R. Sinden, Plasmodium differentiation in the mosquito, Parassitologia, vol.41, pp.139-148, 1999.

S. Blandin, S. Shiao, L. Moita, C. Janse, and A. Waters, Complement-Like Protein TEP1 Is a Determinant of Vectorial Capacity in the Malaria Vector Anopheles gambiae, Cell, vol.116, issue.5, pp.661-670, 2004.
DOI : 10.1016/S0092-8674(04)00173-4

T. Habtewold, M. Povelones, A. Blagborough, and G. Christophides, Transmission Blocking Immunity in the Malaria Non-Vector Mosquito Anopheles quadriannulatus Species A, PLoS Pathogens, vol.4, issue.5, 2008.
DOI : 10.1371/journal.ppat.1000070.s005

S. Blandin, E. Marois, and E. Levashina, Antimalarial Responses in Anopheles gambiae: From a Complement-like Protein to a Complement-like Pathway, Cell Host & Microbe, vol.3, issue.6, pp.364-374, 2008.
DOI : 10.1016/j.chom.2008.05.007

E. Levashina, L. Moita, S. Blandin, G. Vriend, and M. Lagueux, Conserved Role of a Complement-like Protein in Phagocytosis Revealed by dsRNA Knockout in Cultured Cells of the Mosquito, Anopheles gambiae, Cell, vol.104, issue.5, pp.709-718, 2001.
DOI : 10.1016/S0092-8674(01)00267-7

R. Baxter, C. Chang, Y. Chelliah, S. Blandin, and E. Levashina, Structural basis for conserved complement factor-like function in the antimalarial protein TEP1, Proceedings of the National Academy of Sciences, vol.104, issue.28, pp.11615-11620, 2007.
DOI : 10.1073/pnas.0704967104

M. Fraiture, R. Baxter, S. Steinert, Y. Chelliah, and C. Frolet, Two Mosquito LRR Proteins Function as Complement Control Factors in the TEP1-Mediated Killing of Plasmodium, Cell Host & Microbe, vol.5, issue.3, pp.273-284, 2009.
DOI : 10.1016/j.chom.2009.01.005

M. Povelones, R. Waterhouse, F. Kafatos, and G. Christophides, Leucine-Rich Repeat Protein Complex Activates Mosquito Complement in Defense Against Plasmodium Parasites, Science, vol.324, issue.5924, pp.258-261, 2009.
DOI : 10.1126/science.1171400

M. Osta, G. Christophides, and F. Kafatos, Effects of Mosquito Genes on Plasmodium Development, Science, vol.303, issue.5666, pp.2030-2032, 2004.
DOI : 10.1126/science.1091789

A. Cohuet, M. Osta, I. Morlais, P. Awono-ambene, and K. Michel, Anopheles and Plasmodium: from laboratory models to natural systems in the field, EMBO reports, vol.44, issue.12, pp.1285-1289, 2006.
DOI : 10.1126/science.1077061

M. Riehle, K. Markianos, O. Niare, J. Xu, and J. Li, Natural Malaria Infection in Anopheles gambiae Is Regulated by a Single Genomic Control Region, Science, vol.312, issue.5773, pp.577-579, 2006.
DOI : 10.1126/science.1124153

M. Riehle, J. Xu, B. Lazzaro, S. Rottschaefer, and B. Coulibaly, Anopheles gambiae APL1 Is a Family of Variable LRR Proteins Required for Rel1-Mediated Protection from the Malaria Parasite, Plasmodium berghei, PLoS ONE, vol.137, issue.11, 2008.
DOI : 10.1371/journal.pone.0003672.s001

G. Attardo, I. Hansen, and A. Raikhel, Nutritional regulation of vitellogenesis in mosquitoes: Implications for anautogeny, Insect Biochemistry and Molecular Biology, vol.35, issue.7, pp.661-675, 2005.
DOI : 10.1016/j.ibmb.2005.02.013

I. Hansen, G. Attardo, J. Park, Q. Peng, and A. Raikhel, Target of rapamycin-mediated amino acid signaling in mosquito anautogeny, Proceedings of the National Academy of Sciences, vol.101, issue.29, pp.10626-10631, 2004.
DOI : 10.1073/pnas.0403460101

A. Raikhel and T. Dhadialla, Accumulation of Yolk Proteins in Insect Oocytes, Annual Review of Entomology, vol.37, issue.1, pp.217-251, 1992.
DOI : 10.1146/annurev.en.37.010192.001245

M. Tufail and M. Takeda, Molecular characteristics of insect vitellogenins, Journal of Insect Physiology, vol.54, issue.12, pp.1447-1458, 2008.
DOI : 10.1016/j.jinsphys.2008.08.007

