S. Temple and M. Raff, Clonal analysis of oligodendrocyte development in culture: Evidence for a developmental clock that counts cell divisions, Cell, vol.44, issue.5, pp.773-779, 1986.
DOI : 10.1016/0092-8674(86)90843-3

C. Ffrench-constant and M. Raff, Proliferating bipotential glial progenitor cells in adult rat optic nerve, Nature, vol.55, issue.6053, pp.499-502, 1986.
DOI : 10.1038/319499a0

R. Reynolds and R. Hardy, Oligodendroglial progenitors labeled with the O4 antibody persist in the adult rat cerebral cortex in vivo, Journal of Neuroscience Research, vol.116, issue.5, pp.455-470, 1997.
DOI : 10.1002/(SICI)1097-4547(19970301)47:5<455::AID-JNR1>3.0.CO;2-G

G. Wolswijk and M. Noble, Identification of an adult-specific glial progenitor cell, Cell Differentiation and Development, vol.27, pp.387-400, 1989.
DOI : 10.1016/0922-3371(89)90618-7

L. Nguyen, L. Borgs, R. Vandenbosch, J. Mangin, P. Beukelaers et al., TheYin andYang of cell cycle progression and differentiation in the oligodendroglial lineage, Mental Retardation and Developmental Disabilities Research Reviews, vol.25, issue.2, pp.85-96, 2006.
DOI : 10.1002/mrdd.20103

A. Aguirre and V. Gallo, Postnatal Neurogenesis and Gliogenesis in the Olfactory Bulb from NG2-Expressing Progenitors of the Subventricular Zone, Journal of Neuroscience, vol.24, issue.46, pp.10530-10541, 2004.
DOI : 10.1523/JNEUROSCI.3572-04.2004

S. Belachew, R. Chittajallu, A. Aguirre, X. Yuan, M. Kirby et al., Postnatal NG2 proteoglycan???expressing progenitor cells are intrinsically multipotent and generate functional neurons, The Journal of Cell Biology, vol.125, issue.1, pp.169-186, 2003.
DOI : 10.1073/pnas.232586699

U. Engel and G. Wolswijk, Oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells derived from adult rat spinal cord: In vitro characteristics and response to PDGF, bFGF and NT-3, Glia, vol.116, issue.1, pp.16-26, 1996.
DOI : 10.1002/(SICI)1098-1136(199601)16:1<16::AID-GLIA3>3.0.CO;2-9

T. Kondo and M. Raff, Oligodendrocyte Precursor Cells Reprogrammed to Become Multipotential CNS Stem Cells, Science, vol.289, issue.5485, pp.1754-1757, 2000.
DOI : 10.1126/science.289.5485.1754

L. Rivers, K. Young, M. Rizzi, F. Jamen, K. Psachoulia et al., PDGFRA/NG2 glia generate myelinating oligodendrocytes and piriform projection neurons in adult mice, Nature Neuroscience, vol.22, issue.12, pp.1392-1401, 2008.
DOI : 10.1523/JNEUROSCI.0476-07.2007

S. Yoo and J. Wrathall, Mixed primary culture and clonal analysis provide evidence that NG2 proteoglycan-expressing cells after spinal cord injury are glial progenitors, Developmental Neurobiology, vol.50, issue.7, pp.860-874, 2007.
DOI : 10.1002/dneu.20369

B. Barres, M. Lazar, and M. Raff, A novel role for thyroid hormone, glucocorticoids and retinoic acid in timing oligodendrocyte development, Development, vol.120, pp.1097-1108, 1994.

A. Chang, A. Nishiyama, J. Peterson, J. Prineas, and B. Trapp, NG2-positive oligodendrocyte progenitor cells in adult human brain and multiple sclerosis lesions, J Neurosci, vol.20, pp.6404-6412, 2000.

