M. Félétou and P. Vanhoutte, Endothelial dysfunction: a multifaceted disorder (The Wiggers Award Lecture), AJP: Heart and Circulatory Physiology, vol.291, issue.3, pp.985-1002, 2006.
DOI : 10.1152/ajpheart.00292.2006

J. Deanfield, J. Halcox, and T. Rabelink, Endothelial function and dysfunction: testing and clinical relevance, Circulation, vol.115, pp.1285-1295, 2007.

R. Joannides, W. Haefeli, and L. Linder, Nitric Oxide Is Responsible for Flow-Dependent Dilatation of Human Peripheral Conduit Arteries In Vivo, Circulation, vol.91, issue.5, pp.1314-1319, 1995.
DOI : 10.1161/01.CIR.91.5.1314

C. Thuillez and V. Richard, Targeting endothelial dysfunction in hypertensive subjects, Journal of Human Hypertension, vol.374, issue.1, pp.21-25, 2005.
DOI : 10.1067/mcp.2001.114670

J. Constans and C. Conri, Circulating markers of endothelial function in cardiovascular disease, Clinica Chimica Acta, vol.368, issue.1-2, pp.33-47, 2006.
DOI : 10.1016/j.cca.2005.12.030

T. Rabelink, H. De-boer, and A. Van-zonneveld, Endothelial activation and circulating markers of endothelial activation in kidney disease, Nature Reviews Nephrology, vol.45, issue.7, pp.404-414, 2010.
DOI : 10.1038/nrneph.2010.65

A. Go, G. Chertow, D. Fan, C. Mcculloch, and C. Hsu, Chronic Kidney Disease and the Risks of Death, Cardiovascular Events, and Hospitalization, New England Journal of Medicine, vol.351, issue.13, pp.1296-1305, 2004.
DOI : 10.1056/NEJMoa041031

C. Zoccali, Endothelial dysfunction in CKD: a new player in town?, Nephrology Dialysis Transplantation, vol.23, issue.3, 2008.
DOI : 10.1093/ndt/gfm924

G. Kaysen and J. Eiserich, The Role of Oxidative Stress-Altered Lipoprotein Structure and Function and Microinflammation on Cardiovascular Risk in Patients with Minor Renal Dysfunction, Journal of the American Society of Nephrology, vol.15, issue.3, pp.538-548, 2004.
DOI : 10.1097/01.ASN.0000111744.00916.E6

J. Cooke, Asymmetrical dimethylarginine: the Uber marker? Circulation, pp.1813-1818, 2004.

F. Stam, C. Van-guldener, C. Schalkwijk, P. Ter-wee, A. Donker et al., Impaired renal function is associated with markers of endothelial dysfunction and increased inflammatory activity, Nephrology Dialysis Transplantation, vol.18, issue.5, pp.892-898, 2003.
DOI : 10.1093/ndt/gfg080

F. Mihout, N. Shweke, and N. Bige, Asymmetric dimethylarginine (ADMA) induces chronic kidney disease through a mechanism involving collagen and TGF-??1 synthesis, The Journal of Pathology, vol.12, issue.1, pp.37-45, 2011.
DOI : 10.1002/path.2769

D. Fliser, F. Kronenberg, and J. Kielstein, Asymmetric Dimethylarginine and Progression of Chronic Kidney Disease: The Mild to Moderate Kidney Disease Study, Journal of the American Society of Nephrology, vol.16, issue.8, pp.2456-2461, 2005.
DOI : 10.1681/ASN.2005020179

K. Bedard and K. Krause, The NOX Family of ROS-Generating NADPH Oxidases: Physiology and Pathophysiology, Physiological Reviews, vol.87, issue.1, pp.245-313, 2007.
DOI : 10.1152/physrev.00044.2005

P. Tharaux, C. Chatziantoniou, D. Casellas, L. Fouassier, R. Ardaillou et al., Vascular Endothelin-1 Gene Expression and Synthesis and Effect on Renal Type I Collagen Synthesis and Nephroangiosclerosis During Nitric Oxide Synthase Inhibition in Rats, Circulation, vol.99, issue.16, pp.2185-2191, 1999.
DOI : 10.1161/01.CIR.99.16.2185

URL : https://hal.archives-ouvertes.fr/inserm-00000114

I. Mimura and M. Nangaku, The suffocating kidney: tubulointerstitial hypoxia in end-stage renal disease, Nature Reviews Nephrology, vol.31, issue.11, pp.667-678, 2010.
DOI : 10.1038/nrneph.2010.124

J. Norman, I. Clark, and P. Garcia, Hypoxia promotes fibrogenesis in human renal fibroblasts, Kidney International, vol.58, issue.6, pp.2351-2366, 2000.
DOI : 10.1046/j.1523-1755.2000.00419.x

M. Leonard, D. Cottell, C. Godson, H. Brady, and C. Taylor, The Role of HIF-1?? in Transcriptional Regulation of the Proximal Tubular Epithelial Cell Response to Hypoxia, Journal of Biological Chemistry, vol.278, issue.41, pp.40296-40304, 2003.
DOI : 10.1074/jbc.M302560200

