bnd an upperbound o := E[sup, ; XX*1S X¥ 2] by Pnding upperbounds
for the corresponding norms of the four terdg B, C; andD;. Applying the dis-
crete Cauchy-Schwartz inequality, we have:

XK1Exk? 4 A 2+ By 2+ C 2+ Dy 2

and treat each term separately. The upperbounds for the brst two terms are ob-
tained using the Cauchy-Schwartz inequality, those of the last two terms using the
Burkholder-Davis-Gundy martingale moment inequality.

The termA is easily controlled using the Cauchy-Schwarz inequality and the use
of assumption (H1):

S -
As 2 KZT  xK&xK1 2qu,
0
Taking the sup of both sides of the last inequality, we obtain

t . t .
sup As 2 K3T  XKSxKS12ds K2T  sup xK§ xKSt 24s,
st 0 0Ous

from which follows the fact that

& ' t & e Eq o
EsupAs 2 KZT E supxk§xkst
st 0 u s
The termB; is controlled using the Cauchy-Schwartz inequality, assumption (H2),
and the fact that the processesandZ are independent with the same law:
S o« ~
Bs 2 2TLE  xK&xKT 21 xkgxkst 2 gy,
0

ds.
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Taking the sup of both sides of the last inequality, we obtain
. & < o)
sup Bs 2 2TLZ  sup XK& XK1 24 E sup xK§ xKS1 27 gs,
st 0 us u s
from which follows the fact that
& ' t & vEq 2
EsupBs? 4TLY E supXKS XKL ds.
st 0 u s
The termC; is controlled using the fact that it is a martingale and applying the
Burkholder-Davis-Gundy martingale moment inequality and assumption (H1):
& ' t & . 5 2'
Esup Cs? 4K3 E supXKSXKT < gs.
st 0 u s
The termDy is also controlled using the fact that it is a martingale and applying the
Burkholder-Davis-Gundy martingale moment inequality and assumption (H2):
& ' t & o
EsupD; 2 16L3 E sup XKS xKS1 2 gs,
st 0 u s
Putting all of these together, we get:
& '

E sup X1 xk 2
st

t & ! (26)
AT +4) KZ+4L3  E sup XKS XK1 2 s,
0 u s
* ~
Fromthe relatioM{ K MXStdswith K = &(T + 4)(K 3 + 4L2), we get
by an immediate recursion:

t s S1
MK KK MO ds - d
0 0 (27)
(K )ktkMo
k! T

andM? is bnite because the processes are bounded. The BienaymZ-Tchebychev in-
equality and Equatio@7 now give

k+1& yk 2 1 (4K Bk o
P iutp Xg “S XS “> 2+ D 4 7 Mt
and this upper bound is the term of a convergent series. The Borel-Cantelli lemma
stems that for almost any ~ , there exists a positive integkg() ( denotes an
element of the probability space) such that

kb1 & gk 2 1
iutpxs SXS m, k kO()

and hence

. 1
iutpxgﬂsx'g o1 K k().
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It follows that with probability 1, the partial sums:
n
X2+ XIS X = X7
k=0

are uniformly (int [ O, T]) convergent. Denote the thus debned limitXy It is
clearly continuous ané;-adapted. On the other hand, the inequality (EquaZign
shows that for every bxet] the sequenc€X{'}n 1 is a Cauchy sequence I,
Lemma3 shows thal M ?(C). 3

It is easy to show using routine methods tKaindeed satisbes Equati@a.

To complete the proof, we use a standard truncation property. This method re-
places the functiof by the truncated function:

_ f(t,x), X u,
futx) = t,Ux/ x , x >U,

and similarly forg. The functions y andgy are globally Lipchitz continuous; hence,
the previous proof shows that there exists a unique solXigrio equations (Equa-
tion 22) associated with the truncated functions. This solution satisbes the equation

— t — — —
Xu(t) = Xo+ fu t,Xu(s) + Ez b Xy(s),Zs ds
t i t (28)
+  gutXy(s) dWs+ Ezy Xuy(s),Zs dBs, t [OTI
0 0

Let us now debPne the stopping time as
u=inft [0,T], Xut) U .
It is easy to show that
Xut)= Xy (t) if0 t y,U U, (29)

implying that the sequence of stopping timesis increasing. Using Lemniawhich
implies that the solution to Equatid@?® is almost surely bounded, for almost all

, there existdJg() suchthaty =T forallU Ug. Now, debneX(t) = Xy,(t),
t [ 0,T]. Because of EquatioP9, we haveX(t y)= Xy(t u), and itfollows
from Equation28 that

t

_ U _ _ _ t
Xt y)=Xo+ fu(s,Xs)+ E7 b(Xs,Zs) ds+
0

U _
gu (s, Xs)dWs
t u _ _
+ Es Xu(s),Zs dBs
0

t

U _ — — t
= X0+ f(S, XS)+ EZ_ b(XSIZS) dS+

U _
g(s,Xs)dWs

t u

+ EZ )(—U(S),Z_s dBS!
0

and lettingU , we have shown the existence of solution to Equa#i@mwhich,
by Lemma3, is square-integrable.
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UnigquenessAssume thaX andY are two solutions of the mean-peld equations
(Equation22). From LemmaB, we know that both solutions are th 2(C). Moreover,
using the bound Equatid?b, we directly obtain the inequality:

& ' t & '
Esup XsSYs 2 K E sup XuSYy 2 ds
st 0 u s
which, by GronwallOs theoreg, directly impligas that

Esup XsSYs? =0
st
which ends the proof.

