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AbstracNWe present a new algorithm, called local . INTRODUCTION
MAP STAPLE, to estimate from a set of multi-label
segmentations both a reference standard segmentation and  Label fusion algorithms have attracted considerable
spatially varying performance parameters. It is based on a nterest in recent years. First, they may be used to
sliding wmdow.technlque to estimate the segmentatlon and qyaluate inter- and intra-expert manual segmentation
the segmentation performance parameters for each input ., jahility for example to help reaching a consensus for
segmentation. In order to allow for optimal fusion from the . )
small amount of data in each local region, and to account the ma_n_ual delineation of s’Fructures [1]. Furt_her, they are
for the possibility of labels not being observed in a local &S0 utilized for the evaluation of segmentation or regis-
region of some (or a”) input SegmentationS, we introduce tl‘a'[ion algorithms in Comparison to Several raters. SUCh
prior probabilities for the local performance parameters algorithms allow for the evaluation of one or several au-
through a new Maximum A Posteriori formulation of tomatic segmentation algorithms against multiple manual
STAPLE. Further, we propose an expression to compute reference segmentations, thereby providing robust eval-
conbdence intervals in the estimated local performance yations of automatic delineation. Popular methods for
parameters. segmentation evaluation [2], [3] compute global scores
We carried out several experiments with local MAP - gyer the entire image. However, it has been suggested
STAPLE to characterize its performance and value for [4] that evaluating local performance of a segmentation

local segmentation evaluation. First, with simulated seg- . . . . .
. . _~ algorithm is better suited in some cases, as in some
mentations with known reference standard segmentation

and spatially varying performance, we show that local appl_ications the requ_iremen_ts fo_r accuracy vary across
MAP STAPLE performs better than both STAPLE and the image: very precise delineations may be needed in
majority voting. Then we present evaluations with data sets Crucial areas while a lower precision may be acceptable
from clinical applications. These experiments demonstrate for other areas. New techniques for local performance
that spatial adaptivity in segmentation performance is estimation are critical for such applications, in order to

an important property to capture. We compared the facilitate the automatic and quantitative assessment of

local MAP STAPLE segmentations to STAPLE, and 10 gegmentation accuracy while incorporating information
previously published fusion techniques and demonstrate from multiple experts

the superiority of local MAP STAPLE over other state-of- . . .
the-art algorithms. Label fusion algorithms have also been recently uti-

_ lized in atlas construction [5] and to fuse multiple atlases
Index TermNSTAPLE, segmentation, label fusion, ref- for segmentation [6], [7], [8], showing a signibcant
erence standard, performance evaluation. improvement over standard single-template based seg-
mentation techniques. As shown in [9], [10], the label
_ _ o fusion strategy is a crucial aspect of successful multi-
Copyright (c) 2010 IEEE. Personal use of this material is permt[-emplate based segmentation. Among recent works on
ted. However, permission to use this material for any other purpo )

e . .. . .
must be obtained from the IEEE by sending a request to puag%el fusion, S_everal have used m_alorlty voting [7], i.e.
permissions@ieee.org. the segmentation label for a voxel is selected as the most



common label from all the aligned template segmeft4] found no signibcant difference between STAPLE
tations at that voxel. Template selection and majoritpitialized with a prior from voting and majority voting,
voting enable automated segmentation, however th&yggesting that either all input images were equally
are limited by the use of a global metric for templatevell aligned to the target and thus equal weighting is
selection, by considering each voxel independently froappropriate, or that the weight of the prior was so high
the others, and by assuming each template contribusss to overwhelm the weighting of the input images.
equally to the bnal segmentation. Majority voting gerf-urther, both Artaechevarria et al. [10] and Langerak et
erates locally inconsistent segmentations in regions af [15] showed that STAPLE performed worse when
high anatomical variability and in regions where poguoorly initialized with a uniform global prior that was
registration accuracy is achieved, such as in the corticadt representative of the expected segmentation, a Pnding
gray matter which has high inter-individual anatomicadreviously recognized in [3].
variability. These observations suggest that performance of the
To address these challenges, several groups [1BJAPLE algorithm could be signibcantly improved by
[11], [12] proposed weighted majority voting, dePningomputing spatially varying performance parameters for
weights from intensity differences between the imagesach input segmentation. Moreover, such local perfor-
In regions of variable registration accuracy, the intensitpance estimates would greatly benebt segmentation
differences are able to weight those templates that besgaluation, thereby helping in the development of con-
match (smaller local intensity differences) higher thasensus for manual segmentations and improving our
those that match poorly (larger local intensity differunderstanding of the expert segmentation process. How-
ences). However, such intensity-based weights are atse@r, developing a STAPLE algorithm with spatially
prone to local errors, noise or artifacts in the images, amdrying parameters is not trivial and requires that three
to the strategy used for intensity normalization and imageain questions be answered. First, one needs to debne
registration. The most appropriate way to debne thesew local computations are performed to ensure that
weights or to incorporate intensity information remainthe obtained reference standard and local performance
unclear. estimates vary appropriately over the image. Secondly,
A widely used algorithm for label fusion is STAPLEperforming local operations may lead to cases where
[13], [3]. It has been evaluated for label fusion and founsbme structures are not present for some experts in a
superior to several combination rules, including majoritpcal region. The regular STAPLE algorithm requires ob-
voting [9]. It utilizes the Expectation-Maximization al-servations of each label in order to estimate performance.
gorithm to compute both a multi-label reference standakal the absence of observations for a label, an estimate
and segmentation performance parameters. These qualftperformance for that label cannot be computed with
parameters are used to infer optimal weighting for tHeTAPLE. This can lead to erroneous fusion results.
estimation of the reference standard segmentation, artardly, since the computations are local, the size of the
provides a mechanism to determine the quality of inpldcal regions considered for computation is crucial. Too
segmentations in label fusion. This is useful for segmesmall or too large a region may lead to erroneous perfor-
tation evaluation and segmentation variability evaluatiomance estimates and reference standard estimation. It is
Further, it may provide an improved multi-atlas baseitierefore critical to be able to characterize the inferential
segmentation by better accounting for error, noise amdcertainty in the estimated performance parameters for
artifacts in aligned segmentations. each voxel, so as to quantitatively assess the conpdence
Again, one disadvantage of global parameters is thaterval for each of the local estimates.
performance may vary from one point to another depend-We propose here an algorithm that solves all of the
ing, for example, on the ability of an expert to delineatehallenges described above. We present a new local
some part of a structure, or on fatigue involved in Maximum a Posteriori STAPLE algorithm, hereafter
manual delineation task. Further, in the case of templatenoted local MAP STAPLE, which estimates spatially
fusion, spatially varying performance may occur due tarying local performance parameters and a reference
anatomical variability between templates, and to registrsiandard segmentation from a set of input segmentations.
tion errors, such as boundary mislocalization. This mayhe formulation of this algorithm provides three major
explain why the STAPLE algorithm has been reported &glvances:
give mixed results in some previous studies, depending+ First, we introduce the local MAP STAPLE com-
on the region segmented and on the quantitative measure putation based on a sliding window technique,
of segmentation accuracy. While Rohlbng et al. [9] found ¥ Second, to account for the possibility of unob-
that STAPLE outperforms other approaches, Klein et al. served labels, and to model information regarding