R. Franklin, Why does remyelination fail in multiple sclerosis?, Nature Reviews Neuroscience, vol.105, issue.9, pp.705-714, 2002.
DOI : 10.1038/nrn917

J. Gensert and J. Goldman, Endogenous Progenitors Remyelinate Demyelinated Axons in the Adult CNS, Neuron, vol.19, issue.1, pp.197-203, 1997.
DOI : 10.1016/S0896-6273(00)80359-1

F. Doetsch, I. Caille, D. Lim, J. Garcia-verdugo, and A. Alvarez-buylla, Subventricular Zone Astrocytes Are Neural Stem Cells in the Adult Mammalian Brain, Cell, vol.97, issue.6, pp.703-716, 1999.
DOI : 10.1016/S0092-8674(00)80783-7

S. Levison and J. Goldman, Both oligodendrocytes and astrocytes develop from progenitors in the subventricular zone of postnatal rat forebrain, Neuron, vol.10, issue.2, pp.201-212, 1993.
DOI : 10.1016/0896-6273(93)90311-E

B. Nait-oumesmar, L. Decker, F. Lachapelle, V. Avellana-adalid, C. Bachelin et al., Progenitor cells of the adult mouse subventricular zone proliferate, migrate and differentiate into oligodendrocytes after demyelination, European Journal of Neuroscience, vol.4, issue.12, pp.4357-4366, 1999.
DOI : 10.1046/j.1460-9568.1999.00873.x

N. Picard-riera, L. Decker, C. Delarasse, K. Goude, B. Nait-oumesmar et al., Experimental autoimmune encephalomyelitis mobilizes neural progenitors from the subventricular zone to undergo oligodendrogenesis in adult mice, Proceedings of the National Academy of Sciences, vol.99, issue.20, pp.13211-13216, 2002.
DOI : 10.1073/pnas.192314199

B. Nait-oumesmar, N. Picard-riera, C. Kerninon, L. Decker, D. Seilhean et al., Activation of the subventricular zone in multiple sclerosis: Evidence for early glial progenitors, Proceedings of the National Academy of Sciences, vol.104, issue.11, pp.4694-4699, 2007.
DOI : 10.1073/pnas.0606835104

L. Decker, N. Picard-riera, and F. Lachapelle, Growth factor treatment promotes mobilization of young but not aged adult subventricular zone precursors in response to demyelination, Journal of Neuroscience Research, vol.92, issue.6, pp.763-771, 2002.
DOI : 10.1002/jnr.10411

B. Menn, J. Garcia-verdugo, C. Yaschine, O. Gonzalez-perez, D. Rowitch et al., Origin of Oligodendrocytes in the Subventricular Zone of the Adult Brain, Journal of Neuroscience, vol.26, issue.30, pp.7907-7918, 2006.
DOI : 10.1523/JNEUROSCI.1299-06.2006

A. Aguirre, J. Dupree, J. Mangin, and V. Gallo, A functional role for EGFR signaling in myelination and remyelination, Nature Neuroscience, vol.22, issue.8, pp.990-1002, 2007.
DOI : 10.1046/j.0305-1846.2001.00301.x

D. Morgan, CYCLIN-DEPENDENT KINASES: Engines, Clocks, and Microprocessors, Annual Review of Cell and Developmental Biology, vol.13, issue.1, pp.261-291, 1997.
DOI : 10.1146/annurev.cellbio.13.1.261

C. Sherr and J. Roberts, CDK inhibitors: positive and negative regulators of G1-phase progression, Genes & Development, vol.13, issue.12, pp.1501-1512, 1999.
DOI : 10.1101/gad.13.12.1501

T. Bagui, S. Mohapatra, E. Haura, and W. Pledger, p27Kip1 and p21Cip1 Are Not Required for the Formation of Active D Cyclin-cdk4 Complexes, Molecular and Cellular Biology, vol.23, issue.20, pp.7285-7290, 2003.
DOI : 10.1128/MCB.23.20.7285-7290.2003

M. Sugimoto, N. Martin, D. Wilks, K. Tamai, T. Huot et al., Activation of cyclin D1-kinase in murine fibroblasts lacking both p21Cip1 and p27Kip1, Oncogene, vol.21, issue.53, pp.8067-8074, 2002.
DOI : 10.1038/sj.onc.1206019

O. Coqueret, New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment?, Trends in Cell Biology, vol.13, issue.2, pp.65-70, 2003.
DOI : 10.1016/S0962-8924(02)00043-0

S. Belachew, A. Aguirre, H. Wang, F. Vautier, X. Yuan et al., Cyclin-dependent kinase-2 controls oligodendrocyte progenitor cell cycle progression and is downregulated in adult oligodendrocyte progenitors, J Neurosci, vol.22, pp.8553-8562, 2002.