S. Brodsky, T. Yamamoto, and T. Tada, Endothelial dysfunction in ischemic acute renal failure: rescue by transplanted endothelial cells, American Journal of Physiology - Renal Physiology, vol.282, issue.6, pp.1140-1149, 2002.
DOI : 10.1152/ajprenal.00329.2001

Y. Choi, S. Chakraborty, and V. Nguyen, Peritubular capillary loss is associated with chronic tubulointerstitial injury in human kidney: Altered expression of vascular endothelial growth factor, Human Pathology, vol.31, issue.12, pp.1491-1497, 2000.
DOI : 10.1053/hupa.2000.20373

O. Kwon, S. Hong, T. Sutton, and C. Temm, Preservation of peritubular capillary endothelial integrity and increasing pericytes may be critical to Guerrot et al. Fibrogenesis & Tissue Repair):S15 http://www.fibrogenesis.com/content/5/S1/S15 recovery from postischemic acute kidney injury, Am J Physiol Renal Physiol, vol.5, issue.295, pp.351-359, 2008.

R. Iliescu, S. Fernandez, S. Kelsen, C. Maric, and A. Chade, Role of renal microcirculation in experimental renovascular disease, Nephrology Dialysis Transplantation, vol.25, issue.4, pp.1079-1087, 2010.
DOI : 10.1093/ndt/gfp605

P. Ochodnický, R. Henning, H. Buikema, D. De-zeeuw, A. Provoost et al., Renal vascular dysfunction precedes the development of renal damage in the hypertensive Fawn-Hooded rat, AJP: Renal Physiology, vol.298, issue.3, pp.625-633, 2010.
DOI : 10.1152/ajprenal.00289.2009

K. Bojakowski, P. Abramczyk, M. Bojakowska, A. Zwolinska, J. Przybylski et al., Fucoidan improves the renal blood flow in the early stage of renal ischemia/reperfusion injury in the rat, J Physiol Pharmacol, vol.52, pp.137-143, 2001.

N. Kato, Y. Yuzawa, and T. Kosugi, The E-Selectin Ligand Basigin/CD147 Is Responsible for Neutrophil Recruitment in Renal Ischemia/Reperfusion, Journal of the American Society of Nephrology, vol.20, issue.7, pp.1565-1576, 2009.
DOI : 10.1681/ASN.2008090957

D. Vriese, A. Endlich, K. Elger, and M. , The role of selectins in glomerular leukocyte recruitment in rat anti-glomerular basement membrane glomerulonephritis, J Am Soc Nephrol, vol.10, pp.2510-2517, 1999.

S. Asgeirsdóttir, P. Zwiers, and H. Morselt, Inhibition of proinflammatory genes in anti-GBM glomerulonephritis by targeted dexamethasone-loaded AbEsel liposomes, AJP: Renal Physiology, vol.294, issue.3, pp.554-561, 2008.
DOI : 10.1152/ajprenal.00391.2007

K. Kelly, W. Williams, . Jr, R. Colvin, and J. Bonventre, Antibody to intercellular adhesion molecule 1 protects the kidney against ischemic injury., Proceedings of the National Academy of Sciences, vol.91, issue.2, pp.812-816, 1994.
DOI : 10.1073/pnas.91.2.812

K. Kelly, W. Williams, . Jr, and R. Colvin, Intercellular adhesion molecule-1-deficient mice are protected against ischemic renal injury., Journal of Clinical Investigation, vol.97, issue.4, pp.1056-1063, 1996.
DOI : 10.1172/JCI118498

G. Sohl and K. Willecke, Gap junctions and the connexin protein family, Cardiovascular Research, vol.62, issue.2, pp.228-232, 2004.
DOI : 10.1016/j.cardiores.2003.11.013

A. Harris, Connexin channel permeability to cytoplasmic molecules, Progress in Biophysics and Molecular Biology, vol.94, issue.1-2, pp.120-143, 2007.
DOI : 10.1016/j.pbiomolbio.2007.03.011

K. Scheckenbach, S. Crespin, B. Kwak, and M. Chanson, Connexin Channel-Dependent Signaling Pathways in Inflammation, Journal of Vascular Research, vol.48, issue.2, pp.91-103, 2010.
DOI : 10.1159/000316942

C. Chadjichristos, K. Scheckenbach, and T. Van-veen, Endothelial-Specific Deletion of Connexin40 Promotes Atherosclerosis by Increasing CD73-Dependent Leukocyte Adhesion, Circulation, vol.121, issue.1, pp.123-131, 2010.
DOI : 10.1161/CIRCULATIONAHA.109.867176

L. Veliz, F. Gonzalez, B. Duling, J. Saez, and M. Boric, Functional role of gap junctions in cytokine-induced leukocyte adhesion to endothelium in vivo, AJP: Heart and Circulatory Physiology, vol.295, issue.3, pp.1056-1066, 2008.
DOI : 10.1152/ajpheart.00266.2008

