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Abstract

Background: Malaria remains a major health problem in French Guiana, with a mean of 3800 cases each year. A

previous study in Camopi, an Amerindian village on the Oyapock River, highlighted the major contribution of

environmental features to the incidence of malaria attacks. We propose a method for the objective selection of the

best multivariate peridomestic landscape characterisation that maximises the chances of identifying relationships

between environmental features and malaria incidence, statistically significant and meaningful from an

epidemiological point of view.

Methods: A land-cover map, the hydrological network and the geolocalised inhabited houses were used to

characterise the peridomestic landscape in eleven discoid buffers with radii of 50, 100, 200, 300, 400, 500, 600, 700,

800, 900 and 1000 metres. Buffer-based landscape characterisations were first compared in terms of their capacity

to discriminate between sites within the geographic space and of their effective multidimensionality in variable

space. The Akaike information criterion (AIC) was then used to select the landscape model best explaining the

incidences of P. vivax and P. falciparum malaria. Finally, we calculated Pearson correlation coefficients for the

relationships between environmental variables and malaria incidence, by species, for the more relevant buffers.

Results: The optimal buffers for environmental characterisation had radii of 100 m around houses for P. vivax and

400 m around houses for P. falciparum. The incidence of P. falciparum malaria seemed to be more strongly linked

to environmental features than that of P. vivax malaria, within these buffers. The incidence of P. falciparum malaria

in children was strongly correlated with proportions of bare soil (r = -0.69), land under high vegetation (r = 0.68)

and primary forest (r = 0.54), landscape division (r = 0.48) and the number of inhabited houses (r = -0.60). The

incidence of P. vivax malaria was associated only with landscape division (r = 0.49).

Conclusions: The proposed methodology provides a simple and general framework for objective characterisation

of the landscape to account for field observations. The use of this method enabled us to identify different optimal

observation horizons around houses, depending on the Plasmodium species considered, and to demonstrate

significant correlations between environmental features and the incidence of malaria.
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Background

Malaria is a major public health problem in French Gui-

ana, a French overseas region located in South America.

This territory, separated from Brazil and Suriname by

the Oyapock and Maroni rivers, respectively, is largely

covered by the Amazon forest (occupying 94% of its

area). About 3800 acute cases of malaria are recorded in

French Guiana each year. Most transmission occurs

inland, along the rivers, whereas the coastal areas inhab-

ited by 75% of the population are almost free of trans-

mission [1]. An epidemiological study in Camopi, an

Amerindian village at the eastern border of French Gui-

ana, reported a global incidence of 935 per 1000 person-

years for children under the age of five years, with 70%

of cases caused by P. vivax and the remaining 30%

caused by P. falciparum. This investigation highlighted

the predominant role played by environmental factors in

the areas surrounding households: clearing of vegetation,

and distances to the river and the forest [2].

Anopheles darlingi, an efficient vector species common in

the Americas, is widely distributed in French Guiana and

has been considered the primary vector of malaria for 50

years in this territory [3,4]. This species has highly anthro-

pophilic behaviour and its activity in the coastal area of

French Guiana has a bimodal rhythm, with a peak at dusk

and another at dawn, superimposed over nocturnal activity

peaking in the middle of the night [5]. Anopheles darlingi is

the major anopheline species collected in Camopi [6], but

its role in transmission at this site has yet to be clearly

demonstrated. The reported maximum flight range of An.

darlingi is 7 km [7], but the distance covered depends heav-

ily on conditions such as the presence of humans, landscape

features and climate parameters. The precise conditions in

which vector-borne transmission occurs, potentially

accounting for malaria endemicity and epidemic events in

French Guiana, particularly in Camopi, therefore remain

unclear [6,8]. Improvements in our understanding of the

impact of environmental factors on malaria incidence would

provide us with better insight into these mechanisms.

Remote sensing (RS) and geographic information sys-

tems (GIS) have emerged as methods for exploring

environmental factors potentially associated with vector-

borne diseases in health studies [9]. Indeed, RS has

often been used in epidemiological studies of parasitic

diseases (59% of such studies), including malaria (16% of

studies) [10]. The analysis of spatial patterns in entomo-

logical data by RS and GIS methods has been used in

the mapping of potential vector breeding sites and the

identification of areas at risk of malaria [11-24]. Satellite

imagery has also been used to model the spatial risk of

malaria, based on the relationship between land-cover

and climatic features on the one hand, and the preva-

lence or incidence of malaria on the other [25-35].

