S. Fisher and C. Scharff, FOXP2 as a molecular window into speech and language, Trends in Genetics, vol.25, issue.4, pp.166-177, 2009.
DOI : 10.1016/j.tig.2009.03.002

URL : http://hdl.handle.net/11858/00-001M-0000-0014-7545-4

P. Carlsson and M. Mahlapuu, Forkhead Transcription Factors: Key Players in Development and Metabolism, Developmental Biology, vol.250, issue.1, pp.1-23, 2002.
DOI : 10.1006/dbio.2002.0780

S. Hannenhalli and K. Kaestner, The evolution of Fox genes and their role in development and disease, Nature Reviews Genetics, vol.18, issue.4, pp.233-240, 2009.
DOI : 10.1038/nrg2523

C. Lai, S. Fisher, J. Hurst, F. Vargha-khadem, and A. Monaco, A forkhead-domain gene is mutated in a severe speech and language disorder, Nature, vol.9, issue.6855, pp.519-523, 2001.
DOI : 10.1038/35097076

B. Wang, D. Lin, C. Li, and P. Tucker, Multiple Domains Define the Expression and Regulatory Properties of Foxp1 Forkhead Transcriptional Repressors, Journal of Biological Chemistry, vol.278, issue.27, pp.24259-24268, 2003.
DOI : 10.1074/jbc.M207174200

K. Kaestner, W. Knochel, and D. Martinez, Unified nomenclature for the winged helix/forkhead transcription factors, Genes Dev, vol.14, pp.142-146, 2000.

L. Feuk, A. Kalervo, M. Lipsanen-nyman, J. Skaug, and K. Nakabayashi, Absence of a Paternally Inherited FOXP2 Gene in Developmental Verbal Dyspraxia, The American Journal of Human Genetics, vol.79, issue.5, pp.965-972, 2006.
DOI : 10.1086/508902

K. Macdermot, E. Bonora, N. Sykes, A. Coupe, and C. Lai, Identification of FOXP2 Truncation as a Novel Cause of Developmental Speech and Language Deficits, The American Journal of Human Genetics, vol.76, issue.6, pp.1074-1080, 2005.
DOI : 10.1086/430841

M. Groszer, D. Keays, R. Deacon, J. De-bono, and S. Prasad-mulcare, Impaired Synaptic Plasticity and Motor Learning in Mice with a Point Mutation Implicated in Human Speech Deficits, Current Biology, vol.18, issue.5, pp.354-362, 2008.
DOI : 10.1016/j.cub.2008.01.060

C. French, M. Groszer, C. Preece, A. Coupe, and K. Rajewsky, Generation of mice with a conditional Foxp2 null allele, genesis, vol.140, issue.7, pp.440-446, 2007.
DOI : 10.1002/dvg.20305

W. Shu, J. Cho, Y. Jiang, M. Zhang, and D. Weisz, Altered ultrasonic vocalization in mice with a disruption in the Foxp2 gene, Proceedings of the National Academy of Sciences, vol.102, issue.27, pp.9643-9648, 2005.
DOI : 10.1073/pnas.0503739102

S. Haesler, K. Wada, A. Nshdejan, E. Morrisey, and T. Lints, FoxP2 Expression in Avian Vocal Learners and Non-Learners, Journal of Neuroscience, vol.24, issue.13, pp.3164-3175, 2004.
DOI : 10.1523/JNEUROSCI.4369-03.2004

I. Teramitsu, L. Kudo, S. London, D. Geschwind, and S. White, Parallel FoxP1 and FoxP2 Expression in Songbird and Human Brain Predicts Functional Interaction, Journal of Neuroscience, vol.24, issue.13, pp.3152-3163, 2004.
DOI : 10.1523/JNEUROSCI.5589-03.2004

S. Haesler, C. Rochefort, B. Georgi, P. Licznerski, and P. Osten, Incomplete and Inaccurate Vocal Imitation after Knockdown of FoxP2 in Songbird Basal Ganglia Nucleus Area X, PLoS Biology, vol.27, issue.12, 2007.
DOI : 10.1371/journal.pbio.0050321.sg009

R. Ferland, T. Cherry, P. Preware, E. Morrisey, and C. Walsh, Characterization of Foxp2 and Foxp1 mRNA and protein in the developing and mature brain, The Journal of Comparative Neurology, vol.460, issue.2, pp.266-279, 2003.
DOI : 10.1002/cne.10654

C. Lai, D. Gerrelli, A. Monaco, S. Fisher, and A. Copp, FOXP2 expression during brain development coincides with adult sites of pathology in a severe speech and language disorder, Brain, vol.126, issue.11, pp.2455-2462, 2003.
DOI : 10.1093/brain/awg247

