A. Desai and T. Mitchison, MICROTUBULE POLYMERIZATION DYNAMICS, Annual Review of Cell and Developmental Biology, vol.13, issue.1, pp.83-117, 1997.
DOI : 10.1146/annurev.cellbio.13.1.83

M. Mejillano and R. Himes, Assembly properties of tubulin after carboxyl group modification, J Biol Chem, vol.266, pp.657-664, 1991.

A. Priel, J. Tuszynski, and N. Woolf, Transitions in microtubule C-termini conformations as a possible dendritic signaling phenomenon, European Biophysics Journal, vol.821, issue.1, pp.40-52, 2005.
DOI : 10.1007/s00249-005-0003-0

H. Sanabria, J. Miller, . Jr, A. Mershin, R. Luduena et al., Impedance Spectroscopy of ??-?? Tubulin Heterodimer Suspensions, Biophysical Journal, vol.90, pp.4644-4650, 2006.
DOI : 10.1529/biophysj.105.069427

D. Sackett, B. Bhattacharyya, and J. Wolff, Promotion of Tubulin Assembly by Carboxyterminal Charge Reduction, Annals of the New York Academy of Sciences, vol.260, issue.1 Dynamic Aspec, pp.460-466, 1986.
DOI : 10.1083/jcb.54.1.157

G. Schreiber and A. Fersht, Rapid, electrostatically assisted association of proteins, Nature Structural Biology, vol.54, issue.5, pp.427-431, 1996.
DOI : 10.1107/S0021889891004399

E. Salmon, W. Saxton, R. Leslie, M. Karow, and J. Mcintosh, Diffusion coefficient of fluorescein-labeled tubulin in the cytoplasm of embryonic cells of a sea urchin: video image analysis of fluorescence redistribution after photobleaching, The Journal of Cell Biology, vol.99, issue.6, pp.2157-2164, 1984.
DOI : 10.1083/jcb.99.6.2157

S. Northrup and H. Erickson, Kinetics of protein-protein association explained by Brownian dynamics computer simulation., Proceedings of the National Academy of Sciences, vol.89, issue.8, pp.3338-3342, 1992.
DOI : 10.1073/pnas.89.8.3338

L. Cassimeris, N. Pryer, and E. Salmon, Real-time observations of microtubule dynamic instability in living cells, The Journal of Cell Biology, vol.107, issue.6, pp.2223-2231, 1988.
DOI : 10.1083/jcb.107.6.2223

O. Berg, R. Winter, V. Hippel, and P. , Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory, Biochemistry, vol.20, issue.24, pp.6929-6948, 1981.
DOI : 10.1021/bi00527a028

R. Winter, O. Berg, V. Hippel, and P. , Diffusion-driven mechanisms of protein translocation on nucleic acids. 3. The Escherichia coli lac repressor-operator interaction: kinetic measurements and conclusions, Biochemistry, vol.20, issue.24, pp.6961-6977, 1981.
DOI : 10.1021/bi00527a030

K. Igarashi and K. Kashiwagi, Polyamines: Mysterious Modulators of Cellular Functions, Biochemical and Biophysical Research Communications, vol.271, issue.3, pp.559-564, 2000.
DOI : 10.1006/bbrc.2000.2601

T. Thomas and T. Thomas, Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications, Cellular and Molecular Life Sciences, vol.58, issue.2, pp.244-258, 2001.
DOI : 10.1007/PL00000852

O. Heby, G. Sarna, L. Marton, M. Omine, and S. Perry, Polyamine content of AKR leukemic cells in relation to the cell cycle, Cancer Res, vol.33, pp.2959-2964, 1973.

P. Pohjanpelto, I. Virtanen, and E. Holtta, Polyamine starvation causes disappearance of actin filaments and microtubules in polyamine-auxotrophic CHO cells, Nature, vol.50, issue.5832, pp.475-477, 1981.
DOI : 10.1038/293475a0

J. Wolff, Promotion of Microtubule Assembly by Oligocations:?? Cooperativity between Charged Groups, Biochemistry, vol.37, issue.30, pp.10722-10729, 1998.
DOI : 10.1021/bi980400n

D. Sackett, B. Bhattacharyya, and J. Wolff, Tubulin subunit carboxyl termini determine polymerization efficiency, J Biol Chem, vol.260, pp.43-45, 1985.

