G. Kappe, P. Verschuure, R. Philipsen, A. Staalduinen, P. Van-den-bogaart et al., Characterization of two novel human small heat shock proteins: protein kinase-related HspB8 and testis-specific HspB9, Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, vol.1520, issue.1, pp.1-6, 2001.
DOI : 10.1016/S0167-4781(01)00237-8

C. Smith, Y. Yu, M. Kulka, and L. Aurelian, A Novel Human Gene Similar to the Protein Kinase (PK) Coding Domain of the Large Subunit of Herpes Simplex Virus Type 2 Ribonucleotide Reductase (ICP10) Codes for a Serine-Threonine PK and Is Expressed in Melanoma Cells, Journal of Biological Chemistry, vol.275, issue.33
DOI : 10.1074/jbc.M002140200

. C. Depre, J. E. Tomlinson, R. K. Kudej, V. Gaussin, E. Thompson et al., Gene program for cardiac cell survival induced by transient ischemia in conscious pigs, Proc. Natl. Acad. Sci. U S A, pp.9336-9341, 2001.
DOI : 10.1073/pnas.171297498

V. Gaussin, D. J. Pennell, D. E. Vatner, P. G. Camici, and S. F. Vatner, Program of cell survival underlying human and experimental hibernating myocardium, Circ. Res, vol.95, pp.433-440, 2004.

R. K. Kudej, T. Wagner, J. Sadoshima, and S. Vatner, H11 Kinase is a novel mediator of myocardial hypertrophy in vivo, Circ. Res, vol.91, pp.1007-1014, 2002.

C. Depre, L. Wang, X. Sui, H. Qiu, C. Hong et al., H11 Kinase Prevents Myocardial Infarction by Preemptive Preconditioning of the Heart, Circulation Research, vol.98, issue.2, pp.280-288, 2006.
DOI : 10.1161/01.RES.0000201284.45482.e8

I. J. Danan, E. R. Rashed, and C. Depre, Therapeutic Potential of H11 Kinase for the Ischemic Heart, Cardiovascular Drug Reviews, vol.288, issue.1, pp.14-29, 2007.
DOI : 10.1111/j.1527-3466.2007.00002.x

X. Sui, D. Li, H. Qiu, V. Gaussin, and C. Depre, Activation of the Bone Morphogenetic Protein Receptor by H11Kinase/Hsp22 Promotes Cardiac Cell Growth and Survival, Circulation Research, vol.104, issue.7, pp.887-895, 2009.
DOI : 10.1161/CIRCRESAHA.108.192328

L. Wang, A. Zajac, N. Hedhli, and C. Depre, Increased expression of H11 kinase stimulates glycogen synthesis in the heart, Molecular and Cellular Biochemistry, vol.265, issue.1/2, pp.71-78, 2004.
DOI : 10.1023/B:MCBI.0000044311.58653.54

N. Hedhli, L. Wang, Q. Wang, E. Rashed, Y. Tian et al., Proteasome activation during cardiac hypertrophy by the chaperone H11 Kinase/Hsp22, Cardiovascular Research, vol.77, issue.3, pp.497-505, 2008.
DOI : 10.1093/cvr/cvm054

R. Bolli, Cardioprotective Function of Inducible Nitric Oxide Synthase and Role of Nitric Oxide in Myocardial Ischemia and Preconditioning: an Overview of a Decade of Research, Journal of Molecular and Cellular Cardiology, vol.33, issue.11, pp.1897-1918, 2001.
DOI : 10.1006/jmcc.2001.1462

C. Depre, Preemptive conditioning of the swine heart by H11 kinase/Hsp22 provides cardiac protection through inducible nitric oxide synthase, Am. J. Physiol. Heart Circ. Physiol, vol.300, pp.1303-1310, 2011.

S. Jones and R. Bolli, The ubiquitous role of nitric oxide in cardioprotection, Journal of Molecular and Cellular Cardiology, vol.40, issue.1, pp.16-23, 2006.
DOI : 10.1016/j.yjmcc.2005.09.011

A. Halestrap and S. Clarke, The role of mitochondria in protection of the heart by preconditioning, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1767, issue.8, pp.1007-1031, 2007.
DOI : 10.1016/j.bbabio.2007.05.008

P. A. Townsend, S. M. Davidson, S. J. Clarke, I. Khaliulin, C. J. Carroll et al., Urocortin prevents mitochondrial permeability transition in response to reperfusion injury indirectly by reducing oxidative stress, AJP: Heart and Circulatory Physiology, vol.293, issue.2, pp.928-938, 2007.
DOI : 10.1152/ajpheart.01135.2006

L. Iacono, L. Boczkowski, J. Zini, R. Salouage, I. Berdeaux et al., A carbon monoxide-releasing molecule (CORM-3) uncouples mitochondrial respiration and modulates the production of reactive oxygen species. Free Radic, Biol. Med, vol.50, pp.1556-1564, 2011.
URL : https://hal.archives-ouvertes.fr/inserm-00597718

R. Zini, A. Berdeaux, and D. Morin, The differential effects of superoxide anion, hydrogen peroxide and hydroxyl radical on cardiac mitochondrial oxidative phosphorylation, Free Radical Research, vol.108, issue.10, pp.1159-1166, 2007.
DOI : 10.1074/jbc.M208262200

R. F. Castilho and A. Vercesi, Mitochondria generated nitric oxide protects against permeability transition via formation of membrane protein S-nitrosothiols

D. Esposti and M. , Inhibitors of NADH???ubiquinone reductase: an overview, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1364, issue.2, pp.222-235, 1998.
DOI : 10.1016/S0005-2728(98)00029-2

K. Utsumi, A possible site of superoxide generation in the complex I segment of rat heart mitochondria, J. Bioenerg. Biomembr, vol.37, pp.1-15, 2005.