segmentation performance known ahead of tim#he expected value of the complete data log-likelihood
we formulate a Maximum A Posteriori estimatoQ(! |! (K)):
by debning a prior probability distribution for the T
expert performance parameters, Q1 ®y = Wi log(!ja, s) (1)
¥ Third, conbdence intervals for the estimated per- i j s

formance parameters are calculated by computatigiere Ws denotes the posterior probability df for
of the observed Information Matrix, enabling thg;pe|s: P(T; = s|D,! ). The EM algorithm proceeds

local assessment of the inferential uncertainty in thg identify the optimal estimatB by iterating two steps:

parameter values. ¥ E-Step: Compute(! ]! %)), the expected value of

We describe in Section Ill several experiments with e complete data log-likelihood given the estimate
the local MAP STAPLE algorithm to characterize its o the expert parameters at the preceding iteration:
performance and its value for the local evaluation of (k) Evaluating this expression requires the poste-

intra- and inter-expert segmentation variability. First, o, probability of T:
with simulated segmentations with known reference stan- "

dard segmentation and spatially varying performance, P(T=sD,!'®)=" wy
showing that local MAP STAPLE performs better than i "
both STAPLE and majority voting. We then present " P(Ti=9 | !j((';? . (2)

evaluations with brain MRI. We evaluated brain segmen- =
tation by label fusion from inter-subject registration of

template segmentations from a commonly used database which is straightforward to estimate, and is easily
of brain segmentations. We compared the local MAP  extended to account for spatial homogeneity via a
STAPLE segmentations to STAPLE, and previously pub-  Markov Random Field [3].

lished fusion techniques and found that local MAP y M-Step: Estimate new performance parameters at
STAPLE has superior performance to that of other state- jterationk + 1, ! **1) | by maximizingQ(! |! (¥)).
of-the-art fusion and segmentation algorithms.

) _ # (K)
i s P(Ti = 8) i !jdij s'

B. Algorithm Overview

[I. METHODS . . ,
. _ We describe here our new algorithm that estimates a

A. Notations and Regular STAPLE Algorithm reference standard with spatially varying expert perfor-

The STAPLE algorithm estimates a hidden refereneceance parameters. The new algorithm is a generalization
standard segmentation and rater performance parametérthe STAPLE algorithm [3], and is executed on local
from a collection of delineations. It takes as an input r@gions of the input images. We Prst need to debne the
set of segmentations fromh experts (either manual orpatches from which to compute the reference standard
automatic segmentations). These may be either binaggmentation. Note that some regions will not require
or multi-category segmentations, i.e. several structurasy computation: these are the regions for which at every
are delineated with each structure represented by omexel all experts agree on the label. In such regions, all
specibc label [3]. The labeling of each voxel, in an imagexperts are consistent with each other and the most likely
of | voxels, provided by the segmentation generatorstisie label is undoubtedly the label assigned by the ex-
referred to as segmentation decisid, indicating the perts. Therefore, the estimation of the reference standard
label given by experij for voxeli,i ! [1...1]. The and the local performance parameters is performed only
goal of STAPLE is then to estimate both a referende regions where the experts do not agree.
standard segmentatioh, and performance parameters We shall call the set of voxels in which the experts
P={l4y,....1,...,15} describing the agreement oveare not in 100% consensus agreement the undecided
the whole image between the experts and the referemegionU. In this regionU, we have considered several
standard. Each; is represented by ah " L matrix, ways of dePning subset regions. A solution that dglit
where L is the number of labels in the segmentatioimto a set of independent non-overlapping patches would
(including the background), ands:s is the probability be computationally efpcient, as the number of voxels
that expertj gave the labek' to a voxeli when the involved in each computation is then matched to the size
reference standard labelss!js's = P(dj = s'|T; = s). of the regionU. However, this would restrict changes

As the reference standard is unknown, an in performance to specibc local regions, with potential
Expectation-Maximization approach [16], [17] is usediscontinuities at region boundaries. We suggest instead
to estimate T and ! through the maximization of to use a sliding window strategy, considering a locally



debned regions around each voxel. Our approachwhkere" is a parameter that models the relative weight
summarized in Algorithm 1. of the data term and of the prior. As the performance pa-
Using this approach, each voxel is considered in rameters for each expert and each label are independent,
turn to be the center of a local regidd(x) in which P(!) can be expressed as a product of the independent
the estimation is performed. This ensures a smodquobabilities of each performance paramete(!;s:s).
transition across the voxels by considering overlappinfe choose a Beta distributioB, - (x) = 2x'" (1 #
neighborhoods for each computation. In the following) ! as the model for the prior probability of each
we describe the main steps of the algorithm (lines @rformance parameter. This distribution allows us to
and 4 of Algorithm 1). First, we address challenges thatodel a wide variety of differently shaped performance
may arise when considering small regions of interegharacteristics, by varying the two shape parameters
(Section 1I-C). We then present in Section II-D am@and$. Furthermore, a uniform distribution is represented
approach to estimate conbdence intervals for the lodl # = $ = 1. This MAP formulation leads to simple
performance parameters, which allows us to evaluate ttgdate scheme that can be efpciently solved.
inferential uncertainty of the parameter values due to thel) Solution of the MAP STAPLE Estimator in the
consideration of a small neighborhood. Multi-Category Case:In the multi-category case, we
debne a prior probability distribution for each expert
performance parametejs:s, using a Beta distribution
C. Accounting for Missing Labels in Local Regions: &ith parameters#js's and $is's . This leads to the
Maximum A Posterior Formulation following expected value of the complete data log-

For each voxek located in the undecided regidn, likelinood function:

we debne around it a cubic blodk(x) of predebned Lo %
half window S|ze\{. Fo_r the voxels of th_ls block, the @t (ry =" (#js:s # 1)log(!js's)+
STAPLE EM algorithm is executed to estimate the local S e,

reference standard and the local performance parameter,

However, when considering smgll blocks, so?ne jabels is's # DI0GA# Liss) - Wi log(tjd; <)

may be unobserved in some of the segmentations. This ' (4)

can occur in both binary and multi-category segmenta- . . . .

tions. It has not been possible in previous work [3] to BY design, this formulation does not modify the

estimate segmentation performance for labels for whi§Pression of the reference standard label probabilities

no segmentation decisions are observed. This absenctVst: 1he E-sktep indeed only requires the computation

observation of some structures may lead the algorittfh P (TID !k( ) which depends only on the current

into undesirable maxima coupled with poor label fusiofyStimated () and not on the prior on these parameters.

as illustrated in Fig. 1. The absence of some structurdlsi is therefore expressed as:

must therefore be taken into account in order to have a P(Ti = s)# id, s

consistent and accurate estimation of the local reference Wi = $ — b

standard. s P(Ti=s) jlas
We propose to account for missing labels by intro- Further, equating the derivatives @fi,,» to O for

ducing a prior probability for segmentation performanceach experi leads to the following system of equations