K. Watkins, F. Vargha-khadem, J. Ashburner, R. Passingham, and A. Connelly, MRI analysis of an inherited speech and language disorder: structural brain abnormalities, Brain, vol.125, issue.3, pp.465-478, 2002.
DOI : 10.1093/brain/awf057

W. Shu, H. Yang, L. Zhang, M. Lu, and E. Morrisey, Characterization of a New Subfamily of Winged-helix/Forkhead (Fox) Genes That Are Expressed in the Lung and Act as Transcriptional Repressors, Journal of Biological Chemistry, vol.276, issue.29, pp.27488-27497, 2001.
DOI : 10.1074/jbc.M100636200

S. Vernes, D. Newbury, B. Abrahams, L. Winchester, and J. Nicod, A Functional Genetic Link between Distinct Developmental Language Disorders, New England Journal of Medicine, vol.359, issue.22, pp.2337-2345, 2008.
DOI : 10.1056/NEJMoa0802828

E. Spiteri, G. Konopka, G. Coppola, J. Bomar, and M. Oldham, Identification of the Transcriptional Targets of FOXP2, a Gene Linked to Speech and Language, in Developing Human Brain, The American Journal of Human Genetics, vol.81, issue.6, pp.1144-1157, 2007.
DOI : 10.1086/522237

S. Vernes, E. Spiteri, J. Nicod, M. Groszer, and J. Taylor, High-Throughput Analysis of Promoter Occupancy Reveals Direct Neural Targets of FOXP2, a Gene Mutated in Speech and Language Disorders, The American Journal of Human Genetics, vol.81, issue.6, pp.1232-1250, 2007.
DOI : 10.1086/522238

G. Konopka, J. Bomar, K. Winden, G. Coppola, and Z. Jonsson, Human-specific transcriptional regulation of CNS development genes by FOXP2, Nature, vol.4, issue.7270, pp.213-217, 2009.
DOI : 10.1038/nature08549

A. Marson, K. Kretschmer, G. Frampton, E. Jacobsen, and J. Polansky, Foxp3 occupancy and regulation of key target genes during T-cell stimulation, Nature, vol.37, issue.7130, pp.931-935, 2007.
DOI : 10.1038/nature05478

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3008159

D. Overdier, A. Porcella, and R. Costa, The DNA-binding specificity of the hepatocyte nuclear factor 3/forkhead domain is influenced by amino-acid residues adjacent to the recognition helix., Molecular and Cellular Biology, vol.14, issue.4, pp.2755-2766, 1994.
DOI : 10.1128/MCB.14.4.2755

B. Zhang, S. Kirov, and J. Snoddy, WebGestalt: an integrated system for exploring gene sets in various biological contexts, Nucleic Acids Research, vol.33, issue.Web Server, pp.741-748, 2005.
DOI : 10.1093/nar/gki475

A. Faedo, J. Quinn, P. Stoney, J. Long, and C. Dye, Identification and characterization of a novel transcript down-regulated in Dlx1/Dlx2 and up-regulated in Pax6 mutant telencephalon, Developmental Dynamics, vol.32, issue.3, pp.614-620, 2004.
DOI : 10.1002/dvdy.20152

J. Feng, C. Bi, B. Clark, R. Mady, and P. Shah, The Evf-2 noncoding RNA is transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional coactivator, Genes & Development, vol.20, issue.11, pp.1470-1484, 2006.
DOI : 10.1101/gad.1416106

G. Naeve, M. Ramakrishnan, R. Kramer, D. Hevroni, and Y. Citri, Neuritin: A gene induced by neural activity and neurotrophins that promotes neuritogenesis, Proceedings of the National Academy of Sciences, vol.94, issue.6, pp.2648-2653, 1997.
DOI : 10.1073/pnas.94.6.2648

A. Visel, C. Thaller, and G. Eichele, GenePaint.org: an atlas of gene expression patterns in the mouse embryo, Nucleic Acids Research, vol.32, issue.90001, pp.552-556, 2004.
DOI : 10.1093/nar/gkh029

S. Vernes, J. Nicod, F. Elahi, J. Coventry, and N. Kenny, Functional genetic analysis of mutations implicated in a human speech and language disorder, Human Molecular Genetics, vol.15, issue.21, pp.3154-3167, 2006.
DOI : 10.1093/hmg/ddl392

T. Gertler, C. Chan, and D. Surmeier, Dichotomous Anatomical Properties of Adult Striatal Medium Spiny Neurons, Journal of Neuroscience, vol.28, issue.43, pp.10814-10824, 2008.
DOI : 10.1523/JNEUROSCI.2660-08.2008

E. Valjent, J. Bertran-gonzalez, D. Herve, G. Fisone, and J. Girault, Looking BAC at striatal signaling: cell-specific analysis in new transgenic mice, Trends in Neurosciences, vol.32, issue.10, pp.538-547, 2009.
DOI : 10.1016/j.tins.2009.06.005

