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Abstract 

Osteosarcoma is the most frequent malignant primary bone tumor characterized by a high 

potency to form lung metastases which is the main cause of death. Unfortunately, conventional 

chemotherapies are not fully effective on osteosarcoma metastases. The progression of a primary 

tumor to metastasis requires multiple processes, which are neovascularization, proliferation, 

invasion, survival in the bloodstream, apoptosis resistance, arrest at a distant organ and 

outgrowth in secondary sites. Consequently, recent studies have revealed new insights into the 

molecular mechanisms of metastasis development. The understanding of the mechanism of 

molecular alterations can provide the identification of novel therapeutic targets and/or prognostic 

markers for osteosarcoma treatment to improve the clinical outcome. 
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Introduction 

Osteosarcoma (OS) most often occurs, during childhood and adolescence, in the 

metaphysis of long bones, including large growth plates with high proliferation activity and 

bone-turnover [1]. Historically, patients with primary OS have been treated with resectional 

surgery alone, resulting in poor prognosis. Clinical outcome of localized OS has improved with 

neoadjuvant chemotherapies, based on methotrexate, cisplatin, doxorubicin and ifosfamide 

treatments. The 5-year survival has indeed increased to around 60%. However, the 5-year 

survival of patients with OS metastasis still remains about 30% [2-7]. OS metastases appear most 

frequently in the lung [8] and is the main reason of death for patients with OS, because micro-

metastases are undetectable at initial diagnosis [9, 10]. Taken together, OS patients with 

metastases present further worse clinical results than those without metastases. Thus, more 

effective treatments and/or a more personalized therapy (i.e. treatment according specific gene or 

protein profile expression) are needed for patients with OS associated with pulmonary 

metastases. 

The establishment of cancer metastasis involves several complex steps: intravasation, 

survival in the circulation, arrest at a distant organ, extravasation and growth in secondary sites 

(Fig. 1). Molecular alterations of these steps have been practically analyzed. The understanding 

of metastasis mechanism might allow us to find new molecular targets for improvement of the 

patients‟ survival. This review describes the molecular factors associated with OS development 

and summarizes the main molecular alterations involved in this bone disease, especially in 

metastatic OS, which strongly contribute to the development of new therapeutic approaches. 

 

Neovascularization is a key parameter in osteosarcoma growth 
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Nutriments and oxygen required for the metabolism of normal and tumor cells are delivered by 

blood vessels. In malignants pathologies, neoformation of blood vessels allows growth, invasion 

and metastatic spread of cancer cells. [11, 12]. The process of neovascularization is generally 

regulated by a balance between angiogenic inducers and inhibitors. The shift in favor of 

angiogenic inducers, known as the “angiogenic switch”, promotes the formation of a new blood 

supply enhancing tumor growth and metastasis. In an oncologic context, neovascularization is 

induced by the tumor environment such as hypoxia, acidosis or inflammation. In these 

conditions, both tumor cells and host endothelial cells can increase the expression of pro-

angiogenic: vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), 

basic fibroblast growth factor (bFGF) and transforming growth factor (TGF-β) [13, 14] [13, 

14][15-17]. Tumor cells also secrete proteolytic enzymes such as matrix metalloproteinases 

(MMPs), which degrade basement membrane and extracellular matrix (ECM) promoting cell 

dissemination [18, 19]. MMP-9 is indeed highly related to the angiogenic switch because it can 

activate pro-angiogenic factors [20, 21]. Several studies have demonstrated that VEGF or TGF-β 

expression is associated with an increase of tumor vascularity, invasion and poor prognosis in 

OS [22-24]. It has been shown that high serum-VEGF levels in OS correlate with tumor 

progression, metastasis and poor prognosis [25, 26]. However, the relationship between an 

increase of tumor vascularity and a poor prognosis is controversial in OS [27-29].  