This enables computation of the reference standard everthe general case:

in the absence of observed segmentation labels for

()

each input segmentation. This leads to a Maximum A "Ags+ $ o o Wai

Posteriori (MAP) formulation of the STAPLE algorithm, — !ijsis= ¢—%——¢——&,

referred to as MAP STAPLE [18], allowing the algorithm n Anst g =n Wsi (6)
to converge to the correct local optimum, even in the $inis# 1

absence of segmentation labels (see Fig. 1.g). The MAP Where Anis = #inis + $jnis + 7 — i 2
‘jn's

estimate is equivalent to augmenting the expected value _ _ , _

of the complete data log-likelihoa@(! ! ) with aterm  TNIS system is a contl\llnuous mapping of the form

log(P(!)) corresponding to the prior probability of the!j = T(1), with 10,173 ]0, 1] (whereN IS the

performance parameters: number of parameters to_compute .for expert This
system always has a unique solution (called a bxed
point). A closed form solution is available when &k s

Quae (1MW) = QW)+ "log(P(1)) (3) parameters are equal to 1, and also when the prior is a



Algorithm 1 Overview of the Local MAP STAPLE Algorithm
1: for all voxelsx! U do
2. Debne a blockB (x) of a predebned half window si2g, centered irx.
3.  Compute a MAP STAPLE estimate of the reference standard and performance parameters for the regiol
B (x) (Section II-C).
4.  Compute conbdence intervals of the estimated parameters (Section II-D).
5.  Store performance parameter estimates and reference standard probabilities for the voxel

(@ (b) (c) (d)

(e) (f) (9)

Fig. 1. lllustration of Label Fusion with Missing Data . Individual manual segmentations (a,c): original segmentations, (b,d): segmentations
with 4 missing structures. Legend: red, blue, green: cortical, sub-cortical and cerebellar grey matter, yellow: white matter, pink: CSF, cyan
cerebellar white matter and brainstem. (e): reference label fusion (all structures used), (f): label fusion without accounting for missing
structures, (g): label fusion utilizing prior information with a MAP STAPLE formulation.

uniform distribution. Furthermore, the bPxed point soltand !j10 = 1 # ¢). Therefore a prior probability is
tion can be readily identibed through iterative applicatiareeded only for thgy and ¢ parameters. This leads
of the above equation [18]. This scheme consists ia the following expected value of the complete data
applying thef mapping to the current estimate. That idpg-likelihood function:
computing the sequend&n}n#1 wherexp+1 = f(Xpn)
until convergence. 1ol

2) Exact Solution for Solving the MAP FormulationQjap (! ]! )y = Wsi log(tja, s)+
in the Binary Case:When considering binary segmen- | . i s
tations as an input, several simplibcations can be made (4, # 1)log(!jss) + ( $jss # 1)10g(1# !jss)
which lead to an analytical closed form solution of the

MAP STAPLE formulation. First, the expert parameters @)
can be reduced to only two parameters for each ex-
pert. sensitivityp; = !j11, and specibcityg = !joo. As for the multi-category case, the formB{T|!,D )

To simplify as much as possible the notation for this not modibed by the introduction of priors on the per-
following equations, we will keep the general notatioformance parameters. It remains the same as described in
lis's for the performance parameters, keeping in mir{@]. The solution of the optimél parameters is altered by
that onlyp; andq are meaningful parameters (§%: the prior, and leads to a closed form analytical solution
and!jio are completely determined byo; = 1 # p;  for p; (!j11) andg ('joo):



$
i:dij =SWSi + " (#jSS # 1) ) *

liss = $ ; 8 Higs# 1 st 1 ow

T Wt st 8 # D 1, ()= L (fféf 2t b

Lt js's C o tis!

D. Estimating Inferential Uncertainty of Local Perfor- o Iidj =s (Jios)

mance Parameters: Conbdence Intervals This expression incorporates two new terms that de-
Estimation of segmentation performance from locglend on the Beta distribution parameters, as compared
regions may vary in the quality of the estimates, dug Eq. (13) in [20]. The missing-data information matrix
to changes in the segmentation performance and dégnains the same as expressed in Egs. (14-17) in [20].
to changes in the amount of data for each label in2) The Binary Segmentation Information Matrixa
each region. The effect of these changes can be chae case of binary segmentations, the off-diagonal perfor-
acterized by estimating the inferential uncertainty in th@ance parameters are completely determined by the on-
performance parameters. That is, we may estimate #i@gonal performance parameters, and the expression for
certainty with which each point estimate of performana@e information matrix can be simplibed. This enables
is known. Reliable estimation of the reference standagdmputation of the exact observed information matrix.
occurs when the performance parameters are sufbciemlyfor the multi-category case, only the expressiomof
certain. is modibed when working with the MAP formulation.

The inferential uncertainty of the expert performancg,, is expressed as in Egs. (9-11) in [20], whilg is
parameters is computed through the evaluation of tBemputed as:

information matrix| (!). The conbdence intervals are
then computed from the parameter covariance matrix,

| k
which is obtained by inverting the information matrix |, =" #1532# 1, Siss#1 ' Vzvs(i)
I(1) = 1"1(1) [19]. If the complete data was known, Hss (1# ljss)? o Ny s
then the computation of the information matrix would (11)
be straightforward (as it is the matrix of the second
derivatives of the log-likelihood function). However, [ll. RESULTS

for an EM algorithm such as local MAP STAPLE, In order to assess the performance of our new algo-
the complete data is unknown. The hidden variableshm, we have carried out several experiments. First,
(the reference standard segmentation) are estimated esedhave performed experiments on simulated data, to
the conbdence intervals are then computed from theealuate label fusion and performance parameters with
observed information matrix, which accounts for theespect to a known reference standard. In addition, we
uncertainty due to the estimates of the hidden variablésve applied our algorithm to MRI scans of the brain,
The observed information matrik(!) is obtained by and we demonstrate the improvements of local MAP
subtracting the missing-data information matrix from th6 TAPLE compared to STAPLE and other state-of-the
complete-data information matrix: art algorithms.

