M. Koenig, A. Monaco, and L. Kunkel, The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein, Cell, vol.53, issue.2, pp.219-226, 1988.
DOI : 10.1016/0092-8674(88)90383-2

K. Ohlendieck and K. Campbell, Dystrophin constitutes 5% of membrane cytoskeleton in skeletal muscle, FEBS Letters, vol.349, issue.2, pp.230-234, 1991.
DOI : 10.1016/0014-5793(91)80595-T

D. Michele and K. Campbell, Dystrophin-Glycoprotein Complex: Post-translational Processing and Dystroglycan Function, Journal of Biological Chemistry, vol.278, issue.18, pp.15457-15460, 2003.
DOI : 10.1074/jbc.R200031200

J. Ervasti, Dystrophin, its interactions with other proteins, and implications for muscular dystrophy, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1772, issue.2, pp.108-117, 2007.
DOI : 10.1016/j.bbadis.2006.05.010

URL : https://hal.archives-ouvertes.fr/hal-00562718

M. Koenig, A. Beggs, M. Moyer, S. Scherpf, and K. Heindrich, The molecular basis for Duchenne versus Becker muscular dystrophy: correlation of severity with type of deletion, Am J Hum Genet, vol.45, pp.498-506, 1989.

K. Davies and K. Nowak, Molecular mechanisms of muscular dystrophies: old and new players, Nature Reviews Molecular Cell Biology, vol.103, issue.10, pp.762-773, 2006.
DOI : 10.1038/nrm2024

L. Rumeur, E. Winder, S. Hubert, and J. , Dystrophin: More than just the sum of its parts, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1804, issue.9, pp.1713-1722, 2010.
DOI : 10.1016/j.bbapap.2010.05.001

URL : https://hal.archives-ouvertes.fr/hal-00592430

M. Broderick and S. Winder, Spectrin, ??-Actinin, and Dystrophin, Adv Protein Chem, vol.70, pp.203-246, 2005.
DOI : 10.1016/S0065-3233(05)70007-3

A. Lupas, Coiled coils: new structures and new functions, Trends in Biochemical Sciences, vol.21, issue.10, pp.375-382, 1996.
DOI : 10.1016/S0968-0004(96)10052-9

P. Burkhard, J. Stetefeld, and S. Strelkov, Coiled coils: a highly versatile protein folding motif, Trends in Cell Biology, vol.11, issue.2, pp.82-88, 2001.
DOI : 10.1016/S0962-8924(00)01898-5

Y. Yan, E. Winograd, A. Viel, T. Cronin, and S. Harrison, Crystal structure of the repetitive segments of spectrin, Science, vol.262, issue.5142, pp.2027-2030, 1993.
DOI : 10.1126/science.8266097

V. Grum, D. Li, R. Macdonald, and A. Mondragon, Structures of Two Repeats of Spectrin Suggest Models of Flexibility, Cell, vol.98, issue.4, pp.523-535, 1999.
DOI : 10.1016/S0092-8674(00)81980-7

H. Kusunoki, R. Macdonald, and A. Mondragon, Structural Insights into the Stability and Flexibility of Unusual Erythroid Spectrin Repeats, Structure, vol.12, issue.4, pp.645-656, 2004.
DOI : 10.1016/j.str.2004.02.022

H. Kusunoki, G. Minasov, R. Macdonald, and A. Mondragon, Independent Movement, Dimerization and Stability of Tandem Repeats of Chicken Brain ??-Spectrin, Journal of Molecular Biology, vol.344, issue.2, pp.495-511, 2004.
DOI : 10.1016/j.jmb.2004.09.019

L. Davis, K. Abdi, M. Machius, C. Brautigam, and D. Tomchick, Localization and Structure of the Ankyrin-binding Site on ??2-Spectrin, Journal of Biological Chemistry, vol.284, issue.11, pp.6982-6987, 2009.
DOI : 10.1074/jbc.M809245200