These latter approaches are consistent when epide-

miological and environmental data are aggregated in

space and time in order to result in the spatial coinci-

dence of geo-localised cases and associated transmission

locations and the temporal coincidence of these cases

with periods of transmission. However, in the absence

of firm hypotheses concerning the locations at which

transmission occurs, studies of vector bioecology, with

the finer spatial and temporal resolution of data, are

required if we are to understand the mechanisms of dis-

ease transmission [36-38].

Furthermore, in studies involving spatial components,

it is essential to determine the most appropriate spatial

scale for the biological process considered. By examining

buffers of several sizes around reference sites at which

the studied phenomenon is measured, it is possible to

determine the most appropriate observation horizon

[24,39].

In this study, we explored the relevance of a local-

scale study of relationships between landscape charac-

terisation and georeferenced malaria cases. Associations

between landscape features, characterised by remote

sensing, and the peridomestic risk of disease have

already been investigated for Lyme disease, at the scale

of individual properties [40,41]. Very few studies investi-

gating landscape characterisation at this very local scale

and its relationship to the incidence of malaria have

been published [42]. With very little information avail-

able concerning the spatial and temporal distribution of

the disease vector, work at this scale necessitates the

formulation of firm hypotheses concerning the likely

sites of transmission. Thus, in this study, we hypothe-

sised that most transmission occurs in and around

dwellings. We therefore assumed that georeferenced

malaria cases could be considered to characterise expo-

sure to mosquito vectors and thus to identify the loca-

tion and time of contamination, at least for young

children (before the acquisition of immunity and auton-

omy in movements). We begin by proposing an objec-

tive method for selecting the best buffer-based

landscape characterisations (in terms of landscape com-

position and structure) from a set of candidates differing

in the radius of the discoid buffer used. We then calcu-

lated Pearson correlation coefficients between malaria

incidence data and environmental variables for the

selected buffers. Finally, we discuss our results from the

standpoints of both methodology and application.

Methods

Study area

The study was conducted in Camopi, a village on the

Oyapock River, which serves as the border between

French Guiana and Brazil. This village consists of a
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main central hamlet and 28 hamlets within a 15 km2

area, on the banks of the Oyapock and Camopi Rivers.

The 1200 registered inhabitants in 2009 were mostly

Amerindians of the Wayampi and Emerillon ethnic

groups, living on the banks of the Oyapock and Camopi

Rivers, respectively. These groups have a traditional life-

style, practising subsistence slash and burn agriculture

[43], fishing, hunting and gathering. These Amerindian

populations, which were formerly nomadic, have

become sedentary following the implantation of public

services, such as a health centre and elementary and

secondary schools, and improvements in their living

conditions have resulted in very high rates of population

growth. In this context, the area under crops is gradu-

ally increasing. The people live in wood huts, known

locally as “carbets”, which have a roof of palm leaves,

steel sheeting or tarpaulin. Nevertheless, modern con-

crete houses are progressively replacing these traditional

dwellings, particularly in the principal hamlet. Camopi is

isolated from the inhabited coastal region and the near-

est town, Saint-Georges de l’Oyapock, is located at 100

km downstream on the Oyapock River. Tourism is not

permitted in Camopi, and special authorisation is

required for all non-residents wishing to reach the

village.

Cohort of children

We carried out an open cohort study of children under

the age of seven years, followed from January 1st, 2001

to December 31st, 2009. Included individuals were all

the children born between January 1st, 1994 and Decem-

ber 31st, 2008. Malaria data were not censored after the

first malaria infection, and children were followed up

until they reached the age of seven years. Data for chil-

dren for whom follow-up was interrupted were right

censored at the date of interruption. We assumed that

all bouts of malaria were recorded at the local health

centre, given the isolation of the population, its limited

mobility and the almost systematic frequentation of the

health centre in cases of fever [44].

Clinical and parasitological data

A bout of malaria (or acute clinical episode of malaria)

was defined as fever (temperature ≥ 38°C at the time of

consultation or during the previous 48 hours) associated

with a thin blood smear positive for asexual forms of

Plasmodium. Blood smears were initially examined in

Camopi by nurses trained in microscopy and were sub-

sequently checked at the Laboratory of Parasitology and

Mycology of Cayenne Hospital. When blood smear

examinations were not feasible, rapid diagnostic tests

(OptiMAL® test) were performed. A list of all acute

clinical malaria episodes, the date of diagnosis, the Plas-

modium species present and parasitaemia (when

available) was established. Relapses of Plasmodium vivax

infection in French Guiana have a purely tropical pat-

tern, with a short latent period (Chesson strain) [45].