L) = Te(M)# Im(!) (9) A. Local MAP STAPLE Implementation Details and

The complete-data information matiiy(! ) is computed Computation Times

using the expected value of the complete data log-In the following experiments, the local MAP STAPLE
likelihood Quap (!]! ®)). The missing-data informationalgorithm (as well as the regular STAPLE algorithm)
matrix | m (1) is readily computed as described below. was executed until convergence. The convergence of the
We presented in [20] the derivation of the expressiostimator is detected when the change of the performance
of 1. and I, for the STAPLE algorithm, both for the parameters from iteration to iteration is below a user-
multi-category and binary case. Interestingly, the MABebned thresholdlQ' & in our experiments) or when a
STAPLE formulation leads to a new expression onlgnaximum number of iterations is reached (100 in our ex-
for the complete-data information matrix, whereas thgeriments). In practice, the algorithm converged always
missing-data information matrix remains the same &efore reaching the maximum number of iterations.
derived in [20]. Here, we provide the expressiond of We utilized the following MAP STAPLE parameters
for the MAP STAPLE algorithm. to model prior information about segmentation perfor-
1) The Multi-Category Segmentation Information Mamance for each input segmentation and for each label.
trix: For multi-category segmentationls, is computed If an expert did not delineate a given structure on a
by the following expression: specibc local block, we assume it does not mean that



he has a poor segmentation performance in general. In
other words, we assume that the probability for an expert
to delineate the correct structure is a priori high, i.e.
absence of evidence is not evidence of poor estimation.
This is done by setting all diagonal parameters for each
expert to a beta distribution close to 1 (e#fyss = 5,

$iss = 1.5) and, in the multi-category case, the non-
diagonal parameters to a beta distribution close to 0 (e.g.
#js's = 1.5, $js's =5).

In the following, we ran experiments with varying
Half Window Sizes (HWS) for the local blocks, using a
multi-threaded implementation for both STAPLE and lo-
cal MAP STAPLE. Overall, we found that our algorithm
runs at least as fast as the original STAPLE algorithm.
For example, both algorithms took about 5 minutes
to complete for the simulated data. Moreover, on the
IBSR dataset experiments described in detail below, the
local MAP STAPLE algorithm ran substantially faster:
STAPLE ran in about 9 hours while local MAP STAPLE (b) (e)
took 7 hours (these running times are longer since many
structures are considered for these datasets).

(@) (d)

B. Experiments on Simulated Data

To illustrate the capacity of the local MAP STAPLE
algorithm to characterize spatially varying expert perfor-
mance, we generated a synthetic phantom with spatially
varying performance parameters. The true segmentation
is a square image200" 200) with leftmost 100 columns (c) 0]
having value 0 and rightmost columns having value 1.
We used random sampling to generate 32 segmentatiﬁ'ms 2. lllustration of Images Simulated with Spatially Varying
illustrated in Fig. 2: 12 segmentations with sensitiviti€gerformances (a,b,c): Local performance values for the various
N . . . synthetic images generated (12 generated from (a), 6 from (b), 14
and specibcities in Fig. 2.a, 6 from those in Fig. 2.b, ad, (c)). (d,e,f): lllustration of the images generated respectively
14 from those in Fig. 2.c. using (a,b,c) performances.
We present in Fig. 3 the results of label fusion of the
32 segmentations using local MAP STAPLE, STAPLE
and majority voting. Fig. 3.a shows the majority votingn this case, the estimated parameters are quite different
result, 3.b the regular STAPLE fusion, and 3.c-e the locBibm the real parameters. Moreover, the uncertainty on
MAP STAPLE results with different HWS: 1,4, and 16these estimations is very large (up to 40 % of the
respectively. These results illustrate visually that locaktimated value). This may therefore lead to local errors
MAP STAPLE performs better than regular STAPLEn the estimation of the underlying ground truth. When
when spatially varying performances are consideretbnsidering larger HWS values, the parameters maps are
Moreover, local MAP STAPLE with higher HWS valuesmore accurate and the uncertainty in the estimation also
seems to perform better than when small HWS valudscreases (similarly to what had been shown in [20]).
are used, and both STAPLE and local MAP STAPLBverall, these results suggest that both HWS of 4 and 16
appear better than majority voting. are good for this experiment, with a slight preference to
To further characterize these results, we present in Fign HWS of 4 which provides accurate smoothly varying
4 the average parameter maps estimated by local MApatial parameter maps, with relatively tight conbdence
STAPLE together with the conbdence intervals derivadtervals for the estimated parameters. The range of
from Section 1I-D averaged for the images of group HWS for which excellent results are obtained suggests
(Fig. 2.a, 2.d). This bgure illustrates why results may ke estimator is robust to this parameter.
less good for local MAP STAPLE with an HWS of 1. To further verify these observations, we present in



(a) Majority Voting (b) STAPLE (c) Local MAP STAPLE (HWS=1)

(d) Local MAP STAPLE (HWS=4) (e) Local MAP STAPLE (HWS=16)

Fig. 3. Comparison of Fusion Results on Synthetic Segmentation8lustration of estimated true segmentations using (a): majority voting,
(b): STAPLE, (c,d,e): local MAP STAPLE with HWS of respectively 1, 4, and 16. Ground truth estimated through local MAP STAPLE is

more accurate than using regular STAPLE or majority voting.

(@) (b) (c) (d)

(e) (f) (9)

Fig. 4. Comparison of Parameter Maps for local MAP STAPLE. Local parameter maps and their relative uncertainty at the 95 % level,
averaged over the brst group of 12 images generated from Fig. 3.a. (a): Ground truth parameter map. (b,c,d): local parameter maps for loc
MAP STAPLE with HWS of 1, 4 and 16. (e,f,g): corresponding uncertainty in the estimated local parameters (in percentage of the estimatec
value). Color bars show the scale of the parameter maps and relative uncertainty maps.



Table | the quantitative error rates for each methoBor each target MRI, we consider the other 17 MRI
We observe that STAPLE (which is computing globacans and their manual segmentations as template scans.
performance parameters) cannot estimate the grouid use non-rigid registration to project each of the
truth accurately and created 123 misclassibed voxdlBsmplate segmentations onto the target, and then carry
because of the variation of the performance of thmut label fusion to estimate the segmentation of the
experts across the image. However, local MAP STAPLiarget MRI. Based on a recent evaluation of non-rigid
estimates local performances for each experts and doegistration [21], we selected SyN [22] for carrying
accurately estimate the ground truth for the HWS of dut the non-rigid registration. We therefore utilized this
and 16, with 7 and 11 misclassibcations respectively ovegistration software, brst bnding a global afbne trans-
the entire image. formation, followed by SyN with standard parameters
Furthermore, majority voting cannot estimate thehich were selected for this data (greedy SyN algorithm
ground truth correctly, despite the use of only localith a gradient step of 0.5, similarity metric: probability
information. Since it treats each expert equally andapping, Gaussian regularization with = 2). We
does not estimate the performance of each expertthien compared label fusion algorithms to the manual
estimates a segmentation with 178 voxels misclassibsgfymentation provided for each MRI.
in the image. The local MAP STAPLE algorithm exhibits Based on this leave-one-out evaluation framework, we
improved performance over majority voting, which ipresent a qualitative evaluation of overall segmentation
based on entirely local information, and STAPLE whicherformance of local MAP STAPLE and show its value
estimates global performance parameters. The capadityproviding comprehensive maps of local performance
to compute performance parameters at a spatial scaf@l conbdence in the estimated parameters. Then, we
corresponding to the performance variation observeddéompare local MAP STAPLE quantitatively to other
the image provides local MAP STAPLE with superiostate-of-the-art label fusion methods.
fusion performance. 1) Qualitative Evaluation of Local MAP STAPLE:
For qualitative evaluation, we carried out label fusion
using STAPLE, majority voting and local MAP STA-
PLE. A HWS of 5 was chosen based on the results
We obtained segmentations of 18 brain MRI scafgm synthetic data described above. Fig. 5 illustrates
from the Internet Brain Segmentation Repository (IBSR§egmentation results for two representative slices of one
The repository includes T1-weighted MR images an@gsR image, generated by expert manual segmentation
their corresponding manual segmentation. The MR braiBrst column), STAPLE (second column), local MAP
datasets and their manual segmentations were providefhAPLE (third column) and majority voting (fourth
by the Center for Morphometric Analysis at Mascolumn).
sachusetts General Hospital. The volumetric images haven this pgure, we can observe that STAPLE tends
been positioned into the Talairach orientation (rotaticg enlarge cortical structures, while local STAPLE and
only). In addition, bias Peld correction has been pemajority voting do not. This qualitatively demonstrates
formed on this data. Two sets of manual segmentatiofi value of using local performance estimation when
(for a total of 128 structures) are available for eadfusing these locally variable structures. In addition, local
subject: MAP STAPLE may be utilized to better understand
¥ manual segmentation of the 34 main gray and whitecal variations in anatomy or expert segmentation for
matter structures of the brain (3rd Ventricle, 4tlany structure. For example, for the post-central gyrus,
Ventricle, Brain Stem, CSF and, Left and Rightwe present in Fig. 6 the performance map for one
Accumbens area, Amygdala, Caudate, Cerebellurh the experts and the associated uncertainty in these
Cortex, Cerebral Cortex, Cerebellum White Mattekalues (represented as a relative value with respect to
Cerebral White Matter, Hippocampus, Inf Lat Ventthe estimated parameter, in percentages), along with the
Lateral Ventricle, Pallidum, Putamen, Thalamuglustration of the reference standard and the correspond-