W. Enard, S. Gehre, K. Hammerschmidt, S. Holter, and T. Blass, A Humanized Version of Foxp2 Affects Cortico-Basal Ganglia Circuits in Mice, Cell, vol.137, issue.5, pp.961-971, 2009.
DOI : 10.1016/j.cell.2009.03.041

E. Jarvis, Learned Birdsong and the Neurobiology of Human Language, Annals of the New York Academy of Sciences, vol.11, issue.1, pp.749-777, 2004.
DOI : 10.1196/annals.1298.038

J. Fischer and K. Hammerschmidt, Ultrasonic vocalizations in mouse models for speech and socio-cognitive disorders: insights into the evolution of vocal communication, Genes, Brain and Behavior, vol.113, issue.1, pp.17-27, 2010.
DOI : 10.1111/j.1601-183X.2010.00610.x

U. Jurgens, Neural pathways underlying vocal control, Neuroscience & Biobehavioral Reviews, vol.26, issue.2, pp.235-258, 2002.
DOI : 10.1016/S0149-7634(01)00068-9

M. Chao, Neurotrophins and their receptors: A convergence point for many signalling pathways, Nature Reviews Neuroscience, vol.4, issue.4, pp.299-309, 2003.
DOI : 10.1038/nrn1078

K. Shen and C. Cowan, Guidance Molecules in Synapse Formation and Plasticity, Cold Spring Harbor Perspectives in Biology, vol.2, issue.4, p.1842
DOI : 10.1101/cshperspect.a001842

T. Sun, C. Patoine, A. Abu-khalil, J. Visvader, and E. Sum, Early Asymmetry of Gene Transcription in Embryonic Human Left and Right Cerebral Cortex, Science, vol.308, issue.5729, pp.1794-1798, 2005.
DOI : 10.1126/science.1110324

Y. Yue, D. Widmer, A. Halladay, D. Cerretti, and G. Wagner, Specification of distinct dopaminergic neural pathways: roles of the Eph family receptor EphB1 and ligand ephrin-B2, J Neurosci, vol.19, pp.2090-2101, 1999.

B. Nelson, K. Claes, V. Todd, M. Chaverra, and F. Lefcort, NELL2 promotes motor and sensory neuron differentiation and stimulates mitogenesis in DRG in vivo, Developmental Biology, vol.270, issue.2, pp.322-335, 2004.
DOI : 10.1016/j.ydbio.2004.03.004

E. Choi, D. Kim, J. Kim, D. Kim, and J. Kim, Estrogen-dependent Transcription of the NEL-like 2 (NELL2) Gene and Its Role in Protection from Cell Death, Journal of Biological Chemistry, vol.285, issue.32, pp.25074-25084, 2010.
DOI : 10.1074/jbc.M110.100545

I. Cobos, U. Borello, and J. Rubenstein, Dlx Transcription Factors Promote Migration through Repression of Axon and Dendrite Growth, Neuron, vol.54, issue.6, pp.873-888, 2007.
DOI : 10.1016/j.neuron.2007.05.024

URL : http://doi.org/10.1016/j.neuron.2007.05.024

H. Marzban, U. Khanzada, S. Shabir, R. Hawkes, and K. Langnaese, Expression of the immunoglobulin superfamily neuroplastin adhesion molecules in adult and developing mouse cerebellum and their localisation to parasagittal stripes, The Journal of Comparative Neurology, vol.4, issue.3, pp.286-301, 2003.
DOI : 10.1002/cne.10719

K. Smalla, H. Matthies, K. Langnase, S. Shabir, and T. Bockers, The synaptic glycoprotein neuroplastin is involved in long-term potentiation at hippocampal CA1 synapses, Proceedings of the National Academy of Sciences, vol.97, issue.8, pp.4327-4332, 2000.
DOI : 10.1073/pnas.080389297

J. Sung, O. Engmann, M. Teylan, A. Nairn, and P. Greengard, WAVE1 controls neuronal activity-induced mitochondrial distribution in dendritic spines, Proceedings of the National Academy of Sciences, vol.105, issue.8, pp.3112-3116, 2008.
DOI : 10.1073/pnas.0712180105

S. Tahirovic, F. Hellal, D. Neukirchen, R. Hindges, and B. Garvalov, Rac1 Regulates Neuronal Polarization through the WAVE Complex, Journal of Neuroscience, vol.30, issue.20, pp.6930-6943
DOI : 10.1523/JNEUROSCI.5395-09.2010

M. Taniguchi and T. Shimizu, Characterization of a novel member of murine semaphorin family, Biochemical and Biophysical Research Communications, vol.314, issue.1, pp.242-248, 2004.
DOI : 10.1016/j.bbrc.2003.12.083