The well-known angiogenic inhibitors are angiostatin and endostatin. Angiostatin is a 

cleavage product of plasminogen [30], whereas endostatin is the carboxyl-terminal fragment of 

collagen XVIII [31]. They inhibit endothelial cell proliferation and migration [32]. The resulting 

anti-angiogenic activity has been demonstrated in various tumor models in vivo [33-38]. Based 

on these (pre)clinical results, clinical trials are currently running to evaluate the effect of human-
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recombinant endostatin. Although showed a well tolerability, and safety in patients with 

malignant solid tumors it induces a minor anti-tumor effect, effect not related to the vascular 

changes [39-41]. Inhibition of neovascularization should suppress tumor growth despite tumor 

cell heterogeneity because blood supply is necessary for all tumors to survive. Furthermore, the 

available data from animal models and phase I and II clinical trials of angiostatin and endostatin 

have shown that these agents are well-tolerated at therapeutic doses: 15-600 mg/m
2
/day added to 

those patients, although the use of anti-angiogenic therapy has raised the debate about 

interference with normal physiological processes such as wound healing and tissue repair [31, 

39-43].  

 

Migration and invasion: two potential therapeutic targets 

Tumor migration and invasion through the ECM play are critical in metastasic dissemination [15, 

16]. In OS, degradation of the ECM, which leads to migration, invasion and metastasis, releases 

MMPs (MMP-2 and MMP-9, especially) and m-calpain [44-46]. In addition, the Wnt/β-catenin, 

Src-kinase and Notch signaling pathways are also involved in migration and invasion [47-55]. 

MMPs are a family of zinc endopeptidases consisting of at least 20 different members 

and regulate different cellular metabolic processes [56, 57]. They induce a variety of biological 

effects including growth, morphogenesis, apoptosis, tissue destruction and cancer formation [58, 

59]. Recently, bisphosphonates have been shown to down-regulate MMPs expression and reduce 

the invasive potency of OS cells [60-64]. Disulfiram is also able to control the invasion and 

metastasis in human OS cells through the MMP-2 and MMP-9 inhibition [65]. Both of m-calpain 

expression and MMP-2 secretion are inhibited by a siRNA targeting m-calpain in SAOS-2 cells 

[46]. m-calpain is also essential in the invasion and human OS metastasis [46]. These agents 
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related to proteases represent new therapeutic targets and approaches to decrease the OS 

migration and invasion.  

Wnt signaling pathway coordinates osteoblast proliferation and differentiation [66]. 

Disruptions in various components of the Wnt pathway result in disordered bone development 

and homeostasis [67]. The β-catenin dependent Wnt signaling pathway is regulated by secreted 

Wnt antagonists divided into two groups. Wnt inhibitory factor 1 (WIF-1) and the secreted 

frizzled-related protein family directly bind to Wnt ligands while the dickkopf families and 

sclerostin are blocking Wnt receptors trough the endocytosis of low-density lipoprotein receptor-

related protein 5/6 co-receptors [68-71]. This Wnt binding leads to the activation of disheveled, 

which in turn, releases β-catenin from the axin-adenomatous polyposis coli-glycogen synthase 

kinase-3β complex, causing stabilization and accumulation of β-catenin in the cytoplasm. After 

its translocation to the nucleus, β-catenin binds to the T-cell factor/lymphocyte enhancer factor 

family of transcription factors and promotes downstream target oncogenes such as c-myc, cyclin 

D, survivin and MMPs. These mechanisms are involved in proliferation, invasion and metastasis 

in various human cancers [72-75]. OS frequently express high levels of cytoplasmic and/or 

nuclear β-catenin [76], which is also associated with metastasis [77, 78]. These findings suggest 

that aberrant Wnt activation is crucial in multiple cancers, including OS [79-81]. A preclinical 

study has demonstrated that the inhibition of Wnt/β-catenin pathway induced lower levels of 

nuclear β-catenin, resulting in down-regulation of the β-catenin-targeted genes such as MMP-9, 

cyclin-D, c-myc and survivin [82]. Several reports have demonstrated that WIF-1 silencing due 

to hypermethylation results in Wnt signaling activation in a variety of cancer. WIF-1 can inhibit 

the cell-growth of those cancer cells [79, 80, 83-86]. The down-regulation of WIF-1 expression 

plays a role in OS progression. Re-expression of WIF-1 also suppressed Wnt signaling pathway, 
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resulting in the tumor growth and lung metastasis in vivo in OS mouse models [50]. These results 

indicate that WIF-1 can be a therapeutic agent against OS metastasis. However, the function of 