We have proved the well-posedness of the mean-pbeld equations. It remains to show
that the solutions to the network equations converge to the solutions of the mean-peld
equations. This is what is achieved in the next theorem.

Theorem 4 Under assumption@H1) to (H4), the following holds true

€ Convergence For each neuron of population , the law of the multidimensional
processX'N converges towards the law of the solution of the mean-peld equation
related to population , namelyX .

€ Propagation of chao$or anyk N , and anyk-tuple(is, .. .,ik), the law of the
process(X!*N . XNt T) converges towardsmP@? ... mP(n) je
the asymptotic processes have the law of the solution of the mean-beld equations
and are all independent

This theorem has important implications in neuroscience that we discuss in the
ODiscussion and conclusionO section. Its proof is given in the Appendix.

4 Numerical simulations

At this point, we have provided a compact description of the activity of the network
when the number of neurons tends to inbPnity. However, the structure of the solutions
of these equations is complicated to understand from the implicit mean-beld equa-
tions (Equatior22) and of their variants (such as the McKean-Vlasov-Fokker-Planck
equations (EquatioB4)). In this section, we present some classical ways to numer-
ically approximate the solutions to these equations and give some indications about
the rate of convergence and the accuracy of the simulation. These numerical schemes
allow us to compute and visualize the solutions. We then compare the results of the
two schemes for a network of FitzHugh-Nagumo neurons belonging to a single pop-
ulation and show their good agreement.

The main difbculty one faces when developing numerical schemes for Equa-
tions 22 and 24 is that they are non-local. By this, we mean that in the case of the

CThe type of convergence is specibed in the proof given in the Appendix.
4The notatiorm, was introduced right after Equati@?2.
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McKean-Vlasov equations, they contain the expectation of a certain function under
the law of the solution to the equations (see Equa#igh In the case of the cor-
responding Fokker-Planck equation, it contains integrals of the probability density
functions which is a solution to the equation (see Equaif)n

4.1 Numerical simulations of the McKean-Vlasov equations

The fact that the McKean-Vlasov equations involve an expectation of a certain func-
tion under the law of the solution of the equation makes them particularly hard to
simulate directly. One is often reduced to use Monte Carlo simulations to compute
this expectation, which amounts to simulating the solution of the network equations
themselves (se®§]). This is the method we used. In its simplest fashion, it consists
of a Monte Carlo simulation where one numerically solvesNheetwork equations
(Equation21) with the classical Euler-Maruyama method a number of times with dif-
ferent initial conditions, and averages the trajectories of the solutions over the number
of simulations.

In detail, lett > 0 andN N . The discrete-time dynamics implemented in
the stochastic numerical simulations consists of simulaiinimes aP -population

discrete-time proces(é(}wn T/t,i = 1---N), solution of the recursion, fdarin
population :
. " P 1 N . '
X = X+t f X0 dt+ = b Xi, XK
+ =1 j=1p() =
£ T g txir o (30)
P N ,
1 . . .
" N_ th'x{’\’r ’ r|1+l !
=1 " j=1p() =

where ;" and |\'" are independerd- and -dimensional standard normal random
variables. The initial conditionx'l", i =1,...,N, are drawn independently from
the same law within each population for each Monte Carlo simulatiort, ..., M .
One then chooses one neuronin each population = 1,...,P. If the sizeN of
the population is large enough, Theordnstates that the law, noted as (t, X) ,
of X! should be close to that of the solutidh of the mean-beld equations for

= 1,...,P. Hence, in effect, simulating the network is a good approximation (see
below) of the simulation of the mean-beld or McKean-Vlasov equati6Bs€9].
An approximation op (t,X) can be obtained from the Monte Carlo simulations by
guantizing the phase space and incrementing the count of each bin whenever the tra-
jectory of thei neuron at time falls into that particular bin. The resulting histogram
can then be compared to the solution of the McKean-Vlasov-Fokker-Planck equation
(Equation24) corresponding to population whose numerical solution is described
next.

The mean square error between the solution of the numerical recursion (Equa-
tion 30) X}, and the solution of the mean-bPeld equations (Equa®nX;,, is of

r
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orderO( 't + 1/ N), the brst term being related to the error made by approxi-
mating the solution of the network of si2g, X'n'}' by an Euler-Maruyama method,

and the second term, to the convergence)(t;?ll’I towards the mean-beld equation
)?ht when considering globally Lipschitz continuous dynamics (see proof of The-
orem4 in the Appendix). In our case, as shown before, the dynamics is only locally
Lipschitz continuous. Finding efbcient and provably convergent numerical schemes
to approximate the solutions of such stochastic differential equations is an area of
active research. There exist proofs that some schemes are divergeot Eonver-

gent [71] for some types of drift and diffusion coefbcients. Since our equations are
not included in either case, we conjecture convergence since we did not observe any
divergence and leave the proof for future work.