C. Caillava, R. Vandenbosch, B. Jablonska, C. Deboux, G. Spigoni et al., Cdk2 loss accelerates precursor differentiation and remyelination in the adult central nervous system, The Journal of Cell Biology, vol.105, issue.2, pp.397-407, 2011.
DOI : 10.1016/S0896-6273(00)80898-3

P. Casaccia-bonnefil, R. Hardy, K. Teng, J. Levine, A. Koff et al., Loss of p27Kip1 function results in increased proliferative capacity of oligodendrocyte progenitors but unaltered timing of differentiation, Development, vol.126, pp.4027-4037, 1999.

P. Casaccia-bonnefil, R. Tikoo, H. Kiyokawa, V. Friedrich, . Jr et al., Oligodendrocyte precursor differentiation is perturbed in the absence of the cyclin-dependent kinase inhibitor??p27Kip1, Genes & Development, vol.11, issue.18, pp.2335-2346, 1997.
DOI : 10.1101/gad.11.18.2335

C. Ghiani and V. Gallo, Inhibition of cyclin E-cyclin-dependent kinase 2 complex formation and activity is associated with cell cycle arrest and withdrawal in oligodendrocyte progenitor cells, pp.1274-1282, 2001.

C. Ghiani, A. Eisen, X. Yuan, R. Depinho, C. Mcbain et al., Neurotransmitter receptor activation triggers p27(Kip1) and p21(CIP1) accumulation and G1 cell cycle arrest in oligodendrocyte progenitors, pp.1077-1090, 1999.

M. Raff, L. Lillien, W. Richardson, J. Burne, and M. Noble, Platelet-derived growth factor from astrocytes drives the clock that times oligodendrocyte development in culture, Nature, vol.333, issue.6173, pp.562-565, 1988.
DOI : 10.1038/333562a0

R. Tikoo, D. Osterhout, P. Casaccia-bonnefil, P. Seth, A. Koff et al., Ectopic expression of p27Kip1 in oligodendrocyte progenitor cells results in cell-cycle growth arrest, Journal of Neurobiology, vol.272, issue.3, pp.431-440, 1998.
DOI : 10.1002/(SICI)1097-4695(19980905)36:3<431::AID-NEU10>3.0.CO;2-E

C. Berthet, E. Aleem, V. Coppola, L. Tessarollo, and P. Kaldis, Cdk2 Knockout Mice Are Viable, Current Biology, vol.13, issue.20, pp.1775-1785, 2003.
DOI : 10.1016/j.cub.2003.09.024

S. Ortega, I. Prieto, J. Odajima, A. Martin, P. Dubus et al., Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice, Nature Genetics, vol.35, issue.1, pp.25-31, 2003.
DOI : 10.1038/ng1232

B. Jablonska, A. Aguirre, R. Vandenbosch, S. Belachew, C. Berthet et al., Cdk2 is critical for proliferation and self-renewal of neural progenitor cells in the adult subventricular zone, The Journal of Cell Biology, vol.8, issue.6, pp.1231-1245, 2007.
DOI : 10.1093/embo-reports/kve008

O. Tetsu and F. Mccormick, Proliferation of cancer cells despite CDK2 inhibition, Cancer Cell, vol.3, issue.3, pp.233-245, 2003.
DOI : 10.1016/S1535-6108(03)00053-9

A. Satyanarayana and P. Kaldis, Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms, Oncogene, vol.16, issue.33, pp.2925-2939, 2009.
DOI : 10.1016/0006-291X(92)91851-G

M. Malumbres, R. Sotillo, D. Santamaria, J. Galan, A. Cerezo et al., Mammalian Cells Cycle without the D-Type Cyclin-Dependent Kinases Cdk4 and Cdk6, Cell, vol.118, issue.4, pp.493-504, 2004.
DOI : 10.1016/j.cell.2004.08.002

E. Aleem, H. Kiyokawa, and P. Kaldis, Cdc2???cyclin E complexes regulate the G1/S phase transition, Nature Cell Biology, vol.14, issue.8, pp.831-836, 2005.
DOI : 10.1016/0022-1759(94)90396-4