J. Ipsaro, L. Huang, and A. Mondragon, Structures of the spectrin-ankyrin interaction binding domains, Blood, vol.113, issue.22, pp.5385-5393, 2009.
DOI : 10.1182/blood-2008-10-184358

P. Stabach, I. Simonovic, M. Ranieri, M. Aboodi, and T. Steitz, The structure of the ankyrin-binding site of ??-spectrin reveals how tandem spectrin-repeats generate unique ligand-binding properties, Blood, vol.113, issue.22, pp.5377-5384, 2009.
DOI : 10.1182/blood-2008-10-184291

J. Ipsaro, S. Harper, T. Messick, R. Marmorstein, and A. Mondragon, Crystal structure and functional interpretation of the erythrocyte spectrin tetramerization domain complex, Blood, vol.115, issue.23, pp.4843-4852, 2010.
DOI : 10.1182/blood-2010-01-261396

J. Ipsaro and A. Mondragon, Structural basis for spectrin recognition by ankyrin, Blood, vol.115, issue.20, pp.4093-4101, 2010.
DOI : 10.1182/blood-2009-11-255604

K. Djinovic-carugo, P. Young, M. Gaudel, and M. Saraste, Molecular Basis for Cross-Linking of Actin Filaments: Structure of the ??-Actinin Rod, Cell, vol.98, issue.4, pp.537-546, 1999.
DOI : 10.1016/S0092-8674(00)81981-9

J. Ylanne, K. Scheffzek, P. Young, and M. Saraste, Crystal Structure of the alpha-Actinin Rod: Four Spectrin Repeats Forming a Thight Dimer, Cell Mol Biol Lett, vol.6, p.234, 2001.

J. Pascual, M. Pfuhl, D. Walther, and M. Saraste, Solution structure of the spectrin repeat: a left-handed antiparallel triple-helical coiled-coil, Journal of Molecular Biology, vol.273, issue.3, pp.740-751, 1997.
DOI : 10.1006/jmbi.1997.1344

A. Baines, Evolution of the spectrin-based membrane skeleton, Transfusion Clinique et Biologique, vol.17, issue.3, pp.95-103, 2010.
DOI : 10.1016/j.tracli.2010.06.008

E. Kahana, P. Marsh, A. Henry, M. Way, and W. Gratzer, Conformation and Phasing of Dystrophin Structural Repeats, Journal of Molecular Biology, vol.235, issue.4, pp.1271-1277, 1994.
DOI : 10.1006/jmbi.1994.1080

E. Kahana and W. Gratzer, Minimum folding unit of dystrophin rod domain, Biochemistry, vol.34, issue.25, pp.8110-8114, 1995.
DOI : 10.1021/bi00025a017

L. Saadat, L. Pittman, and N. Menhart, Structural cooperativity in spectrin type repeats motifs of dystrophin, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1764, issue.5, pp.943-954, 2006.
DOI : 10.1016/j.bbapap.2006.02.012

S. Legardinier, J. Hubert, L. Bihan, O. Tascon, C. Rocher et al., Sub-domains of the dystrophin rod domain display contrasting lipid-binding and stability properties, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1784, issue.4, pp.672-682, 2008.
DOI : 10.1016/j.bbapap.2007.12.014

URL : https://hal.archives-ouvertes.fr/hal-00457831

S. Legardinier, C. Raguénès-nicol, C. Tascon, C. Rocher, and S. Hardy, Mapping of the Lipid-Binding and Stability Properties of the Central Rod Domain of Human Dystrophin, Journal of Molecular Biology, vol.389, issue.3, pp.546-558, 2009.
DOI : 10.1016/j.jmb.2009.04.025

URL : https://hal.archives-ouvertes.fr/inserm-00404317

A. Mirza, M. Sagathevan, N. Sahni, L. Choi, and N. Menhart, A biophysical map of the dystrophin rod, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1804, issue.9, pp.1796-1809, 2010.
DOI : 10.1016/j.bbapap.2010.03.009