4.2 Numerical simulations of the McKean-Vlasov-Fokker-Planck equation

For solving the McKean-Vlasov-Fokker-Planck equation (Equafidpy we have

used thanethod of line§72, 73]. Its basic idea is to discretize the phase space and to
keep the time continuous. In this way, the valpeét, X), = 1,...,P ofthe prob-
ability density function of population at each sample poirX of the phase space

are the solutions d® ODEs where the independent variable is the time. Each sample
point in the phase space generad®e®DEs, resulting in a system of coupled ODEs.
The solutions to this system yield the values of the probability density fungtions
solution of (Equatior24) at the sample points. The computation of the integral terms
that appear in the McKean-Vlasov-Fokker-Planck equation is achieved through a re-
cursive scheme, the Newton-Cotes method of ord@dp The dimensionality of the
space being large and numerical errors increasing with the dimensionality of the inte-
grand, such precise integration schemes are necessary. For an arbitrary real function
f to be integrated between the valugsandxy, this numerical scheme reads:

%o 5 M/ 5 § 5
f(x)dx —=x 19 x3+ (5iS5x + 75 x3+ (5 S4)x
X1 288 -1
+50f x1+ (5iS3)x +50f xq+ (5iS2)x
+ 75 x3+ (5iS1)x + 19 (x1+5x) ,
where x is the integration step, ardd = (x> S x1)/ x is chosen to be an integer
multiple of 5.
The discretization of the derivatives with respect to the phase space parameters is
done through the following fourth-order central difference scheme:
df(x) f(x S2x) S8f(x S x) +8f(x + x) Sf(x +2x)
dx 12x ’
for the brst-order derivatives, and
d2f (x)
dx2

Sf(x S2x) + 16f(x S x)

S 30f(x) + 16f(x + x) Sf(x +2x) / 12x 2

for the second-order derivatives (S&&]).
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Finally, we have used a Runge-Kutta method of order 2 (RK2) for the numerical
integration of the resulting system of ODEs. This method is of the explicit kind for
ordinary differential equations, and it is described by the follovBugcher tableau

A
2/3 | 23
| V4 34

4.3 Comparison between the solutions to the network and the mean-pbeld equations

We illustrate these ideas with the example of a network of 100 FitzHugh-Nagumo
neurons belonging to one, excitatory, population. We also use chemical synapses with
the variation of the weights described by (Equatid). We choose a Pnite volume,
outside of which we assume that the probability density function (p.d.f.) is zero. We
then discretize this volume withy ny,ny points debned by

def =
Ny = (VmaxS Vmin)/ V,

def =
Nw = (WmaxS Wmin)/ W,

Ny d:ef(l/maxé Ymin) Y,

whereVmin, Vmax, Wmin» Wmax, Ymin @ndymax dePne the volume in which we solve

the network equations and estimate the histogram debned in the ONumerical simu-
lations of the McKean-Vlasov equationsO section, while w andy are the
guantization steps in each dimension of the phase space. For the simulation of the
McKean-Vlasov-Fokker-Planck equation, instead, we use Dirichlet boundary condi-
tions and assume the probability and its partial derivatives to be 0 on the boundary
and outside the volume.

In general, the total number of coupled ODEs that we have to solve for the
McKean-Vlasov-Fokker-Planck equation with the method of lines is the product
P ny nwny (in our case, we chode = 1). This can become fairly large if we increase
the precision of the phase space discretization. Moreover, increasing the precision
of the simulation in the phase space, in order to ensure the numerical stability of
the method of lines, requires to decrease the time stepsed in the RK2 scheme.

This can strongly impact the efbciency of the numerical method (see the ONumerical
simulations with GPUsO section).

In the simulations shown in the left-hand parts of Figutesd5, we have used
one population of 100 excitatory FitzHugh-Nagumo neurons connected with chem-
ical synapses. We performed 10,000 Monte Carlo simulations of the network equa-
tions (Equationl4) with the Euler-Maruyama method in order to approximate the
probability density. The model for the time variation of the synaptic weights is the
simple model. The p.d.p(0,V,w,y) of the initial condition is Gaussian and reads

p(0,V,w,y)
(31)

- 1 e»é'(Vévo)Z/(2 Go)é(WélWo)Z/(2 vzvo)é()/éVo)Z/(Z fo)
(2) 32 Vo Wo Yo .
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Fig. 4 Joint probability distribution(V,w) computed with the Monte Carlo algorithm for the network
equations (Equatioh4) (left) compared with the solution of the McKean-Vlasov-Fokker-Planck equation
(Equation24) (right), sampled at four timet,,. Parameters are given in Taldlewith a current = 0.4
corresponding to a stable limit cycle. Initial conditions (Prst column of Taplkere concentrated inside

this limit cycle. The two distributions are similar and centered around the limit cycle with two peaks (see

text).
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Fig. 5 Joint probability distribution(V,y) computed with the Monte Carlo algorithm for the network
equations (Equatioh4) (left) compared with the solution of the McKean-Vlasov-Fokker-Planck equation
(Equation24) (right), sampled at four time,. Parameters are given in Tadlewith a current = 0.4
corresponding to a stable limit cycle. Initial conditions (Prst column of Tapkere concentrated inside

this limit cycle. The two distributions are similar and centered around the limit cycle with two peaks (see

text).
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Table 1 Parameters used in the simulations of the neural network and for solving the McKean-Vlasov-
Fokker-Planck equation

Initial condition Phase space FitzHugh- Synaptic Synapse
Nagumo weights
ton=[05,1.2,15,2.2], Vmin=3 3 a=07 J=1 Viev=1
t = 0.01 (mean beld), Vmax= 3 b=10.8 3=02 a=1
0.1 (network) V =01 c= 008 ag=1
Vo= 00 Wmin=S 2 I =04 Tmax= 1
Vo= 0.4 Wmax = 2 ext=0 =02
Wp= 0.5 w =01 V=2
wo = 0.4 Ymin = O =01
Yo=103 Ymax= 1 =05
yo = 0.05 y =0.06

Results are shown in Figurdsand5 (see text).