Therefore, for a given child, each P. vivax malaria epi-

sode occurring within 90 days of the previous P. vivax

malaria episode was considered to be a relapse and was

therefore withdrawn from the statistical analysis and the

calculation of incidence rate for transmission [46].

Thanks to this filtering of the data, we can reliably

assume that the annual incidence of bouts of P. vivax

malaria corresponds to the annual incidence of trans-

mission. This approach makes the investigation of rela-

tionships between the environment and P. vivax malaria

incidence consistent. The observation of differences in

the temporal patterns of P. vivax and P. falciparum inci-

dence rates suggests that there may be two different

transmission mechanisms at work, involving different

environmental conditions and, possibly, vectors [47]. We

therefore also analysed the incidence rates of P. vivax

and P. falciparum malaria separately. Incidence data

were finally aggregated at the level of the hamlet, as

incidence rates at household level would be subject to

large errors due to the small number of children per

carbet.

Ethical considerations

The protocol was approved by the information proces-

sing in research in the field of health committee

(CCTIRS) and the national data protection agency

(CNIL). Informed consent was provided by one of the

parents of each child before inclusion in the study.

Written consent forms were signed by the investigator,

the parent and the interpreter before completion of the

questionnaire. All diagnosed bouts of malaria were

treated.

Land-cover and landscape characterisation

Land-cover characterisation

Land-cover characterisation was based on a colour

SPOT 5 Satellite image acquired during the dry season,

on August 30th, 2006. The image used has a spatial

resolution of 10 m and a four-band spectral resolution.

Semi-supervised classification was performed with

GRASS GIS 6 software, to characterise land-cover.

Photographs taken from the air, with a spatial resolution

of 50 cm, acquired by the French National Geographic

Institute in 2006 (BD-ORTHO® product), were inter-

preted by eye, for the labelling of classes identified on

the satellite image and for qualitative validation of the

classification. In total, nine classes were identified: pri-

mary and secondary forest, high, medium and low vege-

tation, body of water, burned area, bare soil and river

banks/shallow water (see Figure 1). Unfragmented forest

was defined as the unbroken patch (i.e. the set of
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adjacent pixels belonging to the same class) of primary

forest surrounding the village. A land-cover map of this

type was also used in a previous study by Girod et al.

[6].

Complementary environmental/geographic data

Data on rivers and creeks not visible on SPOT 5 satellite

images due to their small size and/or the dense vegeta-

tion cover were extracted from the BD CARTHAGE®

product of the French National Geographic Institute

(IGN). BD CARTHAGE® is the hydrographic reference

system for France, produced in 2009 for French Guiana

by the Regional Direction of the Environment (DIREN)

of Guiana and the French National Agency for Water

and Aquatic Environments (ONEMA). For the area stu-

died, this database was generated from the digital eleva-

tion model provided by the Shuttle Radar Topography

Mission (SRTM), with a spatial resolution of 30 metres.

All households were geolocalised with a global posi-

tioning system (GPS) – Magellan® eXplorist™ 600 – or

by digitalisation from the aerial photographs of BD-

ORTHO®.

Landscape characterisation (modelling)

For each household, the surrounding landscape was

characterised within discoid buffers of different radius

(50 m, 100 m and then every 100 m until 1000 m) in

terms of the percentage of each land-cover category, the

length of the Camopi and/or Oyapock river banks, the

length of creeks, the number of inhabited houses and

two measurements of landscape division [48]: one taking

all land-cover classes other than deep water into account

(referred to as landscape division 1 below) and the other

taking into account all land-cover classes other than

deep water and unfragmented forest (referred to as land-

scape division 2 below). This second measurement of

landscape division was designed to take into account

only anthropised areas in the calculation of landscape

division. As mentioned by Jeager [48], “the degree of

landscape division is defined as the probability that two

Figure 1 Land-cover characterisation of the study site, with a magnification of the confluence of the Oypapock and Camopi Rivers.
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randomly chosen places in the landscape under investi-

gation are not situated in the same undissected area”.

In fact, taking into account deep water bodies in the

computation led to a systematic underestimation of the

landscape fragmentation and a less discriminant charac-

terisation. The second measurement of landscape divi-

sion was designed to take into account only anthropised

areas in the calculation of landscape division.

According to Jeager [48], the two landscape division

computations are obtained with the following formula:

Landscape division k = 1 −

∑

i∈Ik

⎛

⎜

⎝

Ai
∑

i∈Ik

Ai

⎞

⎟

⎠

2

where Ai is the area of the ith patch, pi, of land cover/

use, k Î{1,2}, I1 = {i /pi ∉ Deep water} and I2 = {i/pi ∉

Deep water AND pi ∉ unfragmented forest}.