Wnt antagonists including WIF-1 is still unclear and further investigations are needed. 

Notch signaling regulates development of many tissues and cell types through diverse 

effects on cell fate decision, stem cell renewal, differentiation, survival and proliferation [87]. 

Notch signaling is one of several evolutionarily conserved signaling pathways in the 

development of multi-cellular organisms. Its temporal-spatial expression effects can specify 

diverse cellular events, including proliferation, differentiation, apoptosis and stem cell 

maintenance. In mammals, there are four Notch receptors: Notch1-4, and eleven ligands [88]. 

The first targets of Notch are two basic helix-loop-helix transcriptional repressor families: the 

Hairy/enhancer-of-split (Hes) and the Hes with YRWP motif families [89]. Notch has been 

considered as a promoter of invasion in OS. The Notch receptor 1, 2 and Hes1 genes induced by 

Notch increase in highly metastatic OS. In human OS, the Hes1 gene was inversely associated 

with the survival rate [52-55]. In a preclinical setting, the OS cell invasion was reduced by an 

inhibition of the Notch signaling pathway whereas the cell proliferation was not blocked. The 

Notch-inhibited cells were less able to induce lung metastases in an orthotopic mouse than the 

negative controls. However, the mechanism in the inhibition of the Notch pathway and the 

down-regulation of invasion resulted from Hes1 remains not clear [53, 55]. 

Src is a non-receptor tyrosine kinase and encoded by the c-Src as a proto-oncogene. Src 

kinase activity is regulated by several receptor tyrosine kinases (RTKs) such as epidermal 

growth factor (EGF) RTK, PDGF-RTK and integrin receptors [90-92]. Src family kinases are 

critical in the metastatic dissemination, such as cell proliferation, adhesion, invasion, survival 

and angiogenesis. Either overexpression or activation of c-Src has been shown to occur in cancer 
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development [49]. Src, involved in tumor metastasis widely, could be a novel therapeutic target 

in OS metastasis. Dasatinib, known as a Src kinase inhibitor, suppresses Bcr-Abl tyrosine kinase. 

The effect and safety of dasatinib have been established as therapeutic agent for imatinib-

resistant chronic myelogenous leukemia in early-phase clinical trials. Also, several studies have 

shown that the dasatinib acts against Bcr-Abl-positive leukemic cell lines as well as other 

malignancies. The c-Src-mediated signaling pathways, related to tumor proliferation, adhesion, 

or migration, have been shown in various malignancies such as prostate cancer, lung cancer and 

sarcoma [93-95]. In preclinical studies, dasatinib suppressed tumor migration and invasion with 

inhibition of the Src kinase activity and its downstream signaling in OS cell lines in vitro [48, 

96]. On the other hand, dasatinib had no effect on pulmonary metastases in vivo [48]. At present, 

the other specific Src kinase inhibitor, called saracatinib, is under investigation in phase II 

clinical trial of OS lung metastases (clinicaltrials.gov/ct2/show/NCT00752206). 