F. Simsek-duran, D. Linden, and G. Lonart, Adapter protein 14-3-3 is required for a presynaptic form of LTP in the cerebellum, Nature Neuroscience, vol.19, issue.12, pp.1296-1298, 2004.
DOI : 10.1038/nn1348

X. Liu, N. Novosedlik, A. Wang, M. Hudson, and I. Cohen, The DLX1and DLX2 genes and susceptibility to autism spectrum disorders, European Journal of Human Genetics, vol.29, issue.2, 2009.
DOI : 10.1016/j.tins.2004.05.008

N. Nakashima, T. Yamagata, M. Mori, M. Kuwajima, and K. Suwa, Expression analysis and mutation detection of DLX5 and DLX6 in autism, Brain and Development, vol.32, issue.2, pp.98-104, 2010.
DOI : 10.1016/j.braindev.2008.12.021

L. Poitras, M. Yu, C. Lesage-pelletier, R. Macdonald, and J. Gagne, An SNP in an ultraconserved regulatory element affects Dlx5/Dlx6 regulation in the forebrain, Development, vol.137, issue.18, pp.3089-3097, 2010.
DOI : 10.1242/dev.051052

J. Carroll and M. Brown, Estrogen Receptor Target Gene: An Evolving Concept, Molecular Endocrinology, vol.20, issue.8, pp.1707-1714, 2006.
DOI : 10.1210/me.2005-0334

L. Cirillo and K. Zaret, Specific Interactions of the Wing Domains of FOXA1 Transcription Factor with DNA, Journal of Molecular Biology, vol.366, issue.3, pp.720-724, 2007.
DOI : 10.1016/j.jmb.2006.11.087

K. Chen and N. Rajewsky, The evolution of gene regulation by transcription factors and microRNAs, Nature Reviews Genetics, vol.433, issue.2, pp.93-103, 2007.
DOI : 10.1038/nrg1990

S. Fineberg, K. Kosik, and B. Davidson, MicroRNAs Potentiate Neural Development, Neuron, vol.64, issue.3, pp.303-309, 2009.
DOI : 10.1016/j.neuron.2009.10.020

URL : http://doi.org/10.1016/j.neuron.2009.10.020

R. Saba and G. Schratt, MicroRNAs in neuronal development, function and dysfunction, Brain Research, vol.1338, pp.3-13, 2010.
DOI : 10.1016/j.brainres.2010.03.107

S. Ashraf and S. Kunes, A trace of silence: memory and microRNA at the synapse, Current Opinion in Neurobiology, vol.16, issue.5, pp.535-539, 2006.
DOI : 10.1016/j.conb.2006.08.007

M. Oberley and P. Farnham, Probing Chromatin Immunoprecipitates with CpG-Island Microarrays to Identify Genomic Sites Occupied by DNA-Binding Proteins, Methods Enzymol, vol.371, pp.577-596, 2003.
DOI : 10.1016/S0076-6879(03)71043-X

J. Wang, V. Nygaard, B. Smith-sorensen, E. Hovig, and O. Myklebost, MArray: analysing single, replicated or reversed microarray experiments, Bioinformatics, vol.18, issue.8, pp.1139-1140, 2002.
DOI : 10.1093/bioinformatics/18.8.1139

URL : http://bioinformatics.oxfordjournals.org/cgi/content/short/18/8/1139

R. Gentleman, V. Carey, D. Bates, B. Bolstad, and M. Dettling, Bioconductor: open software development for computational biology and bioinformatics, Genome Biology, vol.5, issue.10, p.80, 2004.
DOI : 10.1186/gb-2004-5-10-r80

W. Huber, A. Von-heydebreck, H. Sultmann, A. Poustka, and M. Vingron, Variance stabilization applied to microarray data calibration and to the quantification of differential expression, Bioinformatics, vol.18, issue.Suppl 1, pp.96-104, 2002.
DOI : 10.1093/bioinformatics/18.suppl_1.S96

G. Smyth, J. Michaud, and H. Scott, Use of within-array replicate spots for assessing differential expression in microarray experiments, Bioinformatics, vol.21, issue.9, pp.2067-2075, 2005.
DOI : 10.1093/bioinformatics/bti270

Y. Benjamini and Y. Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, Journal of the Royal Statistical Society, Series B (Methodological), vol.57, pp.289-300, 1995.

X. Wang and B. Seed, A PCR primer bank for quantitative gene expression analysis, Nucleic Acids Research, vol.31, issue.24, p.154, 2003.
DOI : 10.1093/nar/gng154

K. Livak and T. Schmittgen, Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2???????CT Method, Methods, vol.25, issue.4, pp.402-408, 2001.
DOI : 10.1006/meth.2001.1262

A. Isaacs, P. Oliver, E. Jones, A. Jeans, and A. Potter, A mutation in Af4 is predicted to cause cerebellar ataxia and cataracts in the robotic mouse, J Neurosci, vol.23, pp.1631-1637, 2003.