The parameters are given in the pbrst column of Tdblén this table, the pa-
rametertp,, is the time at which we stop the computation of the trajectories in the
case of the network equations and the computation of the solution of the McKean-
Vlasov-Fokker-Planck equation in the case of the mean-beld equations. The sequence
[0.5,1.2, 1.5, 2.2] indicates that we compute the solutions at those four time instants
corresponding to the four rows of Figurésnd5. The phase space has been quan-
tized with the parameters shown in the second column of the same table to solve
the McKean-Vlasov-Fokker-Planck equation. This quantization has also been used
to build the histograms that represent the marginal probability densities with respect
to the pairgV,w) and(V,y) of coordinates of the state vector of a particular neu-
ron. These histograms have then been interpolated to build the surfaces shown in the
left-hand side of Figured and5. The parameters of the FitzHugh-Nagumo model
are the same for each neuron of the population: they are shown in the third column of
Tablel.

The parameters for the noisy model of maximum conductances of Equdtane
shown in the fourth column of the table. For these valuek anhd j, the probability
that the maximum conductances change sign is very small. Finally, the parameters
of the chemical synapses are shown in the sixth column. The parameterd
are those of the function (EquatiorB). The solutions are computed over an interval
of tpn= 0.5, 1.2, 1.5, 2.2 time units with a time sampling of = 0.1 for the net-
workandt = 0.01 for the McKean-Vlasov-Fokker-Planck equation. The rest of the
parameters are the typical values for the FitzHugh-Nagumo equations.

The marginals estimated from the trajectories of the network solutions are then
compared to those obtained from the numerical solution of the McKean-Vlasov-
Fokker-Planck equation (see Figuesnd 5 right), using the method of lines ex-
plained above and starting from the same initial conditions (Equatipas the neu-
ral network.

We have used the valde= 0.4 for the external current (this value corresponds to
the existence of a stable limit cycle for the isolated FitzHugh-Nagumo neuron), and
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Fig. 6 Projection of 100 trajectories in ti{¥/, w) (top leff), (V,y) (top right) and(w, y) (botton) planes.
The limit cycle is especially visible in th@/,w) projection ¢ed curve}. The initial conditions split the
trajectories into two classes corresponding to the two peaks shown in Figanes. The parameters are
the same as those used to generate these two pictures.

the initial conditions have the valué%& = 0, Wo = 0.5 andy, = 0.3; therefore, the
initial points of the trajectories in the phase space are concentrated inside the limit
cycle. We therefore expect that the solutions of the neural network and the McKean-
Vlasov-Fokker-Planck equation will concentrate their mass around the limit cycle.
This is what is observed in Figurdsand5, where the simulation of the neural net-
work (left-hand side) is in very good agreement with the results of the simulation of
the McKean-Vlasov-Fokker-Planck equation (right-hand side). Note that the densi-
ties display two peaks. These two peaks correspond to the fact that depending upon
the position of the initial condition with respect to the nullclines of the FitzHugh-
Nagumo equations, the points in the phase space follow two different classes of tra-
jectories, as shown in Figu The two peaks then rotate along the limit cycle in the
(V,w) space (see also the ONumerical simulations with GPUsO section).

Figures4 and 5 show a qualitative similarity between the marginal probabil-
ity density functions obtained by simulating the network and those obtained by
solving the Fokker-Planck equation corresponding to the mean-beld equations.
To make this more quantitative, we computed the Kullback-Leibler divergence
DkL (p Network | PMvEP) between the two distributions.

We performed 10,000 Monte Carlo simulations of the network equations up to
ton = 10 for increasing values of the network sike As shown in Figure7, the
Kullback-Leibler divergence does decrease with increasing valugs thfereby con-
Prming the fact that even for relatively small valueshof the average behavior of
the network is well represented by the mean-beld system described by the McKean-
Vlasov-Fokker-Planck equation.

@ Springer



Journal of Mathematical Neuroscience (2012) 2:10 Page 35 of 50

Fig. 7 Variation of the
Kullback-Leibler divergence.
Variation of the
Kullback-Leibler divergence
between the marginal
probability density function
p(t,V,w) estimated from the
network equations and
computed from the
McKean-Vlasov-Fokker-Planck
equation as a function of the
network size. We have
performed 10,000 Monte Carlo
simulations of the network
equations up to timg,;= 10.0.

4.4 Numerical simulations with GPUs

Unfortunately, the algorithm for solving the McKean-Vlasov-Fokker-Planck equation
described in the previous section is computationally very expensive. In fact, when
the number of points in the discretized grid of {f\g, w,y) phase space is big, i.e.
when the discretization stepg , w andy are small, we also need to kedp

small enough in order to guarantee the stability of the algorithm. This implies that the
number of equations that must be solved has to be large and moreover that they must
be solved with a small time step if we want to keep the numerical errors small. This
will inevitably slow down the simulations. We have dealt with this problem by using

a more powerful hardware, the graphical processing units (GPUSs).