 

Apoptosis resistance and OS progression 

Apoptosis is involved in cell-survival in cancer metastasis through the all stages via two 

pathways. The first one is regulated by a death receptor bound to Fas or tumor-necrosis factor 

(TNF) family member, death-inducing signaling complex, and caspase-8. The second one is 

associated with p53, Bcl2 family member, cytochrome-c and caspase-9. When caspase-8 or -9 is 

activated, caspases of the downstream can be cleaved inducing cell death.  Fas and its ligand 

(FasL) belong to the TNF death receptor superfamily and regulate tumorigenesis in a variety of 

primary malignancies and metastases [97-99]. Fas/FasL complex, constitutively expressed in 

lung tissue, enhances the Fas-apoptosis pathway and leads to cell death [100, 101]. Fas receptor 

has been well-known as a death receptor mediated apoptosis in a variety of tumor cells. Recent 



9 

 

studies have revealed that Fas is also pro-apoptotic related to tumor proliferation, differentiation 

and migration [102-104]. Thus, apoptosis resistance is crucial for establishment of tumor 

metastasis; it is implicated in treatment-resistance with cancer metastasis [105]. Fas expression is 

often decreased in OS lung metastasis, whereas it is highly expressed in the primary tumors [100, 

101, 106]. Furthermore, Fas-negative expressions correlate with tumor development and poor 

prognosis [100, 101, 107-109]. Inhibition of Fas signaling and/or the loss of FasL can develop 

the proliferation of Fas-positive OS cells in the lungs and can promote the growth of lung 

metastases in OS models in vivo [107].  

Interleukin (IL)-12 increased the expressions of Fas receptor in OS lung metastasis 

through stimulation of the Fas promoter activity. In turn, the metastatic cells acquired the 

susceptibility to FasL in relation to Fas-induced apoptosis in the lung microenvironment [110]. 

In vivo, combination therapy of IL-12 with ifosfamide induces FasL expression, increasing the 

therapeutic efficacy via the Fas/FasL pathway [111]. Muramyl tripeptide phosphatidyl 

ethanolamine (MTP-PE) induces IL-12 production in OS patients through activation of 

macrophages [1, 112]. MTP-PE also up-regulates Fas expression when exogenous IL-12 is 

administered to the patients [106]. The combination of MTP-PE with ifosfamide induces IL-12 

and FasL respectively, consequently the clinical outcome of the patients treated can be improved 

through the activation, of tumor apoptosis [106]. These results suggest that Fas death receptor 

pathway may enhance the efficacy of chemotherapy in OS. 

IL-18,which is an interferon-γ-inducing factor [113], affects an anti-tumor effect via the 

activation of natural killer (NK) cells or cytotoxic T-cells [113, 114], inhibition of angiogenesis 

[115] and induction of FasL on Fas-positive tumor cells [116]. IL-18 has been shown to inhibit 

metastasis in OS cells through the activation of T-cells and NK-cells and induction of the FasL 
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expression [117]. In addition, the combination of ifosfamide with IL-18 suppresses the 

development OS lung metastasis [118]. Taken together, Fas death receptor pathway is essential 

in the establishment of OS lung metastasis, and it may be a novel therapeutic target. However, 

the molecular mechanism of the loss of Fas-mediated apoptosis in OS metastases is unknown. 

 

 Survival in the blood circulation: Anoikis resistance 

Cancer metastases require the anoikis-resisted cells to survive in the circulation.  Anoikis, Greek 

for „„homelessness‟‟, regulates cell homeostasis in tissues. Normal epithelial cells become 

apoptotic when exposed to anchorage-independent environments [119, 120]. In turn, once tumor 

cells have entered into the bloodstream to disseminate distantly, the cell-cell adhesions or ECM 

attachments are lost, which results in the specific apoptosis called anoikis [121]. Therefore, 

metastatic cells need to acquire the resistance to anoikis to survive during dissemination and 

colonization of secondary distant sites in the circulation. 