E. Arrese, L. Canavoso, Z. Jouni, J. Pennington, and K. Tsuchida, Lipid storage and mobilization in insects: current status and future directions, Insect Biochemistry and Molecular Biology, vol.31, issue.1, pp.7-17, 2001.
DOI : 10.1016/S0965-1748(00)00102-8

G. Atella, M. Silva-neto, D. Golodne, S. Arefin, and M. Shahabuddin, Anopheles gambiae lipophorin: Characterization and role in lipid transport to developing oocyte, Insect Biochemistry and Molecular Biology, vol.36, issue.5, pp.375-386, 2006.
DOI : 10.1016/j.ibmb.2006.01.019

D. Panáková, H. Sprong, E. Marois, C. Thiele, and S. Eaton, Lipoprotein particles are required for Hedgehog and Wingless signalling, Nature, vol.120, issue.7038, pp.58-65, 2005.
DOI : 10.1016/0925-4773(93)90101-3

T. Vaisar, S. Pennathur, P. Green, S. Gharib, and A. Hoofnagle, Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL, Journal of Clinical Investigation, vol.117, issue.3, pp.746-756, 2007.
DOI : 10.1172/JCI26206DS1

E. Pays and B. Vanhollebeke, Human innate immunity against African trypanosomes, Current Opinion in Immunology, vol.21, issue.5, pp.493-498, 2009.
DOI : 10.1016/j.coi.2009.05.024

D. Vlachou, T. Schlegelmilch, G. Christophides, and F. Kafatos, Functional Genomic Analysis of Midgut Epithelial Responses in Anopheles during Plasmodium Invasion, Current Biology, vol.15, issue.13, pp.1185-1195, 2005.
DOI : 10.1016/j.cub.2005.06.044

H. Cheon, S. Shin, G. Bian, J. Park, and A. Raikhel, Regulation of Lipid Metabolism Genes, Lipid Carrier Protein Lipophorin, and Its Receptor during Immune Challenge in the Mosquito Aedes aegypti, Journal of Biological Chemistry, vol.281, issue.13, pp.8426-8435, 2006.
DOI : 10.1074/jbc.M510957200

A. Mendes, T. Schlegelmilch, A. Cohuet, P. Awono-ambene, D. Iorio et al., Conserved Mosquito/Parasite Interactions Affect Development of Plasmodium falciparum in Africa, PLoS Pathogens, vol.38, issue.5, 2008.
DOI : 10.1371/journal.ppat.1000069.s008

G. Atella, P. Bittencourt-cunha, R. Nunes, M. Shahabuddin, and M. Silva-neto, The major insect lipoprotein is a lipid source to mosquito stages of malaria parasite, Acta Tropica, vol.109, issue.2, 2009.
DOI : 10.1016/j.actatropica.2008.10.004

J. Zhu, L. Chen, and A. Raikhel, Posttranscriptional control of the competence factor ??FTZ-F1 by juvenile hormone in the mosquito Aedes aegypti, Proceedings of the National Academy of Sciences, vol.100, issue.23, pp.13338-13343, 2003.
DOI : 10.1073/pnas.2234416100

J. Zhu, L. Chen, G. Sun, and A. Raikhel, The Competence Factor ??Ftz-F1 Potentiates Ecdysone Receptor Activity via Recruiting a p160/SRC Coactivator, Molecular and Cellular Biology, vol.26, issue.24, pp.9402-9412, 2006.
DOI : 10.1128/MCB.01318-06

G. Bian, S. Shin, H. Cheon, V. Kokoza, and A. Raikhel, Transgenic alteration of Toll immune pathway in the female mosquito Aedes aegypti, Proceedings of the National Academy of Sciences, vol.102, issue.38, pp.13568-13573, 2005.
DOI : 10.1073/pnas.0502815102

S. Meister, S. Kanzok, X. Zheng, C. Luna, and T. Li, Immune signaling pathways regulating bacterial and malaria parasite infection of the mosquito Anopheles gambiae, Proceedings of the National Academy of Sciences, vol.102, issue.32, pp.11420-11425, 2005.
DOI : 10.1073/pnas.0504950102

C. Frolet, M. Thoma, S. Blandin, J. Hoffmann, and E. Levashina, Boosting NF-??B-Dependent Basal Immunity of??Anopheles gambiae Aborts Development of??Plasmodium berghei, Immunity, vol.25, issue.4, pp.677-685, 2006.
DOI : 10.1016/j.immuni.2006.08.019