We have changed the Runge-Kutta scheme of order 2 used for the simulations
shown in the ONumerical simulations of the McKean-Vlasov-Fokker-Planck equa-
tiond section and adopted a more accurate Runge-Kutta scheme of order 4. This was
done because with the more powerful machine, each computation of the right-hand
side of the equation is faster, making it possible to use four calls per time step instead
of two in the previous method. Hence, the parallel hardware allowed us to use a more
accurate method.

One of the purposes of the numerical study is to get a feeling for how the different
parameters, in particular those related to the sources of noise, inBuence the solutions
of the McKean-Vlasov-Fokker-Planck equation. This is meant to prepare the ground
for the study of the bifurcation of these solutions with respect to these parameters,
as was done in7g] in a different context. For this preliminary study, we varied the
input currentl and the parameterey: controlling the intensity of the noise on the
membrane potential in Equatiodg. The McKean-Vlasov-Fokker-Planck equation
writes in this casé:

€We have included a small noise (controlled by the paramegj¢ion the adaptation variable. This does
not change the previous analysis, in particular propositjdnut makes the McKean-Vlasov-Fokker-Planck
equation well-posed in a cube of the state space with 0 boundary value, s&2e.g. [
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Table 2 Parameters used in the simulations of the McKean-Vlasov-Fokker-Planck equation on GPUs

Initial condition Phase space Stochastic Synaptic
FN neuron weights
t = 0.00250.0012 Vmin=S 4 a=07 J=1
Vo= 0.0 Vmax= 4 b=10.8 3=0.01
Vo= 02 VvV =0.027 c=0.08
Wp=S05 Wmin =S 3 | =04,07
wg = 0.2 Wmax= 3 ext= 0.27,0.45
Yo= 03 w = 0.02 w = 0.0007
yo = 0.05 Ymin= 0
Ymax= 1
y = 0.003

The simulations are shown in Figur@sind9 and in Additional Ples 1, 2, 3 and 4.

Tp(tvvvwiy)
N L V3 C =
=S — VS?SW+ISJ(VSVre\,) yptV,w,y dV dwdy
RB

<

X

p(t,V,w,y)

3 — c(V + aS bw)p(t,V,w,y)

§ aSV)ASy)Sawy pt.V.w.y) (32)
12 2 20y & 2 ?

+ 2Vv2 &t TV S Vie) ngpt,v,w,y dVv dw dy

x p(t,V,w,y)
1, 2

+ 5 P V.w,Y)
1 2 . ’

* 5z asS(VIASY)+awy “(p.V.w.y)

The simulations were run with the function (Equatior3); the initial condition
described by Equatiodl and the parameters are shown in Tabl&hese parameters
are similar to those used in the previous numerical simulations, but they differ in the
size of the grid which is larger in this case.

Four snapshots of the solution are shown in Figifeorresponding to the values
| = 0.4 and ¢4 = 0.27 of the external input current and of the standard deviation of
the noise on the membrane potential), and three are shown in Rigcweresponding
to the valued = 0.7 and ¢x= 0.45). In the bgures, the left column corresponds to
the values of the marginal(t, V,w) , and the right column corresponds to the values

@ Springer



Journal of Mathematical Neuroscience (2012) 2:10 Page 37 of 50

Fig. 8 Marginals of the solutions to the McKean-Vlasov-Fokker-Planck equation. Marginals with respect
to theV andw variables left) and to thev andy variables fight) of the solution of the McKean-Vlasovb
Fokker-Planck equation. THerst rowshows the initial condition; theecondthe marginals at time 30;
thethird, the marginals at time 50; and thdourth, the stationary (large time) solutions. The input current

| isequalto 04 and ext= 0.27. These are screenshots at different times of movies available as Additional
bles 1 and 2.
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Fig. 9 Marginals of the solutions to the McKean-Vlasov-Fokker-Planck equation. Marginals with respect
to theV andw variables left) and to thev andy variables (ight) of the solution of the McKean-Vlasovb
Fokker-Planck equation. THerst rowshows the marginals at time BQ thesecondhe marginals at time

50.0 and the third the stationary (large time) solutions. The input cutrénequal to 07 and ext= 0.45.
These are screenshots at different times of movies available as Additional Ples 3 and 4.

of the marginap(t,V,y) . Both are necessary to get an idea of the shape of the full
distributionp(t, V,w,y) . The brst row of Figur& shows the initial conditions. They
are the same for the results shown in Figbr&he second, third and fourth rows of
Figure8 show the time instants= 30.0,t = 50.0 and at convergence (the time units
differ from those of the previous section, but it is irrelevant to this discussion). The
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Fig. 10 Marginals of the solutions to the McKean-Vlasov-Fokker-Planck equation at convergence.
Marginals with respect to th¥ andw variables lgft) and to theV andy variables (ight) of the so-

lution of the McKean-Vlasov-Fokker-Planck equation at convergence. The parameters are thoseln Table
except for the input currert which is equal t650.8, ext= 0.45 andtp,= 2.2. Compare with the last

row of Figure9 (see text).

three rows of Figur® show the time instants= 30.0,t = 50.0 and at convergence.

In both cases, the solution appears to converge to a stationary distribution whose mass
is distributed over a OblurredO version of the limit cycle of the isolated neuron. The
OblurrinessO increases with the variance of the noise. The four movies for these two
cases are available as Additional bles 1, 2, 3 and 4.

The results shown in Figure8 and 9 and in Additional bles 1, 2, 3 and 4
were obtained using two machines, each with seven nVidia Tesla C2050 cards, six
2.66 GHz dual-Xeon X5650 processors and 72G of ram. The communication inside
each machine was done using the Ipthreads library and between machines using MPI
calls. The mean execution time per time step using the parameters already described
is0.05s.