Acquisition of anoikis resistance  has been described in non-epithelial malignancies such 

as OS [122]. Many studies demonstrated the survival mechanism of cancer cells in the evasion of 

anoikis with various means such as Src/PI3K/Akt pathway, focal adhesion kinase, or Bcl-2 [123, 

124]. Several studies have shown that β4 integrin expression is involved in cancer progression 

[125-127]. Also, the β4 integrin expression is implicated in the survival of OS cells in the 

circulation, because knockdown of β4 integrin suppressed the cell-proliferation under anchorage-

independent sites in OS cells [128]. In addition, the knockdown of β4 integrin in a mouse model 

inhibited lung metastases, and β4 integrin-ezrin interaction appears to be essential for β4 integrin 

expression. However, the relation between ezrin and β4 integrin is still unknown [128]. Cell-cell 

adhesions can activate integrin signaling in anchorage-independent conditions and integrin 
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expression patterns may contribute to the resistance to anoikis [129].  

Switch from αVβ5 to αVβ6 integrin may suppress anoikis in squamous cell carcinoma cells 

through the activation of PI3K/Akt signaling pathway [130]. The PI3K/Akt pathway, which 

depends on Src kinase activation, is important for human OS cells to avoid anoikis [47]. Src has 

another role related to anoikis resistance with caveolin-1 in OS cells. Caveolin-1 is the major 

protein component of caveolae [131], which regulates several intracellular signaling pathways 

[132]. Caveolin-1 is highly expressed in osteoblasts [133] and its overexpression in OS cells 

inhibited anchorage-independent growth, invasion, and migration by blocking c-Src and c-Met 

tyrosine kinases in vitro [134]. In addition, Caveolin-1 overexpression suppressed the OS 

metastasis in vivo [134].  

 

Arrest and extravasation: final step of cell migration 

The mechanism of migration arrest of metastatic cells is controversial. Metastatic tumor cells are 

generally thought to be trapped in the microcirculation because their size is larger than the size of 

normal cells [135]. When the tumor cells in the bloodstream are trapped, micro-embolisms are 

structured, and the interaction with the local microenvironment begins consequently. 

Interestingly, cancer cells have the tendency to prefer a specific target organ in metastasis 

processes: Over 80% of all metastases in OS occur in the lungs [136]. This result suggests that 

circulating tumor cells can select their optimal sites to survive and grow via interactions with 

distinct molecules expressed on the endothelial cells in the distant organs [16]. In the circulation, 

cell colonization in the distant organs is mediated through the secretion of chemokines and 

proteinases, involved in extravasations [15, 16]. Recently, chemokines are regarded as important 

factors to control a site-specificity of cancer metastasis including OS-lung relation [137-140]. C-
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X-C-motif chemokine receptor 4 (CXCR4) and its ligand C-X-C-motif chemokine ligand 12 

(CXCL12) have been shown to regulate an organ-specific metastasis by the formation of 

chemotactic gradients in several cancer [141-143]. Binding of CXCR4 to CXCL12 allows 

adhesion and extravasation of OS cells in pulmonary metastasis [138, 139, 144, 145]. These 

results suggest that abundant expressions of CXCL12 in the lung may be involved in the high 

frequency of pulmonary metastases in OS. Highly CXCR4 expressions in OS-patient samples 

adversely correlated to event-free, overall, and, metastasis-free survival [138]. These data 

suggest that CXCR4 could be useful as a prognostic factor in OS metastasis.  

CXCR3, another chemokine receptor, has been identified in a variety of malignancies 

including OS [138, 146-148]. Its ligands, CXCL9, 10 and 11, are expressed in lungs. The 

inhibition of CXCR3 chemokine pathway down-regulates the growth of OS lung metastasis. 

Recent study has demonstrated that CXCR3 inhibitor decreased the proliferation, survival and 

invasion of the tumor cells in an animal model of OS lung metastasis. In other words, the 

interaction between CXCR3 and its ligands can directly enhance the invasion, survival and 

proliferation of tumor cells in the metastatic organ. This result suggests that targeting CXCR3 

can specifically inhibit OS lung metastasis [144]. 