Households presenting more than 20% missing data

(presence of clouds and/or cloud shadows) were

excluded.

Landscape features at the household level were aver-

aged at the level of the hamlet for investigations of their

relationship to incidence. So, for each of the 28 hamlets

of the village of Camopi, eleven (corresponding to the

number of buffer sizes) landscape characterisations were

generated, each one including 14 environmental

variables.

Selecting the best landscape characterisation

We used two complementary approaches, based on dif-

ferent criteria, for objective selection of the best land-

scape characterisation from the 11 candidates. The first

considered only environmental data and was designed to

ensure i) significant discrimination of hamlets within the

geographic space and ii) non information redundancy

within the environmental variable space; the second also

made use of epidemiological data and selected the land-

scape characterisation best explaining the incidence of

malaria within a multiple linear regression framework.

In the common situations where environment is char-

acterised by a multivariate data set and where very few

background knowledge are available on data and pro-

cesses involved, the selection of a consistent and infor-

mational landscape characterisation should satisfy the

previous criteria.

Data preprocessing

Variables that clearly had a highly asymmetric distribu-

tion were subjected to square-root transformation before

processing. Square-root transformation clearly provided

better overall results than logarithmic transformation.

Variables were transformed for all buffers, to make it

possible to compare results for different buffer sizes and

to facilitate interpretation. The variables transformed in

this manner were: P. falciparum malaria incidence;

number of inhabited dwelling; length of river banks;

length of creeks; and the proportions of land under bare

soil, burnt, with medium vegetation and river banks/

shallow water.

Evaluation of the informational content of the landscape

characterisations

Intuitively, as the inter-buffer overlap increases with the

buffer sizes, the larger the buffers are the less discrimi-

nant they are for hamlets that are close from one to

another. So we first determined the spatial variance of

the buffer-based environmental variables, with multivari-

ate variograms [49,50] computed for 18 distance classes

of 250 m in width, from 500 to 5000 m. Variogram sig-

nificance was assessed by computing 10000 variograms

after random permutations of the environmental data,

making it possible to calculate the 5th and the 95th per-

centiles for each distance class (see Figure 2).

From a complementary point of view, we noticed an

increase of the inter-correlation level of the environ-

mental variables when the buffer sizes increased. In

other terms, large buffers led to a significant informa-

tion redundancy among the variable set, i.e. a loss of the

effective multi-dimensionality. So, the overall correlation

between environmental variables was then evaluated

simply by calculating the mean absolute Pearson corre-

lation coefficient for all pairs of variables. This coeffi-

cient provides information about the richness and

complementarity of the information contained in the

variables. This coefficient increases with the redundancy

of the information.

Data-driven model selection

Evaluations of the informational content of the different

landscape characterisations based on environmental data

alone do not, by definition, take into account the data

we are trying to explain: malaria incidence in our case.

We therefore selected the candidate characterisation

best explaining the observed pattern of incidence in the

framework of a multiple linear regression. This

approach relates to the problem of model selection. We

suggested the use of a model selection procedure based

on that described by Dray et al. [49] and Roux et al.

[51]. For each buffer size, a principal component analy-

sis (PCA) was performed on environmental variables.

Principal components (PCs) were then normed and

sorted in descending order, according to their capacity

to account for the response variable (malaria incidence,

by species), i.e. according to the proportion of the var-

iance accounted for by a linear regression model. The

sorted PCs (considered as explanatory variables) were

entered one by one into a multiple regression model.

Principal components are linearly uncorrelated. This

ensures that the multiple linear regression is not per-

formed on collinear explanatory variables and gives
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stable results. A new model was thus defined for each

new entry of an explanatory variable. This procedure

resulted in the construction of the same number of

models as there were PCs. The corrected Akaike infor-

mation criterion (AICc) was then calculated for each

model. AICc is a corrected version of AIC for small

sample sizes (28 hamlets here), making it possible to

select the best model in terms of two antagonistic cri-

teria: accuracy and parsimony. The best model was con-

sidered to be that giving the lowest AICc value.

Correlations between the incidence of malaria and land-

cover characteristics

Pearson correlation coefficients were calculated for the

relationships between malaria incidence, by species, and

the variables associated with the selected environment

characterisation. Correlation coefficients between

malaria incidence rates and buffer-based environmental

variables were computed only for the buffers selected by

means of the previous analysis.