The reader interested in more details in the numerical implementations and in the
gains that can be achieved by the use of GPUs can cofsiilt [

In Figure10, we show a solution to the McKean-Vlasov-Fokker-Planck equation
which is qualitatively quite different from the solutions shown in Fig@easd9: The
stationary solution is concentrated at a poinf\hw, y) space. This is an indication
that perhaps, between the valu8.8 and 04 of the input current, the solutions
to the McKean-Vlasov-Fokker-Planck equation have bifurcated. The numerical tools
we have developed may be a way to build an intuition to guide a rigorous analysis of
these phenomena.

5 Discussion and conclusion

In this article, we addressed the problem of the limit in law of networks of biolog-
ically inspired neurons as the number of neurons tends to inbnity. We emphasized
the necessity of dealing with biologically inspired models and discussed at length the
type of models relevant to this study. We chose to address the case conductance-based
network models that are a relevant description of the neuronal activity. Mathemati-
cal results on the analysis of these diffusion processes in interaction resulted to the
replacement of a set dfiP d-dimensional coupled equations (the network equa-
tions) in the limit of largeN s by P d-dimensional mean-beld equations describing
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the global behavior of the network. However, the price to pay for this reduction was
the fact that the resulting mean-beld equations are nonstandard stochastic differential
equations, similar to the McKean-Vlasov equations. These can be expressed either as
implicit equations on the law of the solution or, in terms of probability density func-
tion through the McKean-Vlasov-Fokker-Planck equations, as a nonlinear, non-local
partial differential equation. These equations are, in general, hard to study theoreti-
cally.

Besides the fact that we explicitly model real spiking neurons, the mathematical
part of our work differs from that of previous authors such as McKean, Tanaka and
Sznitman (see the Olntroductiond section) because we are considering several popula-
tions with the effect that the analysis is signibcantly more complicated. Our hypothe-
ses are also more general, e.g. the drift and diffusion functions are nontrivial and
satisfy the general condition (H4) which is more general than the usual linear growth
condition. Also, they are only assumed locally (and not globally) Lipschitz contin-
uous to be able to deal, for example, with the FitzHugh-Nagumo model. A locally
Lipschitz continuous case was recently addressed in a different context for a model
of swarming in B7].

Proofs of our results, for somewhat stronger hypotheses than ours and in special
cases, are scattered in the literature, as brieRy reviewed in the OIntroduction® and OSet-
ting of the problemO sections. Our main contribution is that we provide a complete,
self-sufpbcient proof in a fairly general case by gathering all the ingredients that are
required for our neuroscience applications. In particular, the case of the FitzHugh-
Nagumo model where the drift function does not satisfy the linear growth condition
involves a generalization of previous works using the more general growth condi-
tion (H4).

The simulation of these equations can itself be very costly. We, hence, addressed
in the ONumerical simulations® section numerical methods to compute the solutions
of these equations, in the probabilistic framework, using the convergence result of the
network equations to the mean-peld limit and standard integration methods of differ-
ential equations or in the Fokker-Planck framework. The simulations performed for
different values of the external input current parameter and one of the parameters
controlling the noise allowed us to show that the spatio-temporal shape of the proba-
bility density function describing the solution of the McKean-Vlasov-Fokker-Planck
equation was sensitive to the variations of these parameters, as shown in Bigures
and9. However, we did not address the full characterization of the dynamics of the
solutions in the present article. This appears to be a complex question that will be
the subject of future work. It is known that for different McKean-Vlasov equations,
stationary solutions of these equations do not necessarily exist and, when they do,
are not necessarily unique (sé]). A very particular case of these equations was
treated in 6] where the authors consider that the functfonis linear,g is con-
stant andb (x,y) = S (y). This model, known as the bring-rate model, is shown
in that paper to have the Gaussian solutions when the initial data is Gaussian, and
the dynamics of the solutions can be exactly reduced to a s&-@io2ipled ordinary
differential equations governing the mean and the standard deviation of the solution.
Under these assumptions, a complete study of the solutions is possible, and the de-
pendence upon the parameters can be understood through bifurcation analysis. The
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authors show that intrinsic noise levels govern the dynamics, creating or destroying
bxed points and periodic orbits.

The mean-beld description has also deep theoretical implications in neuroscience.
Indeed, it points towards the fact that neurons encode their responses to stimuli
through probability distributions. This type of coding was evoked by several au-
thors §47], and the mean-beld approach shows that under some mild conditions, this
phenomenon arises: all neurons belonging to a particular population can be seen as
independent realizations of the same process, governed by the mean-beld equation.
The relevance of this phenomenon is reinforced by the fact that it has recently been
observed experimentally that neurons had correlation levels signibcantly below what
had been previously reportedld. This independence has deep implications on the
efbciency of neural coding which the propagation of chaos theory accounts for. To
illustrate this phenomenon, we have performed the following simulations. Consider-
ing a network of 2, 10 and 100 FitzHugh-Nagumo neurons, we have simulated 2,000
times the network equations over some time intef9al 00]. We have picked at ran-
dom a pair of neurons and computed the time variation of the cross-correlation of
the values of their state variables. The results are shown in Fiduteappears that
the propagation of chaos is observable for relatively small values of the number of
neurons in the network, thus indicating once more that the theory developed in this
paper in the limit case of an inbnite number of neurons is quite robust to Pnite-size
effects'