 

Adhesion step in the metastatic process 

Establishment at a distant organ requires that the metastatic cell connects to its new environment 

and re-establishes cell-cell adhesions. Ezrin is a membrane-cytoskeleton linker protein that acts 

as membrane organizers and linkers between plasma membrane and cytoskeleton [149] 

controlling. cell-microenvironment and cell-cell interactions. In addition, ezrin associates with 

several signaling transductions, such as Rho and PI3K/Akt pathways [150, 151]. Recently, high 
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level expression of ezrin protein is correlated to metastasis in several cancers [152-154] as well 

as OS [155, 156]. High expression of ezrin is associated with pulmonary metastasis in animal 

models [155, 157], and with poor outcome in pediatric OS patients [155]. Phosphorylated ezrin 

was shown to express at just early phase in lung metastasis [155] whereas  it was dynamically 

expressed at both the early and late time point [156].   

Sorafenib is a multipotent drug, and several molecular targets of sorafenib such as Raf 

kinases are implicated in OS development [158, 159]. Recent preclinical study has reported that 

sorafenib suppressed the development of lung metastases via down-regulation of ezrin-activated 

Mitogen-activated protein kinase (MAPK)/Akt signaling [160]. In addition, sorafenib could 

induce apoptosis through a decrease of expression of the anti-apoptotic Bcl-2 family [160]. 

These data suggest sorafenib may be a novel potential therapeutic option in patients with OS 

metastasis. 

 

Main signaling pathways involved in proliferation of metastatic OS 

OS pathogenesis is clearly related with bone growth during adolescence, suggesting a potential 

relationship with higher expression of hormone levels [161, 162]. Thus, several studies have 

suggested that molecular alterations in the GH/IGF-I signaling pathways could lead to OS 

development in vitro and in vivo [163, 164]. OS cells show both IGF-I and IGF-I receptor 

expression and highly-response to IGF-I in vitro [164]. Serum IGF-I levels in mice with 

hypophysectomy are significantly down-regulated, which is decreasing tumor growth and 

development of metastasis [165]. 

A phase I trial in patients with metastatic and/or recurrent OS was performed with 

somatostatin analog (OncoLar®) to reduce serum IGF-I [166]. In this trial, OncoLar ® treatment 
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in 21 OS patients resulted in a 46% decrease in serum IGF-I levels without toxicity. In a 

preclinical study conducted on dogs with naturally occurring OS, OncoLar® [167] reduced 

serum IGF-I levels were by approximately 43% without toxicity However, no difference in 

primary tumor necrosis, apoptosis or survival was observed in dogs treated with a combination 

of OncoLar® and chemotherapy in comparison with just chemotherapy. These observations 

indicate that the extent or duration of serum IGF-I suppression induced by OncoLar® was not 

enough to improve a clinical outcome. Also, IGF-I receptor (IGF-IR) axis is implicated in OS 

development; inhibition of IGF-IR could inhibit tumor growth, activate apoptosis and up-

regulate the chemo-sensitivity and radio-sensitivity in OS cells [168, 169]. 

Recently, human monoclonal antibodies targeting the IGF-IR were tested in both 

preclinical and clinical studies. Inhibition of IGF-IR with some monoclonal antibodies enhances 

the anti-tumor effects in several OS xenograft models [170, 171]. More recently, a clinical study 

has demonstrated that high IGF-IR expression is a poor prognostic factor for OS patients leading 

to OS development and metastasis [172]. Thus, IGF-IR targeting therapy can be a novel strategy 

for the treatment of OS associated with metastasis. 

 

 Dormancy 

Unfortunately, tumor metastasis occasionally occurs for patients with malignancies a long time 

after the success of primary therapy [173, 174]. This latency period is generally the result of 

tumor dormancy, which is frequently asymptomatic and clinically undetectable for months or 

years until relapse. Once tumor cells are settled in a secondary site, they can grow, die by 

apoptosis or remain dormant. Two ways of tumor dormancy have been described, i) tumor mass 

dormancy (dormant micro-metastases) and ii) cellular dormancy [174-176]. In dormant micro-
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metastases, tumor cells generally divide but the growth is limited. Cellular dormancy (dormant 

single tumor cell) can occur when tumor cells enter in a quiescence state and do not divide any 

more. Tumor cells in dormancy are usually resistant to conventional drug because current 

treatments target cells in division. However, the mechanisms allowing dormant tumor cells to 

survive to conventional chemotherapies and then resume the tumor outgrowth remain unknown.  