Results

Epidemiological results

A total of 541 children were included into this cohort.

Transmission incidence rates were 248, 292 and 11 per

1000 person-years for P. falciparum, P. vivax and mixed

infections, respectively. We considered 43% of the bouts

of P. vivax malaria initially included to correspond to

relapses, which were therefore removed from the analy-

sis. A detailed description of the epidemiological results

is presented in Stefani et al. [47].

Missing data due to cloud cover

One of the 29 hamlets constituting the village of

Camopi was entirely under cloud, precluding the char-

acterisation of land-cover. For another hamlet, five of

the six carbets presented more than 20% missing data

for the 50 m and 100 m-radius buffers and were

excluded from the study.

Discrimination power in geographic space - variograms of

environmental data

We generated multivariate variograms [50] of the envir-

onmental variables as a function of buffer size, and a

histogram of the distances between all possible pairs of

hamlets (Figure 2). Only buffers of 200 to 400 m gave

significantly high variances for hamlets separated by

2500 to 3500 m, providing a significant discrimination

in geographic space for these distances. Twenty-one per-

cent of all the hamlet pairs exhibit distances comprised
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within this interval. So a non negligible part of the set of

hamlets can be spatially discriminated by choosing buf-

fer radii between 200 to 400 m.

On the contrary, larger buffer radii, especially above

600 m, are associated with higher levels of spatial auto-

correlation for hamlets located in close proximity. In

particular, for radii above 800 m, hamlets distant of less

than 1750 m from one to another are significantly cor-

related from the environmental point of view. Yet,

40.0% of all the possible hamlet pairs exhibit a distance

lower than 1750 m and thus a significant spatial auto-

correlation.

Evaluation of the dimensionality within the

environmental variable space

Figure 3 shows the mean absolute values of Pearson

correlation coefficients for all pairs of environmental

variables.

For buffers with a radius above 400 m, the correlation

between the variables increased strongly with buffer

size, reducing the richness of the information contained

in the variables and, thus, their potential explanatory

power. The minimum of the information redundancy is

reached for a buffer of 200 m.

As a preliminary conclusion, by considering the two

last environmental variable investigations, we state that

multivariate, discriminant and informative landscape

characterisations are provided by buffers with radii of at

most 400 m. However, the following model selection

procedure was applied to larger buffers (up to 600 m) in

order to discuss the consistency of this procedure

results with the previous ones.

Selection of the model best explaining malaria incidence

Figure 4 presents the results for the AICc value distribu-

tions as a function of the buffer sizes.

The best compromise between model accuracy and

parsimony was obtained with a buffer of 100 m for the

incidence of P. vivax malaria (r2 = 0.54) and for a buffer

of 400 m for the incidence of P. falciparum malaria (r2

= 0.82). These two models had four and six compo-

nents, respectively (see Figure 5). The six components

of the selected P. falciparum model were PCs numbers

1, 14, 10, 3, 2 and 4, in decreasing order of explanatory

capacity. For P. vivax, the selected regression model

included PCs numbers 11, 2, 4 and 14. Moran’s index of

spatial autocorrelation was calculated for the residuals

of the two models and for a large range of weighted

Figure 3 Mean absolute values of Pearson’s correlation coefficients for all pairs of variables.
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neighbourhood structures. No correlation was found in

either case, the p-value being exceeding 0.63 for P. falci-

parum and 0.06 for P. vivax model residuals, regardless

of the weighted neighbourhood structure.

The four primary axes of the PCA for environmental

variables, accounting for 81.8% of the total variance of

the environmental variables, appeared in the P.

falciparum regression model (the six PCs defining the

regression model accounted for 82.2% of the total envir-

onmental variable variance). In particular, the first PCA

principal component, accounting for 36.7% of the total

variance of the environmental data, was the first variable

selected in the construction of the regression model.

This was not the case for the best P. vivax regression

Figure 4 AICc values as a function of the buffer sizes and for (a) P. falciparum and (b) P. vivax. Filled circles correspond to the minimum

values and numbers in brackets correspond to the AICc values for the best models. The horizontal dashed lines correspond to the AICc values

for the “null” models (i.e. with only intercepts) above which the models are not valid.

Figure 5 Variance accounted for by the multiple regression models obtained with buffers of 100 m (P. vivax) and 400 m (P.

falciparum).
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model. The four PCs included in the best regression

model for P. vivax accounted for only 35.3% of the total

variance of the environmental variables. In particular,

the first PC selected (the 11th) was not informative or

discriminating from an environmental viewpoint.

