N. Segal and L. Saltz, Evolving Treatment of Advanced Colon Cancer, Annual Review of Medicine, vol.60, issue.1, pp.207-219, 2009.
DOI : 10.1146/annurev.med.60.041807.132435

A. Lievre, J. Bachet, L. Corre, D. Boige, V. Landi et al., KRAS Mutation Status Is Predictive of Response to Cetuximab Therapy in Colorectal Cancer, Cancer Research, vol.66, issue.8, pp.3992-39950008, 2006.
DOI : 10.1158/0008-5472.CAN-06-0191

Y. Pommier, Topoisomerase I inhibitors: camptothecins and beyond, Nature Reviews Cancer, vol.24, issue.10, pp.789-802, 2006.
DOI : 10.1038/nrc1977

Y. Xu and M. Villalona-calero, Irinotecan: mechanisms of tumor resistance and novel strategies for modulating its activity, Annals of Oncology, vol.13, issue.12, pp.1841-1851, 2002.
DOI : 10.1093/annonc/mdf337

C. Gongora, L. Candeil, N. Vezzio, V. Copois, V. Denis et al., Altered expression of cell proliferation-related and interferon-stimulated genes in colon cancer cells resistant to SN38, Cancer Biology & Therapy, vol.7, issue.6, pp.822-8325838, 2008.
DOI : 10.4161/cbt.7.6.5838

S. Paillas, F. Boissière, F. Bibeau, A. Denouel, C. Mollevi et al., Targeting the p38 MAPK Pathway Inhibits Irinotecan Resistance in Colon Adenocarcinoma, Cancer Research, vol.71, issue.3, pp.1041-1049, 2011.
DOI : 10.1158/0008-5472.CAN-10-2726

URL : https://hal.archives-ouvertes.fr/inserm-00555572

F. Chiacchiera and C. Simone, Signal-dependent regulation of gene expression as a target for cancer treatment: Inhibiting p38?? in colorectal tumors, Cancer Letters, vol.265, issue.1, pp.16-26, 2008.
DOI : 10.1016/j.canlet.2008.02.061

Z. Yue, J. S. Yang, C. Levine, A. Heintz, and N. , Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor, Proceedings of the National Academy of Sciences, vol.100, issue.25, pp.15077-15082, 2003.
DOI : 10.1073/pnas.2436255100

X. Liang, S. Jackson, M. Seaman, K. Brown, B. Kemples et al., Induction of autophagy and inhibition of tumorigenesis by beclin 1, Nature, vol.402, pp.672-676, 1999.

M. Avitzour, R. Diskin, B. Raboy, N. Askari, D. Engelberg et al., Intrinsically active variants of all human p38 isoforms, FEBS Journal, vol.461, issue.4, pp.963-975, 2007.
DOI : 10.1111/j.1742-4658.2007.05644.x

W. Wang, J. Chen, R. Liao, Q. Deng, J. Zhou et al., Sequential Activation of the MEK-Extracellular Signal-Regulated Kinase and MKK3/6-p38 Mitogen-Activated Protein Kinase Pathways Mediates Oncogenic ras-Induced Premature Senescence, Molecular and Cellular Biology, vol.22, issue.10, pp.3389-3403, 2002.
DOI : 10.1128/MCB.22.10.3389-3403.2002

D. Bulavin, S. Saito, M. Hollander, K. Sakaguchi, C. Anderson et al., Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation, The EMBO Journal, vol.18, issue.23, pp.6845-6854, 1999.
DOI : 10.1093/emboj/18.23.6845

M. Weng, Y. Ho, and J. Lin, Chrysin induces G1 phase cell cycle arrest in C6 glioma cells through inducing p21Waf1/Cip1 expression: Involvement of p38 mitogen-activated protein kinase, Biochemical Pharmacology, vol.69, issue.12, pp.1815-1827, 2005.
DOI : 10.1016/j.bcp.2005.03.011

D. Klionsky, H. Abeliovitch, P. Agostinis, D. Agrawaj, G. Aliev et al., Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes, Autophagy, vol.4, issue.2, pp.151-175, 2008.
DOI : 10.4161/auto.5338

URL : https://hal.archives-ouvertes.fr/hal-00214269

D. Bulavin, S. Amundson, and A. Fornace, p38 and Chk1 kinases: different conductors for the G2/M checkpoint symphony, Current Opinion in Genetics & Development, vol.12, issue.1, pp.92-97, 2002.
DOI : 10.1016/S0959-437X(01)00270-2

G. Kim, S. Mercer, D. Ewton, Z. Yan, J. K. Friedman et al., The Stress-activated Protein Kinases p38alpha and JNK1 Stabilize p21Cip1 by Phosphorylation, Journal of Biological Chemistry, vol.277, issue.33, pp.29792-29802, 2002.
DOI : 10.1074/jbc.M201299200