J. Tuszynski, J. Brown, E. Crawford, and E. Carpenter, Molecular dynamics simulations of tubulin structure and calculations of electrostatic properties of microtubules, Mathematical and Computer Modelling, vol.41, issue.10, pp.1055-1070, 2005.
DOI : 10.1016/j.mcm.2005.05.002

A. Grosberg, T. Nguyen, and B. Shklovskii, : The physics of charge inversion in chemical and biological systems, Reviews of Modern Physics, vol.74, issue.2, pp.329-317, 2002.
DOI : 10.1103/RevModPhys.74.329

A. Lau and P. P. , Counterion condensation and fluctuation-induced attraction, Physical Review E, vol.66, issue.4, p.41501, 2002.
DOI : 10.1103/PhysRevE.66.041501

URL : http://arxiv.org/abs/cond-mat/0209659

D. Pastré, L. Hamon, F. Landousy, I. Sorel, and M. David, Anionic Polyelectrolyte Adsorption on Mica Mediated by Multivalent Cations: A Solution to DNA Imaging by Atomic Force Microscopy under High Ionic Strengths, Langmuir, vol.22, issue.15, pp.6651-6660, 2006.
DOI : 10.1021/la053387y

T. Angelini, H. Liang, W. Wriggers, and G. Wong, Like-charge attraction between polyelectrolytes induced by counterion charge density waves, Proceedings of the National Academy of Sciences, vol.100, issue.15, pp.8634-8637, 2003.
DOI : 10.1073/pnas.1533355100

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC166363

T. Nguyen, I. Rouzina, and B. Shklovskii, Reentrant condensation of DNA induced by multivalent counterions, The Journal of Chemical Physics, vol.112, issue.5, pp.2562-2568, 2000.
DOI : 10.1063/1.480819

I. Rouzina and V. Bloomfield, Macroion Attraction Due to Electrostatic Correlation between Screening Counterions. 1. Mobile Surface-Adsorbed Ions and Diffuse Ion Cloud, The Journal of Physical Chemistry, vol.100, issue.23, pp.9977-9989, 1996.
DOI : 10.1021/jp960458g

D. Pastre, O. Pietrement, F. Landousy, L. Hamon, and I. Sorel, A new approach to DNA bending by polyamines and its implication in DNA condensation, European Biophysics Journal, vol.32, issue.3, pp.214-223, 2006.
DOI : 10.1007/s00249-005-0025-7

D. Needleman, M. Ojeda-lopez, U. Raviv, H. Miller, and L. Wilson, From The Cover: Higher-order assembly of microtubules by counterions: From hexagonal bundles to living necklaces, Proceedings of the National Academy of Sciences, vol.101, issue.46, pp.16099-16103, 2004.
DOI : 10.1073/pnas.0406076101

I. Rouzina and V. Bloomfield, Competitive Electrostatic Binding of Charged Ligands to Polyelectrolytes:?? Planar and Cylindrical Geometries, The Journal of Physical Chemistry, vol.100, issue.10, pp.4292-4304, 1996.
DOI : 10.1021/jp9525898

D. Pastré, O. Piétrement, S. Fusil, F. Landousy, and J. Jeusset, Adsorption of DNA to Mica Mediated by Divalent Counterions: A Theoretical and Experimental Study, Biophysical Journal, vol.85, issue.4, pp.2507-2518, 2003.
DOI : 10.1016/S0006-3495(03)74673-6

B. Bhattacharyya, D. Sackett, and J. Wolff, Tubulin, hybrid dimers, and tubulin S. Stepwise charge reduction and polymerization, J Biol Chem, vol.260, pp.10208-10216, 1985.