Interpretation of principal components

An exploration of the contribution of variables to the

definition of the factorial axis, for the P. vivax model,

showed that PC 11 could be considered a “dense vegeta-

tion” variable (the variables contributing most to this

axis, together making up 80% were medium vegetation,

secondary forest, landscape division, primary forest and

bare soil). PC 2 could be considered an “anthropogenic”

variable (bare soil, number of inhabited houses, burnt

area, deep water, length of river banks and river banks/

shallow water). PC 4 could be considered a “river banks

and vegetation” variable (river banks/shallow water,

medium vegetation, secondary forest, primary forest and

length of river banks) and PC 14 was a mixture of all

types of environmental variables (bare soil, primary for-

est, deep water and secondary forest). In the P. falci-

parum model, PC 1 could be considered a “dense

vegetation, anthropogenic and water body” variable

(high vegetation, number of inhabited houses, bare soil,

length of creeks, primary forest, length of river banks and

deep water). PC 14 could be considered a “forest” vari-

able (primary forest, deep water and bare soil). PC 10

could be considered a “dense vegetation and anthropo-

genic” variable (medium vegetation, number of inhabited

houses, secondary forest, length of river banks, landscape

division 2 and deep water). PC 3 could be considered a

mixture of all types of variables (secondary forest, river

banks/shallow water, landscape division 2, bare soil and

primary forest). PC 2 could be considered a “low vegeta-

tion” variable (low vegetation, medium vegetation, land-

scape division 2 and landscape division) and PC 4 a

“fragmentation and high vegetation” variable (burnt

area, landscape division, high vegetation, secondary for-

est, landscape division 2, river banks/shallow water and

length of river banks).

Correlation between incidence and initial environmental

data

Pearson correlation analyses of the relationships

between environmental variables and the incidences of

P. vivax and P. falciparum within buffers of 100 and

400 m, respectively, are presented in Table 1. Five vari-

ables were significantly (p < 0.01) associated with P. fal-

ciparum incidence: proportions of bare soil (r = -0.69),

high vegetation (r = 0.68) and primary forest (r = 0.54),

landscape division (r = 0.48) and number of inhabited

dwellings (r = -0.60); whereas P. vivax incidence was

associated only with landscape division (r = 0.49).

Discussion

We first chose to characterise the environment around

each household, and then averaged such characterisation

for each hamlet. Direct landscape characterisation

around hamlets could appear more straightforward but

presented two main drawbacks: firstly it demands to

clearly materialise the hamlet entity as a geographic

object, which is not easy and would result of arbitrary

choices (point corresponding to the barycentre of ham-

let dwellings, or surface or line corresponding to the

convex hull of the dwellings, etc.); secondly, the envir-

onment surrounding the hamlet can differ from the one

surrounding the individual dwellings and, among them,

the dwellings which are inhabited by children included

in the cohort.

From a methodological standpoint, we propose here a

simple and general framework for an objective and

informative multivariate landscape characterisation and

when very few background knowledge are available on

involved processes. This is a frequent problem in land-

scape ecology and solutions are often determined arbi-

trarily, particularly when there is no available ethological

knowledge (e.g. dispersion capacity) to guide an objec-

tive choice. In this context, we initially proposed tools

that consider environmental variable features only: the

multivariate variogram evaluating the capacity of the

landscape characterisation to discriminate sites in the

Table 1 Linear correlations between initial environmental

variables and P. vivax and P. falciparum incidences.

P. vivax P. falciparum#

Variable Pearson
r

P
value

Pearson
r

P value

% bare soil# -0.17 0.381 -0.69 <
0.001**

% secondary forest 0,00 0.999 -0.03 0.891

% primary forest 0.08 0.688 0.54 0.003**

% deep water 0.28 0.149 -0.39 0.043*

% burned land# -0.24 0.218 -0.43 0.022*

% low vegetation -0.09 0.665 0.06 0.761

% medium vegetation# -0.05 0.783 0.24 0.227

% high vegetation 0.17 0.396 0.68 <
0.001**

% river banks/shallow
water#

0.30 0.124 -0.24 0.212

No. of inhabited dwellings# -0.30 0.116 -0.60 0.001**

Length of river banks# 0.32 0.097 -0.44 0.018*

Length of creeks# -0.06 0.771 0.48 0.01*

Landscape divison 1 0.46 0.013* -0.10 0.601

Landscape divison 2 0.49 0.008** 0.48 0.009**

We used buffers with radii of 100 m and 400 m for P. vivax and P. falciparum

incidences, respectively. Symbols * and ** correspond to statistical significance

at the 0.05 and 0.01 (alpha risks) levels, respectively. Significant correlation

coefficients are shown in bold. Landscape division 2 was computed by

considering all land-cover classes other than unfragmented forest. The symbol

# identifies variables that have been transformed (square-root transformation).
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geographic space; the mean absolute Pearson correlation

coefficient for pairs of environmental variables, which

provides an indication of the redundancy within the

environmental variable space. However, the most origi-

nal part of the data analysis methodology relates to the

objective selection of the best landscape characterisation,

by means of a data-driven model selection procedure

based on multiple linear regression and the Akaike

information criterion.

