Mean-field description and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons.

Javier Baladron 1 Diego Fasoli 1 Olivier Faugeras 1, * Jonathan Touboul 2, 3, 4
* Auteur correspondant
1 NEUROMATHCOMP
CRISAM - Inria Sophia Antipolis - Méditerranée , INRIA Rocquencourt, ENS Paris - École normale supérieure - Paris, UNS - Université Nice Sophia Antipolis, CNRS - Centre National de la Recherche Scientifique : UMR8548
4 BANG - Nonlinear Analysis for Biology and Geophysical flows
LJLL - Laboratoire Jacques-Louis Lions, Inria Paris-Rocquencourt
Abstract : ABSTRACT: We derive the mean-field equations arising as the limit of a network of interacting spiking neurons, as the number of neurons goes to infinity. The neurons belong to a fixed number of populations and are represented either by the Hodgkin-Huxley model or by one of its simplified version, the FitzHugh-Nagumo model. The synapses between neurons are either electrical or chemical. The network is assumed to be fully connected. The maximum conductances vary randomly. Under the condition that all neurons' initial conditions are drawn independently from the same law that depends only on the population they belong to, we prove that a propagation of chaos phenomenon takes place, namely that in the mean-field limit, any finite number of neurons become independent and, within each population, have the same probability distribution. This probability distribution is a solution of a set of implicit equations, either nonlinear stochastic differential equations resembling the McKean-Vlasov equations or non-local partial differential equations resembling the McKean-Vlasov-Fokker-Planck equations. We prove the wellposedness of the McKean-Vlasov equations, i.e. the existence and uniqueness of a solution. We also show the results of some numerical experiments that indicate that the mean-field equations are a good representation of the mean activity of a finite size network, even for modest sizes. These experiments also indicate that the McKean-Vlasov-Fokker-Planck equations may be a good way to understand the mean-field dynamics through, e.g. a bifurcation analysis.
Type de document :
Article dans une revue
Journal of Mathematical Neuroscience, BioMed Central, 2012, 2 (1), pp.10. 〈10.1186/2190-8567-2-10〉
Liste complète des métadonnées

Littérature citée [80 références]  Voir  Masquer  Télécharger

http://www.hal.inserm.fr/inserm-00732288
Contributeur : Ed. Bmc <>
Soumis le : vendredi 14 septembre 2012 - 13:06:34
Dernière modification le : mardi 24 avril 2018 - 17:20:13
Document(s) archivé(s) le : samedi 15 décembre 2012 - 03:46:37

Identifiants

Collections

Citation

Javier Baladron, Diego Fasoli, Olivier Faugeras, Jonathan Touboul. Mean-field description and propagation of chaos in networks of Hodgkin-Huxley and FitzHugh-Nagumo neurons.. Journal of Mathematical Neuroscience, BioMed Central, 2012, 2 (1), pp.10. 〈10.1186/2190-8567-2-10〉. 〈inserm-00732288〉

Partager

Métriques

Consultations de la notice

819

Téléchargements de fichiers

679