B. Franke-fayard, H. Trueman, J. Ramesar, J. Mendoza, and M. Van-der-keur, A Plasmodium berghei reference line that constitutively expresses GFP at a high level throughout the complete life cycle, Molecular and Biochemical Parasitology, vol.137, issue.1, pp.23-33, 2004.
DOI : 10.1016/j.molbiopara.2004.04.007

S. Bose and A. Raikhel, Mosquito vitellogenin subunits originate from a common precursor, Biochemical and Biophysical Research Communications, vol.155, issue.1, pp.436-442, 1988.
DOI : 10.1016/S0006-291X(88)81105-7

T. Sappington and A. Raikhel, Molecular characteristics of insect vitellogenins and vitellogenin receptors, Insect Biochemistry and Molecular Biology, vol.28, issue.5-6, pp.277-300, 1998.
DOI : 10.1016/S0965-1748(97)00110-0

T. Dhadialla and A. Raikhel, Biosynthesis of mosquito vitellogenin, J Biol Chem, vol.265, pp.9924-9933, 1990.

S. Blandin and E. Levashina, Mosquito immune responses against malaria parasites, Current Opinion in Immunology, vol.16, issue.1, pp.16-20, 2004.
DOI : 10.1016/j.coi.2003.11.010

S. Shiao, I. Hansen, J. Zhu, D. Sieglaff, and A. Raikhel, Juvenile hormone connects larval nutrition with target of rapamycin signaling in the mosquito Aedes aegypti, Journal of Insect Physiology, vol.54, issue.1, pp.231-239, 2008.
DOI : 10.1016/j.jinsphys.2007.09.007

G. Jaramillo-gutierrez, J. Rodrigues, G. Ndikuyeze, M. Povelones, and A. Molina-cruz, Mosquito immune responses and compatibility between Plasmodium parasites and anopheline mosquitoes, BMC Microbiology, vol.9, issue.1, p.154, 2009.
DOI : 10.1186/1471-2180-9-154

Y. Dong, R. Aguilar, Z. Xi, E. Warr, and E. Mongin, Anopheles gambiae Immune Responses to Human and Rodent Plasmodium Parasite Species, PLoS Pathogens, vol.31, issue.6, 2006.
DOI : 10.1371/journal.ppat.0020052.st007

Z. Li, S. Zhang, and Q. Liu, Vitellogenin Functions as a Multivalent Pattern Recognition Receptor with an Opsonic Activity, PLoS ONE, vol.12, issue.4, 2008.
DOI : 10.1371/journal.pone.0001940.g006

L. Garver, Y. Dong, and G. Dimopoulos, Caspar Controls Resistance to Plasmodium falciparum in Diverse Anopheline Species, PLoS Pathogens, vol.3, issue.3, 2009.
DOI : 10.1371/journal.ppat.1000335.s006

A. Ahmed, R. Maingon, P. Romans, and H. Hurd, Effects of malaria infection on vitellogenesis in Anopheles gambiae during two gonotrophic cycles, Insect Molecular Biology, vol.48, issue.Suppl. 6, pp.347-356, 2001.
DOI : 10.1046/j.0962-1075.2001.00273.x

J. Hopwood, A. Ahmed, A. Polwart, G. Williams, and H. Hurd, Malariainduced apoptosis in mosquito ovaries: a mechanism to control vector egg production, J Exp Biol, vol.204, pp.2773-2780, 2001.

A. Ahmed and H. Hurd, Immune stimulation and malaria infection impose reproductive costs in Anopheles gambiae via follicular apoptosis, Microbes and Infection, vol.8, issue.2, pp.308-315, 2006.
DOI : 10.1016/j.micinf.2005.06.026

S. Brandt and D. Schneider, Bacterial infection of fly ovaries reduces egg production and induces local hemocyte activation, Developmental & Comparative Immunology, vol.31, issue.11, pp.1121-1130, 2007.
DOI : 10.1016/j.dci.2007.02.003

M. Zerofsky, E. Harel, N. Silverman, and M. Tatar, Aging of the innate immune response in Drosophila melanogaster, Aging Cell, vol.7, issue.2, pp.103-108, 2005.
DOI : 10.1111/j.1474-9728.2005.00147.x

S. Groth, F. Scheidegger, and D. , Production of monoclonal antibodies: Strategy and tactics, Journal of Immunological Methods, vol.35, issue.1-2, pp.1-21, 1980.
DOI : 10.1016/0022-1759(80)90146-5

A. Henschel, F. Buchholz, and B. Habermann, DEQOR: a web-based tool for the design and quality control of siRNAs, Nucleic Acids Research, vol.32, issue.Web Server, pp.113-120, 2004.
DOI : 10.1093/nar/gkh408