C. Experiments with Brain MRl Segmentations

Proper, VentralDC, and vessel) ing input segmentation.
¥ parcellation of the left and right cerebral cortex into These performance maps illustrate where and how
96 structures. much the expert segmentation differs from the consensus

With this database, we consider the problem of egf all segmentations and how conbdent we are in these

timating the best segmentation of a target MRI scay@lues. In particular, these maps show why local MAP
STAPLE has the ability to outperform other methods:

http://www.cma.mgh.harvard.edu/ibsr/ the sensitivity of the input segmentation is clearly highly
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Manual (a) ST (b) L-ST (c) MV (d)

Manual (e) ST (f) L-ST (9) MV (h)

Fig. 5. lllustration of IBSR Label Fusion Segmentation Comparison of segmentations generated by ST: STAPLE (b,f), L-ST: local
MAP STAPLE (c,9), MV: majority voting (d,h), and expert manual segmentation (a,e) in a series of coronal images from a representative
scan. Local MAP STAPLE is superior to STAPLE and majority voting, especially for structures that have high inter-individual variability.

@) (b) (©)

(d) (e)

Fig. 6. Parameter Maps computed with local MAP STAPLE for one IBSR Segmentation Local parameter map (sensitivity) and

its relative uncertainty for the right post-central gyrus of one subject projected on a target subject. (a): Anatomical image of the projectec
subject, (b): Segmentation of the post-central gyrus for the projected subject, (c): Local MAP STAPLE reference standard obtained from the
17 projected segmentations (including (b)), (d): Local parameter map for local MAP STAPLE. (e): Conbdence bounds for the parameter:
shown in (d) (in percentage of the estimated value). Color bars show respectively the scale of the parameter map and relative uncertain
map (in percentage of the estimated parameter value). The local sensitivity map of this representative input segmentation varies widely acro
the image. Local variation in segmentation performance is identiped by local MAP STAPLE but not by majority voting or STAPLE.
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Fusion Method Majority Voting | STAPLE | L-ST (HWS 1) | L-ST (HWS 4)| L-ST (HWS 16)
# Errors 178 123 69 7 11

TABLE |
QUANTITATIVE COMPARISON OF LABEL FUSION METHODS. NUMBER OF CLASSIFICATION ERRORS WHEN ESTIMATING THE
REFERENCE STANDARD FROM EXPERTS WITH SPATIALLY VARYING PERFORMANCESCOMPARISON OF THREE DIFFERENT METHODS
MAJORITY VOTING, REGULAR STAPLEAND LOCAL MAP STAPLE (L-ST)WITH THREE DIFFERENT HALF WINDOW SIZES(HWS).

variable, which violates the assumptions made both byThe COLLATE algorithm [23] is an extension of the
regular STAPLE and majority voting. Moreover, sucloriginal STAPLE algorithm, which debnes confusion re-
parameter and conbdence maps may have many poginns based on differences in labelling of aligned images,
tial applications in segmentation evaluation and inteand leads to different performance estimates depending
expert variability estimation. For example, with furtheon the degree of consensus in the initial labelling. We
processing, future work could develop an algorithm thatso utilized the global STAPLE algorithm, both with and
utilizes these values to drive the registration algorithmithout the debnition of a consensus region [3], [25].
to better handle the high variability in these areas ambhlpng et al. introduced a consensus region to accel-
obtain better segmentations. In other settings, these mapaste the STAPLE computation in [25], [9] and noticed
may also help to evaluate the local variability in expethat this also leads to improved label fusion performance.
segmentation (by illustrating the regions where expel®TAPLER [24] is an extension of STAPLE, designed to
disagree when segmenting a particular structure) adeal with missing and also repeated segmentations. The
help reaching a consensus in expert segmentationatgorithm uses training data to improve the estimation of
some structures. the ground truth and performance parameters. SIMPLE

2) Quantitative Evaluation of Binary SegmentatiohlS] is a selective and iterative method which uses
Performance: We carried out a quantitative validatior@ threshold rule to select the best templates at each
of local MAP STAPLE for the task of label fusioniteration.
for segmentation, and compared it to state-of-the-artSeveral recent algorithms have attempted to exploit

label fusion techniques. We report results for 9 differeffte local intensity similarity of the target image and
methods: template images beyond that achieved by the nonrigid
registration. Intensity differences are used a second time
after registration to estimate a weight or ranking of the
raters for each decision from each voxel of each tem-
plate. Mean square error based methods and normalized
cross correlation have been proposed as the similarity
metric in these approaches. Among these approaches,
we compared to the algorithms of Sabuncu et al. [12]
and Artaechevarria et al. [10] , as these are excellent
representatives of this class of intensity and label fusion
algorithm.