G. Tang, Z. Yue, Z. Talloczy, T. Hagemann, W. Cho et al., Autophagy induced by Alexander disease-mutant GFAP accumulation is regulated by p38/MAPK and mTOR signaling pathways, Human Molecular Genetics, vol.17, issue.11, pp.1540-1555, 2008.
DOI : 10.1093/hmg/ddn042

Q. Cui, S. Tashiro, S. Onodera, M. Minami, and T. Ikejima, Oridonin Induced Autophagy in Human Cervical Carcinoma HeLa Cells Through Ras, JNK, and P38 Regulation, Journal of Pharmacological Sciences, vol.105, issue.4, pp.317-325, 2007.
DOI : 10.1254/jphs.FP0070336

F. Comes, A. Mastrone, P. Lastella, N. B. Susca, F. Bagnulo et al., A novel cell type-specific role of p38?? in the control of autophagy and cell death in colorectal cancer cells, Cell Death and Differentiation, vol.5, issue.4, pp.693-702, 2007.
DOI : 10.1124/jpet.106.106054

J. Webber and S. Tooze, Coordinated regulation of autophagy by p38?? MAPK through mAtg9 and p38IP, The EMBO Journal, vol.3, issue.1, pp.27-40321, 2009.
DOI : 10.1016/j.cell.2006.03.048

M. Abedin, D. Wang, M. Mcdonnell, U. Lehmann, and A. Kelekar, Autophagy delays apoptotic death in breast cancer cells following DNA damage, Cell Death and Differentiation, vol.109, issue.3, pp.500-510, 2007.
DOI : 10.1093/emboj/18.9.2330

J. Li, N. Hou, A. Faried, S. Tsutsumi, and H. Kuwano, Inhibition of autophagy augments 5-fluorouracil chemotherapy in human colon cancer in vitro and in vivo model, European Journal of Cancer, vol.46, issue.10, pp.1900-1909, 2010.
DOI : 10.1016/j.ejca.2010.02.021

E. Tasdemir, M. Maiuri, L. Galluzzi, I. Vitale, M. Djavaheri-mergny et al., Regulation of autophagy by cytoplasmic p53, Nature Cell Biology, vol.13, issue.6, pp.676-687, 2008.
DOI : 10.1093/emboj/19.21.5720

Y. Kondo, T. Kanzawa, R. Sawaya, and S. Kondo, The role of autophagy in cancer development and response to therapy, Nature Reviews Cancer, vol.335, issue.4, pp.726-734, 2005.
DOI : 10.1016/0014-4800(90)90061-H

G. Dimri, X. Lee, G. Basile, M. Acosta, G. Scott et al., A biomarker that identifies senescent human cells in culture and in aging skin in vivo., HCT116-TP53KO cells transduced with ShRNAs directed against MAPK14, MAPK11, MAPK12, MAPK13 or against Luciferase (ShLuc) (control). Equal loading is shown by GAPDH. B: SRB assays to assess SN38 cytotoxicity in HCT116-TP53KO cells that stably 27, pp.9363-9367, 1995.
DOI : 10.1073/pnas.92.20.9363

M. Shrna-targeting, M. , and M. Shluc, C: Western blot analysis (anti-HA antibody) of HCT116-TP53KO cells that express constitutively active MAPK14

A. Bafilomycin and . Baf, Equal loading is shown by Actin expression

H. Shmapk12?and, ShMAPK13?cells after treatment or not (NT) with 2 nM SN38 alone (SN) or with 10 nM 3-Methyladenine (SN+3MA) for 96 hours. C: SRB assays to assess the cytotoxicity of SN38 alone or in combination with 3-Methyladenine (SN38+3MA, HCT116-TP53KO-ShLuc and HCT116-TP53KO-ShMAPK14?cells. D: SRB assays to assess SN38 cytotoxicity of HCT116-TP53KO-ShLuc and

. Oxaliplatin, A: SRB assay to determine 5-FU and Oxaliplatin IC50 HCT116 and HCT116- TP53KO cells B: Western blot analysis of LC3-I and II expression in HCT116 and

H. ?m-for, Equal loading is shown by GAPDH expression. C: SRB assay to assess 5-FU cytotoxicity in HCT116 cells in which ATG5 or ATG7 or Luciferase (Ctrl) were down-regulated by siRNA. D: SRB assay to assess Oxaliplatin cytotoxicity in HCT116 cells in which ATG5 or ATG7 or Luciferase (Ctrl) were down-regulated by siRNA. E: SRB assay to assess 5-FU cytotoxicity in, HCT116-TP53KO cells in which ATG5 or ATG7 or Luciferase (Ctrl) were down-regulated by siRNA. F: SRB assay to assess Oxaliplatin cytotoxicity, p.34