A. Satyanarayana, C. Berthet, J. Lopez-molina, V. Coppola, L. Tessarollo et al., Genetic substitution of Cdk1 by Cdk2 leads to embryonic lethality and loss of meiotic function of Cdk2, Development, vol.135, issue.20, pp.3389-3400, 2008.
DOI : 10.1242/dev.024919

R. Vandenbosch, L. Borgs, P. Beukelaers, A. Foidart, L. Nguyen et al., CDK2 is Dispensable for Adult Hippocampal Neurogenesis, Cell Cycle, vol.6, issue.24, pp.3065-3069, 2007.
DOI : 10.4161/cc.6.24.5048

M. Raff, E. Abney, and J. Fok-seang, Reconstitution of a developmental clock in vitro: a critical role for astrocytes in the timing of oligodendrocyte differentiation, Cell, vol.42, issue.1, pp.61-69, 1985.
DOI : 10.1016/S0092-8674(85)80101-X

Y. Tokumoto, J. Apperly, F. Gao, and M. Raff, Posttranscriptional Regulation of p18 and p27 Cdk Inhibitor Proteins and the Timing of Oligodendrocyte Differentiation, Developmental Biology, vol.245, issue.1, pp.224-234, 2002.
DOI : 10.1006/dbio.2002.0626

A. Giaccia and M. Kastan, The complexity of p53 modulation: emerging patterns from divergent signals, Genes & Development, vol.12, issue.19, pp.2973-2983, 1998.
DOI : 10.1101/gad.12.19.2973

O. Eizenberg, A. Faber-elman, E. Gottlieb, M. Oren, V. Rotter et al., p53 plays a regulatory role in differentiation and apoptosis of central nervous system-associated cells., Molecular and Cellular Biology, vol.16, issue.9, pp.535178-5185, 1996.
DOI : 10.1128/MCB.16.9.5178

C. Sherr and J. Roberts, Inhibitors of mammalian G1 cyclin-dependent kinases., Genes & Development, vol.9, issue.10, pp.1149-1163, 1995.
DOI : 10.1101/gad.9.10.1149

B. Durand, M. Fero, J. Roberts, and M. Raff, p27Kip1 alters the response of cells to mitogen and is part of a cell-intrinsic timer that arrests the cell cycle and initiates differentiation, Current Biology, vol.8, issue.8, pp.27-1431, 1998.
DOI : 10.1016/S0960-9822(98)70177-0

B. Durand, F. Gao, and M. Raff, Accumulation of the cyclin-dependent kinase inhibitor p27/Kip1 and the timing of oligodendrocyte differentiation, The EMBO Journal, vol.16, issue.2, pp.306-317, 1997.
DOI : 10.1093/emboj/16.2.306

C. Ghiani, X. Yuan, A. Eisen, P. Knutson, R. Depinho et al., Voltage-activated K + channels and membrane depolarization regulate accumulation of the cyclin-dependent kinase inhibitors p27(Kip1) and p21(CIP1) in glial progenitor cells, J Neurosci, vol.19, pp.5380-5392, 1999.

X. Tang, P. Strocchi, and F. Cambi, Changes in the activity of cdk2 and cdk5 accompany differentiation of rat primary oligodendrocytes, Journal of Cellular Biochemistry, vol.183, issue.1, pp.128-137, 1998.
DOI : 10.1002/(SICI)1097-4644(19980101)68:1<128::AID-JCB13>3.0.CO;2-D

R. Tikoo, P. Casaccia-bonnefil, M. Chao, and A. Koff, Changes in cyclindependent kinase 2 and p27kip1 accompany glial cell differentiation of central glia-4 cells, J Biol Chem, vol.272, pp.442-447, 1997.