In order to enable a fair comparison of these different For the COLLATE algorithm, we were unable to
techniques we have utilized the same preprocessing stebtin whole brain multi-category label fusion results
and registration parameters for all of the data leadirfye in part to the challenge of Pnding parameter settings
to the results obtained by each of the 9 label fusiahat lead to good performance. The authors describe
algorithms. For SIMPLE, COLLATE and STAPLER, wethe setting of appropriate COLLATE parameters in the
utilized the implementations available from the MASIfollowing manner [23]:
fusion package. Local MAP STAPLE and STAPLE  The gptimal number of consensus levels for a
implementations as well as the evaluation data utilized jyen task largely depends upon the difbculty

here are available from the Computational Radiology of the labeling task. For a straightforward task

M 1: majority voting

M>: SIMPLE [15]

M3: COLLATE [23]

Mg4: STAPLE

: STAPLE with assigned consensus region
Me: Local MAP STAPLE

M7: STAPLER [24]

Mg: Sabuncu et al. algorithm [12]

Mg: Artaechevarria et al. method [10]

KK K K K K K K K
<
Ul

Laboratory website. where the only confusion about the true label
would exist along the boundary between labels,
http://www.nitrc.org/projects/masi-fusion/ then the binary consensus level case would

http://www.crl.med.harvard.edu/software/ be appropriate. For a more difbcult problem,
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such as estimating the full brain structure in  that

a multi-atlas multi-label task, more than two COLLATE with binary consensus levels is
consensus levels may be more appropriate and essentially equivalent to performing STAPLE
would make for an interesting area of future only over the confusion region.

consideration. We tested for statistically signipcant differences in per-

Similarly, the SIMPLE algorithm [15] has been reporteébrmance between these algorithms using a paired-
only for binary label fusion applications. Thereforesamples two-tailed t-test, examining the Dice coefpcients
we carried out binary label fusion with each structuref segmentations of the 32 structures in the 18 subjects
independently, and report the results for each structurereated by each algorithm. We found a signibcant differ-
We evaluated 32 structures in 18 subjects, consistisgce between the performance of local MAP STAPLE
of the following 16 anatomical regions on the left andnd STAPLE with an assigned consensus region (t-
right side of the brain: inferior frontal 3 gyrus pars triscore=4.22, p < 0.0001), and we found a signibcant
angularis (F3t), inferior frontal 3 gyrus pars opercularidifference between the performance of local MAP STA-
(F30), precentral gyrus (PRG), middle temporal gyrtBLE and COLLATE (t-score=5.84, p<0.0001), and be-
anterior (P2a), middle temporal gyrus temporo-occipitaeen local MAP STAPLE and STAPLE (t-score=26.44,
(TO2), inferior temporal gyrus temporo-occipital (TO3)p<0.0001). In addition, we found a signibcant differ-
post-central gyrus (POG), superior parietal lobule (SPlgnce between the performance of COLLATE and STA-
supramarginal gyrus posterior (SGp), angular gyri®_E with an assigned consensus region (t-score=3.28,
(AG), juxtaparacentral lobule (supplementary motqs<0.001).
cortex) (JPL-SMC), para-hippocampal gyrus posterior These experiments demonstrate further the advantage
(PHp), occipital fusiform gyrus (OF), HeschlOs gyrus accounting for spatially varying performance. Meth-
(HeschlOs) and the accumbens area. We report in Tabtel8 utilizing global performance parameters are not able
the assessment of segmentation performance of e&slidentify the locally varying positions and shapes of
algorithm in comparison to the manual segmentatiostructures that exhibit high inter-individual anatomical
averaged over all 18 subjects and the left and right sideriability. In contrast, local MAP STAPLE provides a
The table reports the relative improvement in perfomechanism to estimate local performance, through the
mance of each fusion algorithm with respect to the Diasstimation of the segmentation of the target and the
coefpcient values obtained by majority voting. comparison of the aligned structures to the segmentation
We found that local MAP STAPLE outperforms allof the target. Intensity differences between the template
of the other algorithms, with an average performanemd target are exploited by nonrigid registration which
improvement over majority voting of 12.1%, with pealprovides the alignment. This estimate of local perfor-
improvement of over 100% for a structure with higlnance provides an optimal weighting that in practice
inter-individual variability. outperforms majority voting, as it allows for but does not
We observed differences in performance between difssume equal weighting between the input structures.
ferent forms of the regular STAPLE algorithm. In par- The performance advantage of using a consensus
ticular, M4 (global STAPLE) andM s (global STAPLE region is especially prominent when binary label com-
estimation applied only in the region without consensupgarisons are made for multi-category segmentations. The
have signipcantly different performance, simply due wonsideration of a single label versus all others maxi-
a change in the region over which estimation is carrigtizes the number of voxels that may be in consensus.
out. Ms Prst identiPes a consensus region, debned Dlye identibcation of a Pnal multi-category segmentation
that region in which all aligned labels from all inputs aréom a set of sequential pairwise binary comparisons is
equal [25], [9], [3], and then the voxels in the consensu®t as efbcient as a single multi-category segmentation
region are assigned the consensus label value and [@f], [9], [3]. In multi-category segmentations, there are
ignored in all further calculations. fewer voxels in complete consensus, the performance
We executed the COLLATE algorithrivl 3 using the parameters vary spatially, and a larger advantage is
parameter settings recommended by the authors [23]ovided by the local MAP STAPLE estimate.
which utilizes two consensus levels with weights of 0.99 3) Quantitative Evaluation of Multi-Category Seg-
and 0.01 respectively. The performance of this methotentation PerformanceWe performed a quantitative
is superior to that oM, but statistically signibcantly evaluation of local MAP STAPLE in its multi-category
worse than that of STAPLE with an assigned consensiersion, to illustrate its value for label fusion on the IBSR
region, and statistically signibcantly worse than localatasets. Table Il illustrates the segmentation quality
MAP STAPLE. Interestingly, it has been observed in [23]chieved by each of three methods with the ability to
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M; (Dice) | M2 (%) | M3 (%) | M4 (%) | M5 (%) | Mg (%) | M7 (%) | Mg (%) | Mg (%)
F3t 0.48 6.72 16.64 -4.30 17.65 18.72 7.82 -2.20 2.98
F3o 0.62 -0.93 5.99 -18.57 5.91 6.04 -8.87 -0.26 1.25
PRG 0.73 -3.19 2.54 -10.00 2.71 3.00 -4.52 0.63 1.53
T2a 0.53 2.06 12.73 -7.17 13.80 14.13 2.18 -1.55 2.12
TO2 0.59 -3.06 9.68 -13.85 8.60 9.07 -3.38 -0.14 2.40
TO3 0.59 -1.38 7.50 -10.56 7.03 7.41 -1.50 0.61 2.81
POG 0.71 -3.29 4.59 -10.03 4.25 4.28 -5.09 0.95 2.10
SPL 0.45 17.98 27.34 4.71 27.43 28.15 17.72 2.56 3.58
SGp 0.51 2.33 16.48 -7.74 16.66 17.09 3.57 0.77 4.87
AG 0.22 60.68 76.14 75.18 94.78 | 101.38 | 94.35 -5.13 3.24
JPL-SMC 0.57 2.76 9.08 -8.44 10.20 10.74 0.17 1.37 2.93
PHp 0.65 -3.50 3.75 -14.53 3.08 3.27 -5.95 0.94 1.29
OF 0.28 21.51 61.94 42.39 60.09 62.73 61.65 -4.11 15.68
HeschlOs 0.61 -4.56 5.42 -15.73 6.28 6.34 -5.04 -0.21 1.09
Amygdala 0.78 -1.24 1.12 -12.52 0.83 0.91 -9.14 0.46 0.45
Accumbens 0.75 -2.19 0.86 -15.57 0.98 1.12 -7.83 -0.01 0.11
Min range 0.22 -4.56 0.86 -18.57 0.83 0.91 -9.14 -5.13 0.11
Max range 0.78 60.68 76.14 75.18 94,78 | 101.38 | 94.35 2.56 15.68
Average 0.57 2.08 11.12 -7.18 11.58 12.11 1.92 0.03 241