D. Petrey and B. Honig, Protein Structure Prediction: Inroads to Biology, Molecular Cell, vol.20, issue.6, pp.811-819, 2005.
DOI : 10.1016/j.molcel.2005.12.005

Y. Zhang, Protein structure prediction: when is it useful?, Current Opinion in Structural Biology, vol.19, issue.2, pp.145-155, 2009.
DOI : 10.1016/j.sbi.2009.02.005

M. Koenig and L. Kunkel, Detailed analysis of the repeat domain of dystrophin reveals four potential hinge segments that may confer flexibility, J Biol Chem, vol.265, pp.4560-4566, 1990.

S. Winder, T. Gibson, K. , and J. , Dystrophin and utrophin: the missing links!, FEBS Letters, vol.288, issue.1, pp.27-33, 1995.
DOI : 10.1016/0014-5793(95)00398-S

D. Jones, Protein secondary structure prediction based on position-specific scoring matrices, Journal of Molecular Biology, vol.292, issue.2, pp.195-202, 1999.
DOI : 10.1006/jmbi.1999.3091

K. Bryson, L. Mcguffin, R. Marsden, J. Ward, and J. Sodhi, Protein structure prediction servers at University College London, Nucleic Acids Research, vol.33, issue.Web Server, pp.36-38, 2005.
DOI : 10.1093/nar/gki410

URL : http://doi.org/10.1093/nar/gki410

Y. Zhang, I-TASSER server for protein 3D structure prediction, BMC Bioinformatics, vol.9, issue.1, p.40, 2008.
DOI : 10.1186/1471-2105-9-40

Y. Zhang, I-TASSER: Fully automated protein structure prediction in CASP8, Proteins: Structure, Function, and Bioinformatics, vol.57, issue.Suppl 6, pp.100-113, 2009.
DOI : 10.1002/prot.22588

W. Delano and E. , The PyMOL user's manual, 2002.

M. Sippl, Recognition of errors in three-dimensional structures of proteins, Proteins: Structure, Function, and Genetics, vol.177, issue.4, pp.355-362, 1993.
DOI : 10.1002/prot.340170404

M. Wiederstein and M. Sippl, ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins, Nucleic Acids Research, vol.35, issue.Web Server, pp.407-410, 2007.
DOI : 10.1093/nar/gkm290

J. Bowie, R. Luthy, and D. Eisenberg, A method to identify protein sequences that fold into a known three-dimensional structure, Science, vol.253, issue.5016, pp.164-170, 1991.
DOI : 10.1126/science.1853201

R. Luthy, J. Bowie, and D. Eisenberg, Assessment of protein models with three-dimensional profiles, Nature, vol.356, issue.6364, pp.83-85, 1992.
DOI : 10.1038/356083a0

R. Efremov, A. Chugunov, T. Pyrkov, J. Priestle, and A. Arseniev, Molecular Lipophilicity in Protein Modeling and Drug Design, Current Medicinal Chemistry, vol.14, issue.4, pp.393-415, 2007.
DOI : 10.2174/092986707779941050

T. Pyrkov, A. Chugunov, N. Krylov, D. Nolde, and R. Efremov, PLATINUM: a web tool for analysis of hydrophobic/hydrophilic organization of biomolecular complexes, Bioinformatics, vol.25, issue.9, pp.1201-1202, 2009.
DOI : 10.1093/bioinformatics/btp111

N. Blomberg, R. Gabdoulline, M. Nilges, and R. Wade, Classification of protein sequences by homology modeling and quantitative analysis of electrostatic similarity, Proteins: Structure, Function, and Genetics, vol.18, issue.3, pp.379-387, 1999.
DOI : 10.1002/(SICI)1097-0134(19991115)37:3<379::AID-PROT6>3.0.CO;2-K

R. Wade, R. Gabdoulline, D. Rienzo, and F. , Protein interaction property similarity analysis, International Journal of Quantum Chemistry, vol.1277, issue.3-4, pp.122-127, 2001.
DOI : 10.1002/qua.1204