Fig. 11 Variations over time of the cross-correlation(df, w, y) variables of several FitzHugh-Nagumo
neurons in a networkiop left 2 neuronsTop right 10 neuronsBottom 100 neurons. The cross-correla-
tion decreases steadily with the number of neurons in the network.

fNote that we did not estimate the correlation within larger networks since, as predicted by THedrem
will be smaller and smaller, requiring an increasingly large number of Monte Carlo simulations.
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The present study develops theoretical arguments to derive the mean-peld equa-
tions resulting from the activity of large neuron ensembles. However, the rigorous
and formal approach developed here does not allow direct characterization of brain
states. The paper, however, opens the way to rigorous analysis of the dynamics of
large neuron ensembles through derivations of different quantities that may be rele-
vant. A brst approach could be to derive the equations of the successive moments of
the solutions. Truncating this expansion would yield systems of ordinary differential
equations that can give approximate information on the solution. However, the choice
of the number of moments taken into account is still an open question that can raise
several deep question4d].

Appendix 1: Proof of Theorem4

In this appendix, we prove the convergence of the network equations towards the
mean-beld equations (Equati@®) and of the propagation of chaos property. The
proof follows standard proofs in the domain as generally done, in particular by Tanaka
or Sznitman §, 10], adapted to our particular case where we consider a non-zero drift
function and a time- and space-dependent diffusion function. It is based on the very
powerful coupling argument, which identibes the almost sure limit of the proCess
as the number of neurons tends to inbPnity, as popularized by Sznitmag]jrb{it
whose idea dates back from the 1970s (for instance, Dobrushin use$j}. ifiis
process is exactly the solution of the mean-beld equation driven by the same Brown-
ian motion as<' and with the same initial condition random variable. In our case, this
leads us to introduce the sequence of independent stochastic pro@égﬁ%..,\,
having the same law a6 , = p(i), solution of the mean-peld equation:
J— J— P J—
dX{=f t/X{ dt+ Ez b X{,Z, dt
=1
P
+g t,X{ dW + Ez X{,Zy dB{,
=1

(33)

with initial condition X—b = X}), the initial condition of the neuronin the network,
which was assumed to be independent and identically distrib@td{d.and(B{) are
the Brownian motions involved in the network equation (Equafith As described
previously,Z = (Z1,...,ZP) is a process independent Xfthat has the same law.
Denoting, as described previously, the probability distributioX pfsolution of the
mean-Peld equation (Equati@f) by m, , the law of the collection of process@g{")
for some bxek N , namelymP(2) ... mP(k is shown to be the limit of the
procesgX{) solution of the network equations (Equatidt) asN goes to inbnity.
We recall, for completeness, Theordm

Theorem 4 Under assumptionfH1) to (H4), the following holds true

€ ConvergenceFor each neuron of population , the law of the multidimensional
processX'N converges towards the law of the solution of the mean-Peld equation
related to population , namelyX .
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€ Propagation of chaogor anyk N , and anyk-uplet(iy,...,ik), the law of the
procesgX!*N . XImN t Ty converges towardsf(V .. mP(" je the
asymptotic processes have the law of the solution of the mean-pbeld equations and
are all independent

Proof On our way, we also provg that

‘max NE sup XiN § X1 2 < (34)
i=1.-N s T
which implies, in particular, convergence in law of the prodé(%é“ ,t  T)towards
(X;,t T)solution of the mean-peld equations (Equa@@h
The proof basically consists of thoroughly analyzing the difference between the
two processes ad tends to inPnity. The difference is the sum of eight terms (we
dropped the inded for the sake of simplicity of notations) denoted Ay through
Hi:
PR f— t . - f— t . - f— .
XiSX{= f s,Xy Sf sXgds+ g s,Xg Sg s,X§ dW,

"0 #3 % "0 #4 %
At Bt
P t 1 N X . . .

+ SN b XLX5 Sb XL, X{ ds
nZ1 T s %
Ci

P t 1 N _ _ _
+ — b XLx5Sb Xx,xLds
o N
w1 i= #4 %
D¢
P t N
1 - = —

+ N b X,X{ SEzb X.Zs ds (35)
w1 j=1 #% %
Et

P t q N 3 _

+ N XLxy $ XL, X4 dBg
n=1 =1 4% %
Ft

P t 1 N . . _ .
+ N LXL 8 L XL dBs

-1 O o

w1 i=1 #% %

Gt

P t 1 N _ . _ .
+ N XL XS SEz XL, Zs dBg

_. 0

w1 i=1 #% %

Ht
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It is important to note that the probability distribution of these terms does not depend
on the neuron. We are interested in the limit, & goes to inbnity, of the quantity
E[sup T XN § Xl 2]. We decompose this expression into the sum of the eight
terms involved in EquatioB5 using H3lderOs inequality and upperbound each term
separately. The term&; andB; are treated exactly as in the proof of Theordm
We start by assuming thé&t andg are uniformly globallyK Lipschitz continuous
with respect to the second variable. The locally Lipschitz case is treated in the same
manner as done in the proof of Theoré&nfl) by stopping the process at timg,
(2) by using the Lipschitz continuity df andg in the ball of radiusU and (3)
by a truncation argument and using the almost sure boundedness of the solutions
extending the convergence to the locally Lipschitz case.

