R. E. Bouly, J. Gissot, L. Lessard, P. Kreis, M. Thomas et al., Arabidopsis thaliana proteins related to the yeast SIP and SNF4 interact with AKINalpha1, an SNF1-like protein kinase, The Plant Journal, vol.13, issue.5, pp.541-50, 1999.
DOI : 10.1016/S0014-5793(96)01209-4

S. Davies, S. Hawley, A. Woods, D. Carling, T. Haystead et al., Purification of the AMP-activated protein kinase on ATP-gamma-Sepharose and analysis of its subunit structure, European Journal of Biochemistry, vol.269, issue.2, pp.351-358, 1994.
DOI : 10.1128/MCB.9.11.5045

K. Mitchelhill, D. Stapleton, G. Gao, C. House, M. B. Katsis et al., Mammalian AMP-activated protein kinase shares structural and functional homology with the catalytic domain of yeast Snf1 protein kinase, J Biol Chem, vol.269, pp.2361-2365, 1994.

R. Jiang and M. Carlson, The Snf1 protein kinase and its activating subunit, Snf4, interact with distinct domains of the Sip1/Sip2/Gal83 component in the kinase complex., Molecular and Cellular Biology, vol.17, issue.4, pp.2099-106, 1997.
DOI : 10.1128/MCB.17.4.2099

D. Hardie, AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy, Nature Reviews Molecular Cell Biology, vol.367, issue.10, pp.774-85, 2007.
DOI : 10.1007/978-3-642-18930-2_13

D. Neumann, U. Schlattner, and T. Wallimann, A molecular approach to the concerted action of kinases involved in energy homoeostasis, Biochemical Society Transactions, vol.31, issue.1, pp.169-74, 2003.
DOI : 10.1042/bst0310169

D. Carling, F. Mayer, M. Sanders, and S. Gamblin, AMP-activated protein kinase: nature's energy sensor, Nature Chemical Biology, vol.261, issue.8, pp.512-520, 2011.
DOI : 10.1074/jbc.M706543200

M. Mihaylova and R. Shaw, The AMPK signalling pathway coordinates cell growth, autophagy and metabolism, Nature Cell Biology, vol.127, issue.9, pp.1016-1039, 2011.
DOI : 10.4161/isl.1.3.9608

U. Riek, R. Scholz, P. Konarev, A. Rufer, M. Suter et al., Structural Properties of AMP-activated Protein Kinase, Journal of Biological Chemistry, vol.288, issue.26, pp.18331-18374, 2008.
DOI : 10.1074/jbc.M706543200

URL : https://hal.archives-ouvertes.fr/inserm-00390926

A. Woods, S. Johnstone, K. Dickerson, F. Leiper, L. Fryer et al., LKB1 Is the Upstream Kinase in the AMP-Activated Protein Kinase Cascade, Current Biology, vol.13, issue.22, pp.2004-2012, 2003.
DOI : 10.1016/j.cub.2003.10.031

URL : https://hal.archives-ouvertes.fr/inserm-00390855

S. Fogarty and D. Hardie, Development of protein kinase activators: AMPK as a target in metabolic disorders and cancer, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1804, issue.3, pp.581-91, 2010.
DOI : 10.1016/j.bbapap.2009.09.012

G. Steinberg and B. Kemp, AMPK in Health and Disease, Physiological Reviews, vol.89, issue.3, pp.1025-78, 2009.
DOI : 10.1152/physrev.00011.2008

URL : http://physrev.physiology.org/content/physrev/89/3/1025.full.pdf

L. Fryer, A. Parbu-patel, and D. Carling, The Anti-diabetic Drugs Rosiglitazone and Metformin Stimulate AMP-activated Protein Kinase through Distinct Signaling Pathways, Journal of Biological Chemistry, vol.87, issue.28, pp.25226-25258, 2002.
DOI : 10.1042/bj3450437

G. Zhou, R. Myers, Y. Li, Y. Chen, X. Shen et al., Role of AMP-activated protein kinase in mechanism of metformin action, Journal of Clinical Investigation, vol.108, issue.8, pp.1167-74, 2001.
DOI : 10.1172/JCI13505