TABLE Il

COMPARISON OF DICE SIMILARITY COEFFICIENTS OBTAINED BY STATE -OF-THE-ART FUSION TECHNIQUES . DICE COEFFICIENTS
ARE SHOWN FOR METHODM 1, MAJORITY VOTING. OTHER COLUMNS SHOW THE RELATIVE PERFORMANCE IMPROVEMENT WITH
RESPECT TOM 1 IS THEN DISPLAYED FOR EACH FUSION TECHNIQUEIN PERCENTAGEY. LOCAL MAP STAPLEHAS BETTER AVERAGE
PERFORMANCE BETTER PERFORMANCE RANGEAND BETTER ABSOLUTE PERFORMANCE FOR ALL STRUCTURES CONSIDERED

perform multi-category fusion (majority voting - MV, errors in some areas (such as close to boundaries) and not
STAPLE and local MAP STAPLE - L-ST), by comparingin others. Further, inter-individual anatomical differences
the average Dice overlap scores for the 128 structuresrony lead to parts of some structures being well aligned,
the 18 datasets when each structure is simultaneoushd others being less well aligned, leading to a spatially

segmented with the other structures. varying performance. There are also many structures
delineated in the images, and therefore many boundaries
STAPLE | MV | L-ST between structures. This fact can lead to spatially varying
Average Dice Score 0.76 | 0.81| 0.82 boundary localization differences as the segmentation
Standard Deviation| 0.02 0.02| 0.02 errors are frequently located in those regions.
TABLE Il

COMPARISON OF OVERALL SEGMENTATION PERFORMANCE IV. DISCUSSION ANDCONCLUSION

ON IBSR DATA . AVERAGE DICE SCORES ON THE SEGMENTATION S .
OF THE 18 IBSRDATASETS. THESE SCORES ARE STATISTICALLY Label fusion is a powerful strategy for forming a seg-

SIGNIFICANTLY DIFFERENT AND DEMONSTRATE THAT LocaL  mentation, as well as for evaluating automatic or manual
MAP STAPLE (L-ST)HAS SUPERIOR PERFORMANCE delineations with respect to each other. Segmentation
performance may vary across an image for many rea-
sons. For example, when asked to manually delineate a
In this experiment, local MAP STAPLE performancestructure, experts may have responded differently to local
was signibcantly superior to that of STAPLE (pairethtensity features to identify the structure. Fatigue when
t-test, p-value <10 ®) and majority voting (paired t- delineating many structures may also lead to variable
test, p-value < 0.001). This demonstrates the advantageor rates in interactive segmentations. For segmenta-
of accounting for spatially varying performance. Thed#on by registration algorithms, registration errors when
variations can arise in several ways in this setting. Firgtligning template images may lead to local performance
the alignment between template and target may cawseiations.



14

We have described and evaluated a new algorithto, recently published state-of-the-art fusion algorithms,
called local MAP STAPLE, to account for spatiallyusing a standardized data set and identical nonrigid
varying performance parameters and to compute accegistration in each case. In intensity and label fusion
rate estimates of the reference standard segmentatgorithms, intensity differences are used to debne a
This algorithm estimates simultaneously, from a set wfeight for each decision for each voxel of each template.
input segmentations, a reference standard segmentatbean square error based methods and normalized cross
and spatially varying performance parameters. This ésrrelation have been proposed as the similarity metric,
achieved through a dense sliding window strategy. Bmd these have been used both globally and locally,
account for the possibility of unobserved labels (suar template ranking and to exclude certain templates.
as locally missing or mislabelled structures) in somEhe most recently introduced approaches utilize local
regions, we formulated a Maximum A Posteriori estiintensity information to weight a majority voting label
mator, providing a prior probability distribution on eactiusion [12], [10]. By directly using image intensities,
performance parameter, which allows effective estimtiese algorithms can become very sensitive to the native
tion of a reference standard segmentation when theignal intensity or to the nature of the intensity normal-
are no observations of certain labels from which tzation that may be carried out, and as demonstrated
estimate rater performance. We derived expressionsinathe results that we have obtained, an intensity-based
estimate conbdence intervals for the local MAP STAPLEeighting cannot compensate effectively for some of the
performance estimates, to allow for the characterizatiamtrinsic weaknesses of the majority voting approach. We
of the uncertainty in the performance parameters whidemonstrated that local MAP STAPLE achieved superior
may vary with the local quality of the segmentations arerformance to the intensity and label fusion algorithms
the size of the sliding window. of Artaechevarria et al. [10] and Sabuncu et al. [12].

We have demonstrated the excellent performance ofln these intensity and label fusion algorithms, after
local MAP STAPLE for both label fusion and comparcompleting an intensity-based nonrigid registration, in-
ison of expert segmentations. First, we showed a cldansity differences are used a second time to estimate a
and substantial improvement of the reference standavdight or ranking of the raters. We note that this implies
estimation with simulated binary segmentation data withat after registration there remain unexploited intensity
spatially varying performance, when compared to reguldifferences that can be used to further increase the accu-
STAPLE or majority voting. Then, we evaluated labalacy of the correspondence estimation. If there were un-
fusion for brain segmentation using the IBSR databasploited residual signal intensity differences that were
For these datasets, local MAP STAPLE performs quahelpful in identifying true correspondences, it would be
titatively better than other state-of-the-art label fusionatural to design a registration algorithm that sought to
algorithms reported in the literature, including regulaexploit these. It may be that intensity and label fusion
STAPLE and majority voting. combination algorithms benebt most from the nonrigid

Majority voting can be understood as a special casegistration algorithms that achieve alignment with a
of the local MAP STAPLE algorithm, for which a localsubstantial residual registration error, and that the benebt
window of one voxel is assumed, and in which a uniforrof these approaches is reduced as the residual registration
prior is assumed, i.e. each template is assumed to dyeor is reduced. In practice, the regularization approach
equally effective and no label is prevalent. The samesed by most nonrigid registration algorithms provides
result can be achieved with local MAP STAPLE if wea balance between precisely matching intensities, tolera-
make the same assumption for the prior, initialize eatlon of noise and contrast in the images, and the desired
template as equally likely, and run MAP STAPLE fosmoothness of the registration transformation. It is not
a half-iteration (Expectation step only) with a windowelear how best to infer from these intensity differences
of one voxel. Selecting the most likely label at eactvhat constitutes uncapturable inter-individual anatomical
voxel from this specibc setting will then lead to theariability, and what constitutes imprecise alignment of
majority voting result. Furthermore, if any of thesanatomical structures that should be brought into closer
assumptions are incorrect for a particular label fusialignment, and this will be an interesting direction of
problem, such as for cortical structures for examplegsearch in future work.
local MAP STAPLE provides a mechanism to provide We compared local MAP STAPLE to the algorithm
excellent estimation. If the local MAP STAPLE windowcalled SIMPLE [15], which compares the template im-
size is extended to encompass the entire image, theages to the estimated reference standard, and excludes
global estimate is obtained as for the STAPLE algorithrthe worst templates at each iteration. However, conver-