As seen previously, we have:

& ' C&

EsupAs? K2T EsupX,SX| “ ds,
st 0 u s

& ' t & '

EsupBs?2 4K2 Esupx,$X, 2 ds.
st us

0

Now, for C;,
P s 1 N . . . . 2
Cs 2= o b XL, xh b X!,x{ du
=1 0 j=1
s P 1 N L .
(Cauchy-Schwarz) TP N b xi,x, $b X, xl ?du
0 =17 j=1
S P —
(assumption (H2)) TPL? . Xi $ X\, ?du
Therefore,
t
sup Cs 2 TpL2 ) XL§ XL %ds,
& 2 2 v & i & yi 2
Ezutp Cs TPL oEﬁuEX”SXU ds.
Similarly, for D¢,

t P 1 N _ . _ . 2
supDs 2 T N b XLXL Sb X, X, ds
st 0 =17 j=1

t P 1 _ . _ 2
(Cauchy-Schwartz) PT N b XLXx5 Sb XX} ds
0 =17 j=1
N
, , U1 &yl 2
(assumption (H2)) PTL N Xs S Xs ds
0 =17 j=1
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Hence, we have:

2 :
E sup Ds 2
st
t P 1 N .
PTL? — e xL1sxl? ds
o N oy
t P 1 N & . . '
PTL2 =~ EsupxLdx,? ds.
o _,N j=1 US
Therefore,
& ' t & . .

2

EsupDs? P2TL? max E supXL,S X, “ ds.
st

0 J=1---N u's
The termsF; and G; are treated in the same fashion, but instead of using the

Cauchy-Schwartz inequality, the Burkholder-Davis-Gundy martingale moment in-
equality are used. Fdt, in detail,

& .
E sup Fs 2
st
P t 1 N . . B ‘ 2
(Cauchy-Schwartz) 4P , E 5 XLX5 8 LXE ds
=1 j=1
Pt g N _
(Cauchy-Schwartz) 4P N E xLXL S LxL 2ds
=1 0 J:l

t L
(assumption (H2)) 4P2L2 E X.$ XL % ds
0
t & o]
4.%P2  Esup x|, $X] ? ds.
0 u s
Similarly, for G, we obtain:
& ' t & o 2'
EsupGs? 4L?P max E sup XLS X, © ds.
st 0i=1N ous

We are left with the problem of controlling the terres and Hy that involve sums

of processes with bounded second moment, thanks to PropoSiton assump-
tion (H3). We have:

& ' s P 1 N _
E sup Es 2 = E sup — b XX
st st o _,N =

SEzb X|,Z, du
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(Cauchy-Schwartz) TP E

SEz b X.,Zs ds,

and using the Burkholder-Davis-Gundy martingale moment inequality,
& ' P N L 2
EsupHs > 4P E XL XL SE; XL, Zs ds.
st .

. N 2
E 5 XLXE SE; XL, Zs ,
j=1

where {b , }andexpandas:

1 N ;

= E xXix:tS8Ez XLzs T XLxtkSE: X.Zzs

jk=1

All the terms of the sum corresponding to indekeandk such that the three condi-
tionsj =i,k =i andj =k are satisbed are null since in that casp, X!, XK and
Z, are independent and have the same lawfpr = p(k) = .9 In effect, denoting

the measure of their common law by , we have:

_ _ . _
E  XLx{ SE; XLz LX¥ SE; XL, Zs

S’

R
= Xx,x{  XxLxkK

SE  xLx} T XL,z ms(dz)
SE XLz "ms(dz) XL, X
+E XL,z ms(dz) XL,z ms(dz) ,

expanding further and renaming the secamdriable toy in the last term, we obtain:
®y) T (x,2)m s(dx)ms (dy)ms(d2)

S xy) T (2m s(dz)ms(dx)ms (dy)

9Note thati =j andi =k as soon ap(i) =p(j) = p(k) = . Inthe case wherp(i) = ,itis easy to
check that when (respectivelyk) is equal toi, all terms such that =j (respectivelyj =k) are equal
to 0.
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S (x,2) Tms(dz) (x,y)m s (dx)ms (dy)

+ (x,2) Tms(d2)  (x,y)m s(dy)ms(dx)

which is indeed equal to 0 by the Fubini theorem.

Therefore, there are no more thaN 3 non-null terms in the sum, and all the
terms have the same value (that depends rnwhich is bounded by Lemmaand
assumption (H3). We denote the supremum of thé&&luesfor {b , }
across all possible pairs of populations®43 , and the smallest value of the, =
1.--P by Npin. We have shown that

& ' & ' 2
ACTP
EsupEs? and EsupHs?2 ——.
st st Nmin
Finally, we have:
& sl 2 ' & s 2 K2
‘max E sup XL S XL Ki max E sup X, § X!, © du+ ,
i=1---N s t 0 Jj=1-N us Nmin
for some positive constanks; andK ». Using GronwallOs inequality, we obtain:
& '
- Ks
max E sup X § XL 2 36
i=1-N S tp S s Nmin ( )

for some positive constamts. The right-hand side of this inequality tends to zero
asN goes to inPnity proving the propagation of chaos property. In order to show a
convergence with speed 1N as stated in the theorem, we use the fact:
& .
A N
‘max NE sup XN §XL 2 Kag—,
i=1- s T min

and the right-hand side of the inequality is bounded foNalbecause of the hypoth-
esis limy NW =c (0,1 for = 1---P.This ends the proof.
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