R. Shaw, K. Lamia, D. Vasquez, S. Koo, N. Bardeesy et al., The Kinase LKB1 Mediates Glucose Homeostasis in Liver and Therapeutic Effects of Metformin, Science, vol.310, issue.5754, pp.1642-1648, 2005.
DOI : 10.1126/science.1120781

G. Libby, L. Donnelly, P. Donnan, D. Alessi, A. Morris et al., New Users of Metformin Are at Low Risk of Incident Cancer: A cohort study among people with type 2 diabetes, Diabetes Care, vol.32, issue.9, pp.1620-1625, 2009.
DOI : 10.2337/dc08-2175

D. Alessi, K. Sakamoto, and J. Bayascas, LKB1-Dependent Signaling Pathways, Annual Review of Biochemistry, vol.75, issue.1, pp.137-63, 2006.
DOI : 10.1146/annurev.biochem.75.103004.142702

R. Jones, D. Plas, S. Kubek, M. Buzzai, J. Mu et al., AMP-Activated Protein Kinase Induces a p53-Dependent Metabolic Checkpoint, Molecular Cell, vol.18, issue.3, pp.283-93, 2005.
DOI : 10.1016/j.molcel.2005.03.027

URL : http://doi.org/10.1016/j.molcel.2005.03.027

N. Kimura, C. Tokunaga, S. Dalal, C. Richardson, K. Yoshino et al., A possible linkage between AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signalling pathway, Genes to Cells, vol.82, issue.1, pp.65-79, 2003.
DOI : 10.1101/gad.835000

B. Viollet, L. Lantier, J. Devin-leclerc, S. Hebrard, C. Amouyal et al., Targeting the AMPK pathway for the treatment of Type 2 diabetes, Frontiers in Bioscience, vol.Volume, issue.14, pp.3380-400, 2009.
DOI : 10.2741/3460

URL : https://hal.archives-ouvertes.fr/inserm-00367501

O. Vincent and M. Carlson, Gal83 mediates the interaction of the Snf1 kinase complex with the transcription activator Sip4, The EMBO Journal, vol.18, issue.23, pp.6672-81, 1999.
DOI : 10.1093/emboj/18.23.6672

C. Polge, M. Jossier, P. Crozet, L. Gissot, and M. Thomas, ??-Subunits of the SnRK1 Complexes Share a Common Ancestral Function Together with Expression and Function Specificities; Physical Interaction with Nitrate Reductase Specifically Occurs via AKIN??1-Subunit, PLANT PHYSIOLOGY, vol.148, issue.3, pp.1570-82, 2008.
DOI : 10.1104/pp.108.123026

A. Woods, I. Salt, J. Scott, D. Hardie, and D. Carling, The ??1 and ??2 isoforms of the AMP-activated protein kinase have similar activities in rat liver but exhibit differences in substrate specificity in vitro, FEBS Letters, vol.186, issue.2-3, pp.347-51, 1996.
DOI : 10.1111/j.1432-1033.1989.tb15185.x

R. Ewing, P. Chu, F. Elisma, H. Li, P. Taylor et al., Large-scale mapping of human protein???protein interactions by mass spectrometry, Molecular Systems Biology, vol.11, p.89, 2007.
DOI : 10.1128/MCB.18.5.2748

N. Kuramoto, M. Wilkins, B. Fairfax, R. Revilla-sanchez, M. Terunuma et al., Phospho-Dependent Functional Modulation of GABAB Receptors by the Metabolic Sensor AMP-Dependent Protein Kinase, Neuron, vol.53, issue.2, pp.233-280, 2007.
DOI : 10.1016/j.neuron.2006.12.015

M. Solaz-fuster, J. Gimeno-alcaniz, M. Casado, and P. Sanz, TRIP6 transcriptional co-activator is a novel substrate of AMP-activated protein kinase, Cellular Signalling, vol.18, issue.10, pp.1702-1714, 2006.
DOI : 10.1016/j.cellsig.2006.01.021