X. Tang, J. Beesley, J. Grinspan, P. Seth, J. Kamholz et al., Cell cycle arrest induced by ectopic expression of p27 is not sufficient to promote oligodendrocyte differentiation, Journal of Cellular Biochemistry, vol.40, issue.2, pp.270-279, 1999.
DOI : 10.1002/(SICI)1097-4644(20000201)76:2<270::AID-JCB10>3.0.CO;2-6

M. Noble, Precursor Cell Transitions in Oligodendrocyte Development, The Journal of Cell Biology, vol.109, issue.5, pp.839-842, 2000.
DOI : 10.1083/jcb.116.1.167

S. Belachew, X. Yuan, and V. Gallo, Unraveling Oligodendrocyte Origin and Function by Cell-Specific Transgenesis, Developmental Neuroscience, vol.23, issue.4-5, pp.287-298, 2001.
DOI : 10.1159/000048712

X. Yuan, R. Chittajallu, S. Belachew, S. Anderson, C. Mcbain et al., Expression of the green fluorescent protein in the oligodendrocyte lineage: A transgenic mouse for developmental and physiological studies, Journal of Neuroscience Research, vol.25, issue.4, pp.529-545, 2002.
DOI : 10.1002/jnr.10368

M. Matthews and D. Duncan, A quantitative study of morphological changes accompanying the initiation and progress of myelin production in the dorsal funiculus of the rat spinal cord, The Journal of Comparative Neurology, vol.21, issue.1, pp.1-22, 1971.
DOI : 10.1002/cne.901420102

J. Boggs, Myelin basic protein: a multifunctional protein, Cellular and Molecular Life Sciences, vol.63, issue.17, pp.1945-1961, 2006.
DOI : 10.1007/s00018-006-6094-7

L. Dimou, C. Simon, F. Kirchhoff, H. Takebayashi, and M. Gotz, Progeny of Olig2-Expressing Progenitors in the Gray and White Matter of the Adult Mouse Cerebral Cortex, Journal of Neuroscience, vol.28, issue.41, pp.10434-10442, 2008.
DOI : 10.1523/JNEUROSCI.2831-08.2008

A. Chang, W. Tourtellotte, R. Rudick, and B. Trapp, Premyelinating Oligodendrocytes in Chronic Lesions of Multiple Sclerosis, New England Journal of Medicine, vol.346, issue.3, pp.165-173, 2002.
DOI : 10.1056/NEJMoa010994

S. Pluchino, L. Muzio, J. Imitola, M. Deleidi, C. Alfaro-cervello et al., Persistent inflammation alters the function of the endogenous brain stem cell compartment, Brain, vol.131, issue.10, pp.2564-2578, 2008.
DOI : 10.1093/brain/awn198

C. Berthet, K. Klarmann, M. Hilton, H. Suh, J. Keller et al., Combined Loss of Cdk2 and Cdk4 Results in Embryonic Lethality and Rb Hypophosphorylation, Developmental Cell, vol.10, issue.5, pp.563-573, 2006.
DOI : 10.1016/j.devcel.2006.03.004

K. Jessen and R. Mirsky, The origin and development of glial cells in peripheral nerves, Nature Reviews Neuroscience, vol.109, issue.9, pp.671-682, 2005.
DOI : 10.1006/mcne.1996.0589

S. Atanasoski, M. Boentert, D. Ventura, L. Pohl, H. Baranek et al., Postnatal Schwann cell proliferation but not myelination is strictly and uniquely dependent on cyclin-dependent kinase 4 (cdk4), Molecular and Cellular Neuroscience, vol.37, issue.3, pp.519-527, 2008.
DOI : 10.1016/j.mcn.2007.11.005

R. Akundi and S. Rivkees, Hypoxia Alters Cell Cycle Regulatory Protein Expression and Induces Premature Maturation of Oligodendrocyte Precursor Cells, PLoS ONE, vol.126, issue.3, p.4739, 2009.
DOI : 10.1371/journal.pone.0004739.g013

S. Adachi, H. Ito, M. Tamamori-adachi, Y. Ono, T. Nozato et al., Cyclin A/cdk2 Activation Is Involved in Hypoxia-Induced Apoptosis in Cardiomyocytes, Circulation Research, vol.88, issue.4, pp.408-414, 2001.
DOI : 10.1161/01.RES.88.4.408

J. Anderson, A. Lewellyn, and J. Maller, Ionizing radiation induces apoptosis and elevates cyclin A1-Cdk2 activity before but not after the midblastula transition in Xenopus., Molecular Biology of the Cell, vol.8, issue.7, pp.1195-1206, 1997.
DOI : 10.1091/mbc.8.7.1195