R. Gabdoulline, M. Stein, and R. Wade, qPIPSA: Relating enzymatic kinetic parameters and interaction fields, BMC Bioinformatics, vol.8, issue.1, p.373, 2007.
DOI : 10.1186/1471-2105-8-373

URL : http://doi.org/10.1186/1471-2105-8-373

S. Richter, A. Wenzel, M. Stein, R. Gabdoulline, and R. Wade, webPIPSA: a web server for the comparison of protein interaction properties, Nucleic Acids Research, vol.36, issue.Web Server, pp.276-280, 2008.
DOI : 10.1093/nar/gkn181

N. Baker, D. Sept, S. Joseph, M. Holst, and J. Mccammon, Electrostatics of nanosystems: Application to microtubules and the ribosome, Proceedings of the National Academy of Sciences, vol.98, issue.18, pp.10037-10041, 2001.
DOI : 10.1073/pnas.181342398

J. Felsenstein, Estimation of hominoid phylogeny from a DNA hybridization data set, Journal of Molecular Evolution, vol.3, issue.1-2, pp.123-131, 1987.
DOI : 10.1007/BF02111286

J. Phillips, R. Braun, W. Wang, J. Gumbart, and E. Tajkhorshid, Scalable molecular dynamics with NAMD, Journal of Computational Chemistry, vol.84, issue.16, pp.1781-1802, 2005.
DOI : 10.1002/jcc.20289

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2486339

N. Foloppe, A. Mackerell, and . Jr, All-atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data, Journal of Computational Chemistry, vol.7, issue.2, pp.86-104, 2000.
DOI : 10.1002/(SICI)1096-987X(20000130)21:2<86::AID-JCC2>3.0.CO;2-G

A. Mackerell, . Jr, and N. Banavali, All-atom empirical force field for nucleic acids: II. Application to molecular dynamics simulations of DNA and RNA in solution, Journal of Computational Chemistry, vol.6, issue.2, pp.105-120, 2000.
DOI : 10.1002/(SICI)1096-987X(20000130)21:2<105::AID-JCC3>3.0.CO;2-P

A. Mackerell, . Jr, M. Feig, and C. Brooks, Extending the treatment of backbone energetics in protein force fields: Limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations, Journal of Computational Chemistry, vol.44, issue.Pt 6 Pt 1, pp.3-1400, 2004.
DOI : 10.1002/jcc.20065

W. Humphrey, A. Dalke, and K. Schulten, VMD: Visual molecular dynamics, Journal of Molecular Graphics, vol.14, issue.1, pp.33-38, 1996.
DOI : 10.1016/0263-7855(96)00018-5

J. Shao, S. Tanner, N. Thompson, and T. Cheatham, Clustering Molecular Dynamics Trajectories: 1. Characterizing the Performance of Different Clustering Algorithms, Journal of Chemical Theory and Computation, vol.3, issue.6, pp.2312-2334, 2007.
DOI : 10.1021/ct700119m

R. Laskowski, J. Rullmannn, M. Macarthur, R. Kaptein, and J. Thornton, AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR, Journal of Biomolecular NMR, vol.8, issue.4, pp.477-486, 1996.
DOI : 10.1007/BF00228148

N. Menhart, Hybrid spectrin type repeats produced by exon-skipping in dystrophin, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1764, issue.6, pp.993-999, 2006.
DOI : 10.1016/j.bbapap.2006.03.017

K. Amann, B. Renley, and J. Ervasti, A Cluster of Basic Repeats in the Dystrophin Rod Domain Binds F-actin through an Electrostatic Interaction, Journal of Biological Chemistry, vol.273, issue.43, pp.28419-28423, 1998.
DOI : 10.1074/jbc.273.43.28419