S. Vernia, M. Solaz-fuster, J. Gimeno-alcaniz, T. Rubio, L. Garcia-haro et al., AMP-activated Protein Kinase Phosphorylates R5/PTG, the Glycogen Targeting Subunit of the R5/PTG-Protein Phosphatase 1 Holoenzyme, and Accelerates Its Down-regulation by the Laforin-Malin Complex, Journal of Biological Chemistry, vol.186, issue.13, pp.8247-55, 2009.
DOI : 10.1073/pnas.0707952104

R. Tuerk, R. Thali, Y. Auchli, H. Rechsteiner, R. Brunisholz et al., New Candidate Targets of AMP-Activated Protein Kinase in Murine Brain Revealed by a Novel Multidimensional Substrate-Screen for Protein Kinases, Journal of Proteome Research, vol.6, issue.8, pp.3266-77, 2007.
DOI : 10.1021/pr070160a

URL : https://hal.archives-ouvertes.fr/inserm-00390911

D. Neumann, A. Woods, D. Carling, T. Wallimann, and U. Schlattner, Mammalian AMP-activated protein kinase: functional, heterotrimeric complexes by co-expression of subunits in Escherichia coli, Protein Expression and Purification, vol.30, issue.2, pp.230-237, 2003.
DOI : 10.1016/S1046-5928(03)00126-8

URL : https://hal.archives-ouvertes.fr/inserm-00390853

U. Riek, S. Ramirez, T. Wallimann, and U. Schlattner, A versatile multidimensional protein purification system with full Internet remote control based on a standard HPLC system, BioTechniques, vol.46, issue.6, p.ix?xii, 2009.
DOI : 10.2144/000113130

URL : https://hal.archives-ouvertes.fr/inserm-00422471

J. Scott, D. Norman, S. Hawley, L. Kontogiannis, and D. Hardie, Protein kinase substrate recognition studied using the recombinant catalytic domain of AMP-activated protein kinase and a model substrate, Journal of Molecular Biology, vol.317, issue.2, pp.309-332, 2002.
DOI : 10.1006/jmbi.2001.5316

N. Mockli, A. Deplazes, P. Hassa, Z. Zhang, M. Peter et al., Yeast split-ubiquitin-based cytosolic screening system to detect interactions between transcriptionally active proteins, BioTechniques, vol.42, issue.6, pp.725-755, 2007.
DOI : 10.2144/000112455

N. Johnsson and A. Varshavsky, Split ubiquitin as a sensor of protein interactions in vivo., Proceedings of the National Academy of Sciences, vol.91, issue.22, pp.10340-10344, 1994.
DOI : 10.1073/pnas.91.22.10340

I. Stagljar, C. Korostensky, N. Johnsson, and S. Te-heesen, A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo, Proceedings of the National Academy of Sciences, vol.94, issue.16, pp.5187-92, 1998.
DOI : 10.1073/pnas.94.16.8405

O. Yogev, A. Naamati, and O. Pines, Fumarase: a paradigm of dual targeting and dual localized functions, FEBS Journal, vol.134, issue.22, pp.4230-4272, 2011.
DOI : 10.1007/s00438-003-0879-2

J. Storch and B. Corsico, The Emerging Functions and Mechanisms of Mammalian Fatty Acid???Binding Proteins, Annual Review of Nutrition, vol.28, issue.1, pp.73-95, 2008.
DOI : 10.1146/annurev.nutr.27.061406.093710

J. Scott, D. Norman, S. Hawley, L. Kontogiannis, and D. Hardie, Protein kinase substrate recognition studied using the recombinant catalytic domain of AMP-activated protein kinase and a model substrate, Journal of Molecular Biology, vol.317, issue.2, pp.309-332, 2002.
DOI : 10.1006/jmbi.2001.5316

D. Gwinn, D. Shackelford, D. Egan, M. Mihaylova, A. Mery et al., AMPK Phosphorylation of Raptor Mediates a Metabolic Checkpoint, Molecular Cell, vol.30, issue.2, pp.214-240, 2008.
DOI : 10.1016/j.molcel.2008.03.003