K. Harvey, D. Lukovic, and D. Ucker, Caspase-Dependent Cdk Activity Is a Requisite Effector of Apoptotic Death Events, The Journal of Cell Biology, vol.12, issue.1, pp.59-72, 2000.
DOI : 10.1016/S0092-8674(00)80501-2

B. Zhou, H. Li, J. Yuan, and M. Kirschner, Caspase-dependent activation of cyclin-dependent kinases during Fas-induced apoptosis in Jurkat cells, Proceedings of the National Academy of Sciences, vol.95, issue.12, pp.6785-6790, 1998.
DOI : 10.1073/pnas.95.12.6785

L. Hauck, G. Hansmann, R. Dietz, and R. Von-harsdorf, Inhibition of Hypoxia-Induced Apoptosis by Modulation of Retinoblastoma Protein-Dependent Signaling in Cardiomyocytes, Circulation Research, vol.91, issue.9, pp.782-789, 2002.
DOI : 10.1161/01.RES.0000041030.98642.41

J. Katchanov, C. Harms, K. Gertz, L. Hauck, C. Waeber et al., Mild cerebral ischemia induces loss of cyclin-dependent kinase inhibitors and activation of cell cycle machinery before delayed neuronal cell death, J Neurosci, vol.21, pp.5045-5053, 2001.

A. Hakem, T. Sasaki, I. Kozieradzki, and J. Penninger, The Cyclin-dependent Kinase Cdk2 Regulates Thymocyte Apoptosis, The Journal of Experimental Medicine, vol.265, issue.6, pp.957-968, 1999.
DOI : 10.1023/A:1026358821640

Y. Li, M. Chopp, C. Powers, and N. Jiang, Immunoreactivity of Cyclin D1/cdk4 in Neurons and Oligodendrocytes After Focal Cerebral Ischemia in Rat, Journal of Cerebral Blood Flow & Metabolism, vol.20, issue.8, pp.846-856, 1997.
DOI : 10.1097/00004647-199708000-00003

M. Van-lookeren-campagne and R. Gill, Cell cycle-related gene expression in the adult rat brain: Selective induction of cyclin G1 and p21WAF1/CIP1 in neurons following focal cerebral ischemia, Neuroscience, vol.84, issue.4, pp.1097-1112, 1998.
DOI : 10.1016/S0306-4522(97)00580-0

D. Liem, P. Zhao, E. Angelis, S. Chan, J. Zhang et al., Cyclin-dependent kinase 2 signaling regulates myocardial ischemia/reperfusion injury, Journal of Molecular and Cellular Cardiology, vol.45, issue.5, pp.610-616, 2008.
DOI : 10.1016/j.yjmcc.2008.07.003

D. Giovanni, S. Knoblach, S. Brandoli, C. Aden, S. Hoffman et al., Gene profiling in spinal cord injury shows role of cell cycle in neuronal death, Annals of Neurology, vol.490, issue.4, pp.454-468, 2003.
DOI : 10.1002/ana.10472

D. Giovanni, S. Movsesyan, V. Ahmed, F. Cernak, I. Schinelli et al., Cell cycle inhibition provides neuroprotection and reduces glial proliferation and scar formation after traumatic brain injury, Proceedings of the National Academy of Sciences, vol.102, issue.23, pp.8333-8338, 2005.
DOI : 10.1073/pnas.0500989102

A. Faden, V. Movsesyan, S. Knoblach, F. Ahmed, and I. Cernak, Neuroprotective effects of novel small peptides in vitro and after brain injury, Neuropharmacology, vol.49, issue.3, pp.410-424, 2005.
DOI : 10.1016/j.neuropharm.2005.04.001

J. Wu, B. Stoica, and A. Faden, Cell Cycle Activation and Spinal Cord Injury, Neurotherapeutics, vol.127, issue.2, pp.221-228, 2011.
DOI : 10.1007/s13311-011-0028-2

G. Wu, J. Cao, C. Peng, H. Yang, Z. Cui et al., Temporal and Spatial Expression of Cyclin H in Rat Spinal Cord Injury, NeuroMolecular Medicine, vol.16, issue.Pt 3, pp.187-196, 2011.
DOI : 10.1007/s12017-011-8150-1