The proposed method is not restricted to the case of

discoid buffers or to studies of malaria incidence. For

instance, it could be applied to the parameterisation of

IFM-like (incidence function model-like) measurements,

as described in Moilanen and Nieminen [52]. A compar-

able application of the proposed methodology was

described by Roux et al. [51] for selection of the most

appropriate spatial weighted structure for modelling the

presence and abundance of the insect vector of Chagas

disease.

The methodology provides results that may be sensi-

tive to many factors other than the outcome variable (in

this case, malaria incidence). The most important of

these factors is the set of environmental variables used

for landscape characterisation. Moreover, the environ-

mental data preprocessing may affect the results. In our

case, a logarithmic transformation was applied, and the

results were compared with those of square-root trans-

formation. No significant difference was found in model

structures, but the results, in terms of model accuracy

and Pearson correlation coefficients, were poorer.

In the context of our application, the first steps of the

proposed methodology tended to eliminate large buffers

(radius > 400 m), which gave poor spatial discrimination

of hamlets and displayed high levels of information

redundancy for environmental variables. The data-driven

selection model was then used to identify the optimal

observation horizons: 100 and 400 m buffers were found

to be the most appropriate for characterising the envir-

onment when considering P. vivax and P. falciparum

malaria incidences, respectively.

The four primary PCs of the PCA for environmental

variables were included in the P. falciparum regression

model selected. The hamlets were thus similarly struc-

tured (or ordered) both environmentally and epidemio-

logically. There was therefore a strong link between

environmental features and the incidence attributed to

this malaria species. By contrast, the association between

P. vivax malaria incidence and environmental character-

istics seemed to be weaker.

In Pearson’s linear correlation analysis, the proportion

of bare soil within the 400 m buffer zone was found to

be associated with protection against P. falciparum

malaria. This land-cover feature was not favourable for

the rest of adult mosquitoes or for the maintenance of

breeding sites. It was closely linked to the density of

dwellings, which was also found to be predictive of the

incidence of P. falciparum malaria. Children living in

isolated houses therefore had an increased risk of P. fal-

ciparum malaria. The proportions of primary forest and

high vegetation were correlated with a higher incidence

of P. falciparum malaria. This finding is consistent with

previously published results [18,19,53]. According to

Tadei and coworkers, An. darlingi returns to the forest

after feeding when houses are located close to forest

[54-57]. The composition of the high vegetation class

requires confirmation in the field, but includes plants,

shrubs and relatively small trees, contrasting with the

composition of primary forest, at the interface of crop

areas and secondary or primary forest. It may corre-

spond to the vegetation present at least five years after

deforestation described by Olson et al. [58]. Moreover,

the length of creeks was positively correlated with P. fal-

ciparum incidence, whereas the length of river banks

was negatively correlated with this incidence. Thus, vec-

tor breeding sites are probably located mostly along

small streams (creeks) rather than along the banks of

the main river. Moreover, deep water appeared to be a

factor protective against malaria, probably because it

provides neither suitable breeding sites nor resting sites

for adult mosquito vectors. This counterbalances the

contribution of short distance to the main river as a risk

factor for transmission [2] and justifies further investiga-

tions of the role of river banks in the development of

breeding sites for Anopheles.

The percentage of burnt land was negatively corre-

lated to malaria incidence. However, this land use is

very transitory in space and time, replacing primary for-

est, secondary forest or high vegetation and preceding

soils with poor vegetation cover and low vegetation over

a period of a few months. Traditionally, Amerindians in

Camopi burn their crop lands from the middle to the

end of the dry season (i.e. from the end of August to

the end of November). At the time at which the image

was taken, the burnt lands were linked to villages with a

low malaria incidence. We therefore suspect that there

may be confounding factors linked to spatial distribu-

tion, as burning activity did not occur at the same time

at all the hamlets. It is therefore not possible to deter-

mine the real effect of burning.