A. Bruckner, C. Polge, N. Lentze, D. Auerbach, and U. Schlattner, Yeast Two-Hybrid, a Powerful Tool for Systems Biology, International Journal of Molecular Sciences, vol.302, issue.6, pp.2763-88, 2009.
DOI : 10.1126/science.1090289

URL : https://hal.archives-ouvertes.fr/inserm-00422470

H. Takeda, N. Goshima, and N. Nomura, High-Throughput Kinase Assay Based on Surface Plasmon Resonance, Methods Mol Biol, vol.627, pp.131-176, 2010.
DOI : 10.1007/978-1-60761-670-2_8

S. Anderson, B. Cool, L. Kifle, W. Chiou, D. Egan et al., Microarrayed Compound Screening (??ARCS) to Identify Activators and Inhibitors of AMP-Activated Protein Kinase, Journal of Biomolecular Screening, vol.9, issue.2, pp.112-133, 2004.
DOI : 10.1111/j.1432-1033.1989.tb15185.x

N. Raimundo, B. Baysal, and G. Shadel, Revisiting the TCA cycle: signaling to tumor formation, Trends in Molecular Medicine, vol.17, issue.11, pp.641-650, 2011.
DOI : 10.1016/j.molmed.2011.06.001

O. Flaherty, L. Adam, J. Heather, L. Zhdanov, A. Chung et al., Dysregulation of hypoxia pathways in fumarate hydratase-deficient cells is independent of defective mitochondrial metabolism, Human Molecular Genetics, vol.19, issue.19, pp.3844-51, 2010.
DOI : 10.1093/hmg/ddq305

N. Raimundo, S. Vanharanta, L. Aaltonen, I. Hovatta, and A. Suomalainen, Downregulation of SRF???FOS???JUNB pathway in fumarate hydratase deficiency and in uterine leiomyomas, Oncogene, vol.280, issue.9, pp.1261-73, 2009.
DOI : 10.1016/S0925-4439(97)00035-5

A. Ooi, J. Wong, D. Petillo, D. Roossien, V. Perrier-trudova et al., An Antioxidant Response Phenotype Shared between Hereditary and Sporadic Type 2 Papillary Renal Cell Carcinoma, Cancer Cell, vol.20, issue.4, pp.511-534, 2011.
DOI : 10.1016/j.ccr.2011.08.024

URL : http://doi.org/10.1016/j.ccr.2011.08.024

W. Tong, C. Sourbier, G. Kovtunovych, S. Jeong, M. Vira et al., The Glycolytic Shift in Fumarate-Hydratase-Deficient Kidney Cancer Lowers AMPK Levels, Increases Anabolic Propensities and Lowers Cellular Iron Levels, Cancer Cell, vol.20, issue.3, pp.315-342, 2011.
DOI : 10.1016/j.ccr.2011.07.018

O. Yogev, E. Singer, E. Shaulian, M. Goldberg, T. Fox et al., Fumarase: A Mitochondrial Metabolic Enzyme and a Cytosolic/Nuclear Component of the DNA Damage Response, PLoS Biology, vol.452, issue.3, p.1000328, 2010.
DOI : 10.1371/journal.pbio.1000328.s003

A. Budanov and K. M. , p53 Target Genes Sestrin1 and Sestrin2 Connect Genotoxic Stress and mTOR Signaling, Cell, vol.134, issue.3, pp.451-60, 2008.
DOI : 10.1016/j.cell.2008.06.028

URL : http://doi.org/10.1016/j.cell.2009.01.012

A. Alexander, S. Cai, J. Kim, A. Nanez, M. Sahin et al., ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS, Proceedings of the National Academy of Sciences, vol.15, issue.1, pp.4153-4161, 2010.
DOI : 10.1158/1078-0432.CCR-08-0170

I. Salt, J. Celler, S. Hawley, A. Prescott, A. Woods et al., AMP-Activated Protein Kinase, Circulation Research, vol.120, issue.11, pp.177-87, 1998.
DOI : 10.1161/CIRCRESAHA.117.309633