F. Oosawa and M. Kasai, A theory of linear and helical aggregations of macromolecules, Journal of Molecular Biology, vol.4, issue.1, pp.10-21, 1962.
DOI : 10.1016/S0022-2836(62)80112-0

A. Wegner and J. Engel, Kinetics of the cooperative association of actin to actin filament, Biophysical Chemistry, vol.3, issue.3, pp.215-225, 1975.
DOI : 10.1016/0301-4622(75)80013-5

W. Voter and H. Erickson, The kinetics of microtubule assembly. Evidence for a two-stage nucleation mechanism, J Biol Chem, vol.259, pp.10430-10438, 1984.

H. Flyvbjerg, E. Jobs, and S. Leibler, Kinetics of self-assembling microtubules: an "inverse problem" in biochemistry., Proceedings of the National Academy of Sciences, vol.93, issue.12, pp.5975-5979, 1996.
DOI : 10.1073/pnas.93.12.5975

C. Bonfils, N. Bec, B. Lacroix, M. Harricane, and C. Larroque, Kinetic Analysis of Tubulin Assembly in the Presence of the Microtubule-associated Protein TOGp, Journal of Biological Chemistry, vol.282, issue.8, pp.5570-5581, 2007.
DOI : 10.1074/jbc.M605641200

URL : https://hal.archives-ouvertes.fr/inserm-00144754

R. Leguy, R. Melki, D. Pantaloni, and M. Carlier, Monomeric ??-Tubulin Nucleates Microtubules, Journal of Biological Chemistry, vol.275, issue.29, pp.21975-21980, 2000.
DOI : 10.1074/jbc.M000688200

N. Caudron, I. Arnal, E. Buhler, D. Job, and O. Valiron, Microtubule Nucleation from Stable Tubulin Oligomers, Journal of Biological Chemistry, vol.277, issue.52, pp.50973-50979, 2002.
DOI : 10.1074/jbc.M209753200

O. Brien, E. Erickson, and H. , Assembly of pure tubulin in the absence of free GTP: effect of magnesium, glycerol, ATP, and the nonhydrolyzable GTP analogs, Biochemistry, vol.28, issue.3, pp.1413-1422, 1989.
DOI : 10.1021/bi00429a070

P. Hippel and O. Berg, Facilitated target location in biological systems, J Biol Chem, vol.264, pp.675-678, 1989.

S. Halford and J. Marko, How do site-specific DNA-binding proteins find their targets?, Nucleic Acids Research, vol.32, issue.10, pp.3040-3052, 2004.
DOI : 10.1093/nar/gkh624

T. Hu, A. Grosberg, and B. Shklovskii, How Proteins Search for Their Specific Sites on DNA: The Role of DNA Conformation, Biophysical Journal, vol.90, issue.8, pp.2731-2744, 2006.
DOI : 10.1529/biophysj.105.078162

F. Pampaloni, G. Lattanzi, J. A. Surrey, T. Frey, and E. , Thermal fluctuations of grafted microtubules provide evidence of a length-dependent persistence length, Proceedings of the National Academy of Sciences, vol.103, issue.27, pp.10248-10253, 2006.
DOI : 10.1073/pnas.0603931103

T. Krouglova, J. Vercammen, and Y. Engelborghs, Correct Diffusion Coefficients of Proteins in Fluorescence Correlation Spectroscopy. Application to Tubulin Oligomers Induced by Mg2+ and Paclitaxel, Biophysical Journal, vol.87, issue.4, pp.2635-2646, 2004.
DOI : 10.1529/biophysj.104.040717

R. Walker, O. Brien, E. Pryer, N. Soboeiro, M. Voter et al., Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies, The Journal of Cell Biology, vol.107, issue.4, pp.1437-1448, 1988.
DOI : 10.1083/jcb.107.4.1437

V. Vanburen, D. Odde, and L. Cassimeris, Estimates of lateral and longitudinal bond energies within the microtubule lattice, Proceedings of the National Academy of Sciences, vol.99, issue.9, pp.6035-6040, 2002.
DOI : 10.1073/pnas.092504999

D. Chretien and S. Fuller, Microtubules switch occasionally into unfavorable configurations during elongation, Journal of Molecular Biology, vol.298, issue.4, pp.663-676, 2000.
DOI : 10.1006/jmbi.2000.3696