M. Ksenzenko, A. A. Konstantinov, G. B. Khomutov, A. N. Tikhonov, and E. K. Ruuge, site of the mitochondrial respiratory chain, FEBS Letters, vol.256, issue.1, pp.19-24, 1983.
DOI : 10.1016/0014-5793(83)80200-2

M. D. Brand, The sites and topology of mitochondrial superoxide production, Experimental Gerontology, vol.45, issue.7-8, pp.466-472, 2010.
DOI : 10.1016/j.exger.2010.01.003

G. Brown, Regulation of mitochondrial respiration by nitric oxide inhibition of cytochrome c oxidase, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1504, issue.1, pp.46-57, 2001.
DOI : 10.1016/S0005-2728(00)00238-3

G. Brown, Nitric oxide as a competitive inhibitor of oxygen consumption in the mitochondrial respiratory chain, Acta Physiologica Scandinavica, vol.322, issue.4, pp.667-674, 2000.
DOI : 10.1016/S0014-5793(98)00143-4

M. T. Gladwin, Nitrite augments tolerance to ischemia/reperfusion injury via the modulation of mitochondrial electron transfer, J. Exp. Med, vol.204, pp.2089-2102, 2007.

J. F. Garvey, C. T. Taylor, P. S. Brookes, R. A. Smith, and M. P. Murphy, A mitochondriatargeted S-nitrosothiol modulates respiration, nitrosates thiols, and protects against ischemia-reperfusion injury, Proc. Natl. Acad. Sci. U S A, vol.106, pp.10764-10769, 2009.

A. Navarro and A. Boveris, Mitochondrial nitric oxide synthase, mitochondrial brain dysfunction in aging, and mitochondria-targeted antioxidants???, Advanced Drug Delivery Reviews, vol.60, issue.13-14, pp.1534-1544, 2008.
DOI : 10.1016/j.addr.2008.05.002

G. C. Brown and V. Borutaite, Nitric oxide and mitochondrial respiration in the heart, Cardiovascular Research, vol.75, issue.2, pp.283-290, 2007.
DOI : 10.1016/j.cardiores.2007.03.022

. Kinase, Heat Shock Protein 22 deletion impairs both nuclear and mitochondrial functions of Stat3 and accelerates the transition into heart failure on cardiac overload, Circulation, vol.124, pp.406-415, 2011.

N. Avadhani, J. I. Drake, P. Fawcett, E. J. Lesnefsky, and A. Larner, Function of mitochondrial Stat3 in cellular respiration, Science, vol.323, pp.793-797, 2009.

A. Valerio, M. Francolini, S. Moncada, and M. O. Carruba, Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide, Science, vol.299, pp.896-899, 2003.

E. Clementi, Mitochondrial biogenesis by NO yields functionally active mitochondria in mammals, Proc. Natl. Acad. Sci. U S A, vol.101, pp.16507-16512, 2004.

C. J. Mcleod, I. Pagel, and M. N. Sack, The Mitochondrial Biogenesis Regulatory Program in Cardiac Adaptation to Ischemia???A Putative Target for Therapeutic Intervention, Trends in Cardiovascular Medicine, vol.15, issue.3, pp.118-123, 2005.
DOI : 10.1016/j.tcm.2005.05.001

F. Zoccarato, L. Cavallini, S. Bortolami, and A. Alexandre, release at NADH:ubiquinone oxidoreductase (Complex I) in brain mitochondria, Biochemical Journal, vol.406, issue.1, pp.125-129, 2007.
DOI : 10.1042/BJ20070215

URL : https://hal.archives-ouvertes.fr/hal-00478757

H. Van-remmen, High rates of superoxide production in skeletal-muscle mitochondria respiring on both complex I-and complex II-linked substrates, Biochem. J, vol.409, pp.491-499, 2008.

T. H. Kunz, R. Buffenstein, and M. D. Brand, Low rates of hydrogen peroxide production by isolated heart mitochondria associate with long maximum lifespan in vertebrate homeotherms, Aging Cell, vol.6, pp.607-618, 2007.

V. P. Skulachev, A biochemical approach to the problem of aging: ???Megaproject??? on membrane-penetrating ions. The first results and prospects, Biochemistry (Moscow), vol.72, issue.12, pp.1385-1396, 2007.
DOI : 10.1134/S0006297907120139

Q. Chen, S. Moghaddas, C. L. Hoppel, and E. J. Lesnefsky, Ischemic defects in the electron transport chain increase the production of reactive oxygen species from isolated rat heart mitochondria, AJP: Cell Physiology, vol.294, issue.2, pp.460-466, 2008.
DOI : 10.1152/ajpcell.00211.2007

A. J. Lambert, J. A. Buckingham, H. M. Boysen, and M. D. Brand, Diphenyleneiodonium acutely inhibits reactive oxygen species production by mitochondrial complex I during reverse, but not forward electron transport, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1777, issue.5, pp.397-403, 2008.
DOI : 10.1016/j.bbabio.2008.03.005

M. Aldakkak, D. F. Stowe, Q. Chen, E. J. Lesnefsky, and A. K. Camara, Inhibited mitochondrial respiration by amobarbital during cardiac ischaemia improves redox state and reduces matrix Ca2+ overload and ROS release, Cardiovasc. Res, vol.77, pp.406-415, 2008.