G. Drin, J. Casella, R. Gautier, T. Boehmer, and T. Schwartz, A general amphipathic ??-helical motif for sensing membrane curvature, Nature Structural & Molecular Biology, vol.8, issue.2, pp.138-146, 2007.
DOI : 10.1006/abio.2000.4880

URL : https://hal.archives-ouvertes.fr/hal-00171994

N. Deconinck and D. B. , Pathophysiology of Duchenne Muscular Dystrophy: Current Hypotheses, Pediatric Neurology, vol.36, issue.1, pp.1-7, 2007.
DOI : 10.1016/j.pediatrneurol.2006.09.016

G. Banks and J. Chamberlain, Chapter 9 The Value of Mammalian Models for Duchenne Muscular Dystrophy in Developing Therapeutic Strategies, Curr Top Dev Biol, vol.84, pp.431-453, 2008.
DOI : 10.1016/S0070-2153(08)00609-1

T. Fujii, A. Iwane, T. Yanagida, and K. Namba, Direct visualization of secondary structures of F-actin by electron cryomicroscopy, Nature, vol.25, issue.7316, pp.724-728, 2010.
DOI : 10.1038/nature09372

D. Mirijanian, J. Chu, G. Ayton, and G. Voth, Atomistic and Coarse-grained Analysis of Double Spectrin Repeat Units: The Molecular Origins of Flexibility, Journal of Molecular Biology, vol.365, issue.2, pp.523-534, 2007.
DOI : 10.1016/j.jmb.2006.10.003

P. La-borde, P. Stabach, I. Simonovic, J. Morrow, and M. Simonovic, Ankyrin recognizes both surface character and shape of the 14???15 di-repeat of ??-spectrin, Biochemical and Biophysical Research Communications, vol.392, issue.4, pp.490-494, 2010.
DOI : 10.1016/j.bbrc.2010.01.046

A. Czogalla, K. Grzymajlo, A. Jezierski, and A. Sikorski, Phospholipid-induced structural changes to an erythroid ?? spectrin ankyrin-dependent lipid-binding site, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1778, issue.11, pp.2612-2620, 2008.
DOI : 10.1016/j.bbamem.2008.07.020

I. Rybakova, J. Humston, K. Sonneman, and J. Ervasti, Dystrophin and Utrophin Bind Actin through Distinct Modes of Contact, Journal of Biological Chemistry, vol.281, issue.15, pp.9996-10001, 2006.
DOI : 10.1074/jbc.M513121200

A. Beggs, E. Hoffman, J. Snyder, K. Arahata, and L. Specht, Exploring the molecular basis for variability among patients with Becker muscular dystrophy: dystrophin gene and protein studies, Am J Hum Genet, vol.49, pp.54-67, 1991.

R. Kaspar, H. Allen, W. Ray, C. Alvarez, and J. Kissel, Analysis of Dystrophin Deletion Mutations Predicts Age of Cardiomyopathy Onset in Becker Muscular Dystrophy, Circulation: Cardiovascular Genetics, vol.2, issue.6, pp.544-551, 2009.
DOI : 10.1161/CIRCGENETICS.109.867242

S. Tuffery-giraud, C. Beroud, F. Leturcq, R. Yaou, and D. Hamroun, Genotype-phenotype analysis in 2,405 patients with a dystrophinopathy using the UMD-DMD database: a model of nationwide knowledgebase, Human Mutation, vol.23, issue.6, pp.934-945, 2009.
DOI : 10.1002/humu.20976

A. Nakamura and S. Takeda, Exon-skipping therapy for Duchenne muscular dystrophy, Neuropathology, vol.13, issue.4, pp.494-501, 2009.
DOI : 10.1111/j.1440-1789.2009.01028.x

C. Putnam, M. Hammel, G. Hura, and J. Tainer, X-ray solution scattering (SAXS) combined with crystallography and computation: defining accurate macromolecular structures, conformations and assemblies in solution, Quarterly Reviews of Biophysics, vol.52, issue.03, pp.191-285, 2007.
DOI : 10.1016/j.str.2007.02.007