We evaluated local MAP STAPLE in comparisorgence to a particular optimum is not guaranteed with
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SIMPLE, and in practice it is common to observe cyclingthere performance varies. In the COLLATE algorithm,
amongst the volumes that are included and excludgubrformance estimates are combined across these regions
as the exclusion of some templates leads to a differenith a combination rule that depends on the selected
reference standard estimate, which then causes differerights. Weights are used to emphasize decisions car-
volumes to be excluded and the initially excluded voked out at certain confusion levels, and to create a
umes to be reintroduced. The authors [15] propose ltalance between the inBuence of voting and performance
use an iteration count limit to avoid inbnite cycling, andeighting. Indeed, if the COLLATE weights are chosen
this forces convergence to a particular result that deperidsbe 0.5 and 0.5, we obtain a Pnal result weighted
on the particular setting of the iteration count limit. Weowards majority voting, and as the weights become
demonstrated that local MAP STAPLE achieved superioloser and closer to 1.0 and 0.0, the algorithm becomes
performance to SIMPLE. closer to STAPLE with an assigned consensus region
Our experimental results indicate that accounting f¢25], [9], [3]. It is unclear with what principle consen-
spatial variation in performance is an important chasus level weights could be chosen for multi-category
acteristic to achieve excellent quality label fusion. Owegmentations [23]. The model of COLLATE suggests
results demonstrate differences in performance betwdbat voxels with different selection rates by different
different forms of the regular STAPLE algorithm. Inraters should be weighted differently when assessing
particular, label fusions with STAPLE achieved signifperformance. However, in a local region over which
icantly different performance with a simple change iperformance of each rater is well modeled as constant,
the region over which estimation is carried out. STAPLEvery voxel is helpful in identifying the distinct decisions
applied with a consensus region, debned by that regiortlimt separate good raters from bad raters, and in local
which all aligned labels from all inputs are equal [25]MAP STAPLE comparison to the estimated reference
[9], [3] had superior performance to STAPLE appliedtandard segmentation enables effective assessment of
globally. The voxels in the consensus region are assigmater performance without regard to whether or not other
the consensus label value and are ignored in all furthaters are performing well or poorly in a region. We
calculations. We observed here that a consequence of theégnonstrated that local MAP STAPLE achieved superior
is that the performance estimates are focused on thosepeformance to COLLATE.
gions that are not in consensus, and this provides spatiahsman et al. [26] described a Ospatial STAPLEO algo-
adaptivity in the performance estimates. Those regionsrithm that considers sub-regions of the image over which
consensus are regions in which local performance is v&8JAPLE is run. This work highlights the importance of
high, as all input segmentations are in complete agreecounting for spatially varying performance in expert
ment, whereas the region where there is no consensusfaggn and segmentation by label fusion. Although very
imperfect performance by some inputs. A global estimapeomising, this approach did not overcome the chal-
that combines the performance in the consensus regitersges in effectively enabling spatial adaptivity in the
and the non-consensus regions attempts to approximageformance estimation and label fusion. Two differ-
these differences in performance with a single parametent formulations of a sparse regional confusion matrix
and this approximation leads to worse label fusion imodel were proposed. In the brst model, every region
practice as seen in the results for STAPLE appliatlas non-overlapping and sparse performance estimates
globally. This difference in region of calculation maywere obtained with each voxel belonging to only one
explain in part why previous comparisons to STAPLEegion, but the use of large nonoverlapping regions was
in the literature have reported inconsistent bndings fobserved to poorly model the desired spatial adaptivity
the relative performance of STAPLE to, for examplg26]. In a second model, a sparse sliding window region
majority voting. debnition was proposed, in which it was possible for
We evaluated the COLLATE algorithm in the setting voxel to be associated with more than one region,
of binary segmentation, with two consensus weightand where nearest neighbor interpolation was used to
Experimentally, we observed that performance was dassociate performance parameters for a region with each
creased the further these weights are from 1.0 awmdxel. As a consequence, it is possible for a voxel
0.0. The reason for this worse performance is thei have a segmentation decision that contributes to a
the COLLATE algorithm does not exploit the availableveight estimate, but for that same weight estimate to
spatial adaptivity. Instead the selection of weights faontribute to updating different performance parameters
consensus levels inappropriately combines performartban were used in estimating the weight. Therefore, in
from different regions, the region in complete consenstige proposed sparse sliding window conbguration, the
where performance is high, and the region in confusi@stimation of the probability of the reference standard
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segmentation (OE-stepO) and the estimation of the JBIr-G. Gerig, M. Jomier, and M. Chakos, OVALMET: A new valida-
formance parameters (OM—stepO) utilizes different subset§i0” tool for assessing and improving 3D object segmentation,O

of the observations of the segmentations. The resulti
system of equations is not a consistent estimator,

aﬂ%]

the iterative procedure suggested for solving them is not
guaranteed to converge. In contrast, local MAP STAPLE

uses a dense sliding window to debne the spatial suppéﬂ

of the performance estimation, and is guaranteed

to

converge. In recognizing and addressing the challenges
of performance estimation from local information alone 3!

the work of [26] proposed an ad hoc technigue for reg

u-

larization of the performance parameters using a global

estimate of the performance parameters, and observgl

that a problem of Olabel inversion® could arise in which
dramatically incorrect segmentations arise. In this work,

we demonstrate the efPcacy of the MAP formulationz
at addressing this challenge. Furthermore, [26] provides

only point estimates of performance parameters, whereas

we demonstrate how to construct estimates of con é] E. M. van Rikxoort, I. Isgum, Y. Arzhaeva, M. Staring, S. Klein,

dence intervals that characterize the certainty of the p

er-

formance parameter estimates, providing a quantitative

measure of the efbcacy of the information available fro
the input images for providing a label fusion.
Future work may further increase the performance

m

of

label fusion. The current algorithm utilizes only label
information, but it may be possible to achieve further

increases in performance of local MAP STAPLE

mechanism to do this would be to extend the prior

probability of labelsf (T; = s) to depend on intensity

information. We demonstrated that local MAP STAPLEM!
provides similar results for a range of local region

sizes, illustrating an insensitivity to region size fo

r

these applications. Further work may also develop new

approaches for identifying the optimal region size f

f

spatially varying performance estimates. To this end, the
inferential uncertainty presented in Section [I-D may

be a valuable criterion to balance the need to hal/!
sufpcient data to achieve tight conbdence intervals, while

being sufbciently local to adapt to the rate of change
performance.
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