P. Anderson, S. Bardocz, R. Campos, and D. Brown, The effect of polyamines on tubulin assembly, Biochemical and Biophysical Research Communications, vol.132, issue.1, pp.147-154, 1985.
DOI : 10.1016/0006-291X(85)91000-9

S. Pedigo, R. Williams, and . Jr, Concentration Dependence of Variability in Growth Rates of Microtubules, Biophysical Journal, vol.83, issue.4, pp.1809-1819, 2002.
DOI : 10.1016/S0006-3495(02)73946-5

I. Janosi, D. Chretien, and H. Flyvbjerg, Structural Microtubule Cap: Stability, Catastrophe, Rescue, andThird State, Biophysical Journal, vol.83, issue.3, pp.1317-1330, 2002.
DOI : 10.1016/S0006-3495(02)73902-7

D. Odde, Estimation of the diffusion-limited rate of microtubule assembly, Biophysical Journal, vol.73, issue.1, pp.88-96, 1997.
DOI : 10.1016/S0006-3495(97)78050-0

R. Walker, N. Pryer, and E. Salmon, Dilution of individual microtubules observed in real time in vitro: evidence that cap size is small and independent of elongation rate, The Journal of Cell Biology, vol.114, issue.1, pp.73-81, 1991.
DOI : 10.1083/jcb.114.1.73

W. Katz, B. Weinstein, and F. Solomon, Regulation of tubulin levels and microtubule assembly in Saccharomyces cerevisiae: consequences of altered tubulin gene copy number., Molecular and Cellular Biology, vol.10, issue.10, pp.5286-5294, 1990.
DOI : 10.1128/MCB.10.10.5286

Y. Zheng, M. Wong, B. Alberts, and T. Mitchison, Nucleation of microtubule assembly by a ??-tubulin-containing ring complex, Nature, vol.378, issue.6557, pp.578-583, 1995.
DOI : 10.1038/378578a0

J. Atkins, J. Lewis, C. Anderson, and R. Gesteland, Enhanced differential synthesis of proteins in a mammalian cell-free system by addition of polyamines, J Biol Chem, vol.250, pp.5688-5695, 1975.

A. Banan, S. Mccormack, and L. Johnson, Polyamines are required for microtubule formation during gastric mucosal healing, Am J Physiol, vol.274, pp.879-885, 1998.

M. Piehl, U. Tulu, P. Wadsworth, and L. Cassimeris, Centrosome maturation: Measurement of microtubule nucleation throughout the cell cycle by using GFP-tagged EB1, Proceedings of the National Academy of Sciences, vol.101, issue.6, pp.1584-1588, 2004.
DOI : 10.1073/pnas.0308205100

M. Castoldi and A. Popov, Purification of brain tubulin through two cycles of polymerization???depolymerization in a high-molarity buffer, Protein Expression and Purification, vol.32, issue.1, pp.83-88, 2003.
DOI : 10.1016/S1046-5928(03)00218-3

H. Detrich and R. Williams, Reversible dissociation of the ???? dimer of tubulin from bovine brain, Biochemistry, vol.17, issue.19, pp.3900-3907, 1978.
DOI : 10.1021/bi00612a002

L. Knipling, J. Hwang, and J. Wolff, Preparation and properties of pure tubulin S, Cell Motility and the Cytoskeleton, vol.5, issue.1, pp.63-71, 1999.
DOI : 10.1002/(SICI)1097-0169(1999)43:1<63::AID-CM7>3.0.CO;2-Z

T. Keating, J. Peloquin, V. Rodionov, D. Momcilovic, and G. Borisy, Microtubule release from the centrosome, Proceedings of the National Academy of Sciences, vol.94, issue.10, pp.5078-5083, 1997.
DOI : 10.1073/pnas.94.10.5078

W. Vater, W. Fritzsche, A. Schaper, K. Bohm, and E. Unger, Scanning force microscopy of microtubules and polymorphic tubulin assemblies in air and in liquid, J Cell Sci, vol.108, pp.1063-1069, 1995.