Dormant micro-metastases are thought to be present under a balance between cell 

proliferation and apoptosis [176, 177]. Dormant state of micro-metastases is involved in lack of 

nutrition and oxygen from vasculature in relation to angiogenic switch and/or the adaptive 

immune system [178-182]. Endothelial cells in the microenvironment can enhance dormant 

tumor cells via cell-to-cell interactions and induction of angiogenesis [180]. The ECM also plays 

an important role in activation of dormant cells. When tumor cells fail to adhere to the ECM, 

they may enter in dormancy. It has been postulated that micro-metastases fail to properly connect 

to the ECM and survive in the dormant state because they are deprived of growth factors and 

angiogenic signaling. Adhesion to the ECM could induce tumor cells to switch a dormancy state 

to a proliferation state via integrin signaling [181]. On the other hand, both tumor cells and host 

stromal cells modulate the microenvironment such as ECM and vascular wall. Those 

mechanisms may regulate the maintenance in dormancy or the activation metastatic growth for a 

single tumor cell or micro-metastases respectively (Fig. 2) [17, 181]. 

In vivo molecular mechanisms of a variety of cancers including OS in dormant state have 

been assessed with genome transcriptional analysis [181]. This study suggests that anti-

angiogenic proteins such as angiomotin, which has been shown to suppress tumor growth and 

keep dormancy of tumor metastases [179], are up-regulated during dormancy. Thus, the tumor 

proliferation and invasion are inhibited under pre-angiogenic state. Also, tumor cells in 
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proliferation state increased the key cancer pathways such as EGF receptor-1, IGF-IR, and PI3K.  

The mechanism of regulating tumor dormancy is unknown in OS. However, if it is possible to 

induce and/or keep in a dormant state or to induce cell death in residual dormant cells by 

targeting their survival and drug resistance mechanisms, the treatment for the patients with OS 

may be further improved. 

 

Conclusion 

OS associated with metastases still have poor clinical outcome, and conventional therapies are 

not fully effective. In addition, clinical output of novel available chemotherapeutic approaches is 

still unclear. Recent studies have disclosed new insights into the molecular mechanisms of 

metastasis as above mentioned. However, much more unknown questions remain; determinant 

factors of selective colonization in different organs, the mechanisms of tumor dormancy and the 

mechanisms of metastasis suppressors etc. Thus, future research critically needs to be directed 

towards identifying the molecular alterations in OS microenvironments. 
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Figure legends 

Figure 1: The main steps of the tumor metastatic process.  

Tumor cells proliferate at the primary site and neovascularization is induced by tumor 

environment such as hypoxia. In turn, they migrate and invade into the bloodstream. These 

tumor cells in the circulation need to survive against anoikis to arrest in a distant organ. 

Metastatic colonization at the secondary site involves the interactions between tumor cells and 

the microenvironment.  

 

Figure 2: Tumor metastasis dormancy is associated with the risk of recurrence of OS and 

late development of lung metastases 

Tumor dormancy is thought to consist of tumor mass dormancy (dormant micrometastases) and 

cellular dormancy. In tumor mass dormancy (dormant micrometastases), tumor cells generally 

divide but not in cellular dormancy. The tumor growth is strictly limited by the lack of blood 

supply or immune system. Dormant state of micrometastases is involved in angiogenic switch 

and/or the adaptive immune system. Dormancy therapy could contribute to improve the 
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treatment of patients with cancer.  

 

 

 

 

 

 