K. Parthasarathi, H. Ichimura, and E. Monma, Connexin 43 mediates spread of Ca2+ -dependent proinflammatory responses in lung capillaries, Journal of Clinical Investigation, vol.116, issue.8, pp.2193-2200, 2006.
DOI : 10.1172/JCI26605

C. Chadjichristos, S. Morel, and J. Derouette, Targeting Connexin 43 Prevents Platelet-Derived Growth Factor-BB-Induced Phenotypic Change in Porcine Coronary Artery Smooth Muscle Cells, Circulation Research, vol.102, issue.6, pp.653-660, 2008.
DOI : 10.1161/CIRCRESAHA.107.170472

J. Dussaule, D. Guerrot, and A. Huby, The role of cell plasticity in progression and reversal of renal fibrosis, International Journal of Experimental Pathology, vol.19, issue.Suppl. 1, 2011.
DOI : 10.1111/j.1365-2613.2011.00760.x

P. Galichon and A. Hertig, Epithelial to mesenchymal transition as a biomarker in renal fibrosis: are we ready for the bedside? Fibrogenesis Tissue Repair, p.11, 2011.

W. Kriz, B. Kaissling, L. Hir, and M. , Epithelial-mesenchymal transition (EMT) in kidney fibrosis: fact or fantasy?, Journal of Clinical Investigation, vol.121, issue.2, pp.468-474, 2011.
DOI : 10.1172/JCI44595

S. Piera-velazquez, Z. Li, and S. Jimenez, Role of Endothelial-Mesenchymal Transition (EndoMT) in the Pathogenesis of Fibrotic Disorders, The American Journal of Pathology, vol.179, issue.3, pp.1074-1080, 2011.
DOI : 10.1016/j.ajpath.2011.06.001

E. Zeisberg, O. Tarnavski, and M. Zeisberg, Endothelial-to-mesenchymal transition contributes to cardiac fibrosis, Nature Medicine, vol.100, issue.8, pp.952-961, 2007.
DOI : 10.1038/nm1613

A. Kizu, D. Medici, and R. Kalluri, Endothelial???Mesenchymal Transition as a Novel Mechanism for Generating Myofibroblasts during Diabetic Nephropathy, The American Journal of Pathology, vol.175, issue.4
DOI : 10.2353/ajpath.2009.090698

E. Zeisberg, S. Potenta, H. Sugimoto, M. Zeisberg, and R. Kalluri, Fibroblasts in Kidney Fibrosis Emerge via Endothelial-to-Mesenchymal Transition, Journal of the American Society of Nephrology, vol.19, issue.12, pp.2282-2287, 2008.
DOI : 10.1681/ASN.2008050513

J. Li, X. Qu, and J. Yao, Blockade of Endothelial-Mesenchymal Transition by a Smad3 Inhibitor Delays the Early Development of Streptozotocin-Induced Diabetic Nephropathy, Diabetes, vol.59, issue.10, pp.2612-2624, 2010.
DOI : 10.2337/db09-1631

D. Basile, J. Friedrich, and J. Spahic, Impaired endothelial proliferation and mesenchymal transition contribute to vascular rarefaction following acute kidney injury, AJP: Renal Physiology, vol.300, issue.3, pp.721-733, 2011.
DOI : 10.1152/ajprenal.00546.2010

N. Melo-filho, C. Belmiro, and R. Gonçalves, Fucosylated chondroitin sulfate attenuates renal fibrosis in animals submitted to unilateral ureteral obstruction: a P-selectin-mediated event?, AJP: Renal Physiology, vol.299, issue.6, pp.1299-1307, 2010.
DOI : 10.1152/ajprenal.00217.2010

D. Choi, J. Jeong, and B. Lim, Pretreatment of sildenafil attenuates ischemia-reperfusion renal injury in rats, AJP: Renal Physiology, vol.297, issue.2, pp.362-370, 2009.
DOI : 10.1152/ajprenal.90609.2008

S. Asgeirsdóttir, J. Kamps, and H. Bakker, Site-Specific Inhibition of Glomerulonephritis Progression by Targeted Delivery of Dexamethasone to Glomerular Endothelium, Molecular Pharmacology, vol.72, issue.1, pp.121-131, 2007.
DOI : 10.1124/mol.107.034140

Y. Masuda, A. Shimizu, and T. Mori, Vascular Endothelial Growth Factor Enhances Glomerular Capillary Repair and Accelerates Resolution of Experimentally Induced Glomerulonephritis, The American Journal of Pathology, vol.159, issue.2, pp.599-608, 2001.
DOI : 10.1016/S0002-9440(10)61731-2

A. Chade, X. Zhu, and J. Krier, Endothelial Progenitor Cells Homing and Renal Repair in Experimental Renovascular Disease, STEM CELLS, vol.72, issue.Suppl 1, pp.1039-1047, 2010.
DOI : 10.1002/stem.426

G. Stokman, I. Stroo, N. Claessen, G. Teske, S. Florquin et al., SDF-1 provides morphological and functional protection against renal ischaemia/reperfusion injury, Nephrology Dialysis Transplantation, vol.25, issue.12, pp.3852-3859, 2010.
DOI : 10.1093/ndt/gfq311