Landscape division within 100 and 400 m buffers was

associated with higher incidences of P. vivax and P. fal-

ciparum malaria, respectively. Greater fragmentation of

the landscape was therefore associated with a higher

incidence of malaria, suggesting that anthropogenic pre-

sence and activity, which tend to increase landscape

fragmentation and ecological changes, probably increase

malaria incidence by favouring the presence and devel-

opment of malaria [57,59-61].
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Classification was processed from an image taken in

the dry season. Due to the topography of the study area

and particularly of the river banks, the water level of the

main rivers (Camopi and Oyapock) does not influence

river bank positions to an extent that could be charac-

terised by the 10-metre spatial resolution optic images

(except during extreme and not representative events).

However, some rocks appear in the rivers during low

water level periods. They could increase the bare soil

proportion in some buffers but to a negligible propor-

tion. On the other hand, Camopi is located in humid

tropical forest and the dense and almost permanent

cloud cover in rainy season simply prevents us to obtain

exploitable optic images during this period. In such a

context, high resolution radar images could provide use-

ful information.

The links between clinical bouts of malaria and the

periods and sites of contamination are simpler and

more direct in young children. Indeed, this population

has little specific immunity (especially younger children)

and their exposure is limited to their dwelling or to the

village, depending on their age. Furthermore, in this

study, malaria data were collected by following up an

exhaustive cohort in a “captive” general population (i.e.

all the children are followed from birth, with diagnosis

occurring at only one place, and the access to diagnosis

sources being unlimited). However, although the envir-

onment directly accounts for the abundance of the vec-

tor and, thus, the sites and extent of transmission, it

cannot entirely account for the clinical data registered at

the health centre, even for the children in Camopi. Sev-

eral biases must be taken into account, such as i) indivi-

dual genetic susceptibility to malaria and its clinical

expression; ii) the protective measures used (nets, repel-

lents, etc.) and iii) whether consultation at the health

centre was systematic for the diagnosis of all episodes of

fever (self-medication, traditional treatment, etc.). A dif-

ference in genetic susceptibility between the two ethnic

groups has been reported [2]. More than 75% of the

children of the cohort spend all their nights under mos-

quito nets and more than 70% of the families use insec-

ticides or topical repellents (personal results). Finally, we

assumed that all bouts of malaria were recorded at the

local health centre, due to the isolation of the popula-

tion and its limited mobility [44]. Moreover, with the

chosen rule for identifying P. vivax relapses [46], some

false-negative and false-positive new P. vivax infections

may remain in the database. A bias in the exclusion of

relapses and, thus, in the quality of P. vivax data might

account for the weak link between environmental data

and this malaria incidence for this species.

The behavioural habits of the families such as the use

of bed nets or insecticides could have introduced a bias

into the analysis. Nevertheless, in a multivariate Cox

modelling approach [47], these variables were not risk

factors for malaria attacks in children. Consequently, in

the present study, we decided not to take into account

these parameters.

Anopheles darlingi has not been implicated with cer-

tainty in the bouts of malaria occurring in Camopi, but

this study nonetheless focused on young children, based

on a hypothesis of nightly transmission at home, due to

the characteristics of An. darlingi [3]. However, other

studies have reported An. darlingi to be active 24 hours

per day and to be found outside during the day [5], sug-

gesting that some transmission may occur in places fre-

quented by children during the day. Furthermore, other

anopheline species may be involved in malaria transmis-

sion, including during the morning [4,62]. The age com-

position of the An. darlingi population may depend on

season and environment [63,64]. Thus, the involvement

of another anopheline species or of different populations

of An. darlingi in P. vivax transmission than in P. falci-

parum transmission may account for the weak relation-

ship between the environment and P. vivax incidence at

the peridomestic scale of observation.

There are limitations to the usefulness of RS for epi-

demiology [10], but this tool has several advantages: it

objectively characterises the landscape features asso-

ciated with malaria incidence and makes it possible to

assess the sensitivity of the results to buffer size. It also

provides access to past information and can be used for

mapping and spatial analysis, which are useful for con-

trol measures. Furthermore, RS may provide additional

information not collected by field surveys, in which

observations are limited to short distances.

Our results suggest that the use of buffers of 100 and

400 m around houses is the most appropriate, in this

specific case, for demonstrating a characteristic land-

cover pattern accounting for differences in incidence

rates as a function of the species concerned. This is

greater than the radius of observation that can be cov-

ered by the human eye in the field. On the basis of this

modelling, it is possible to establish a predictive map of

P. falciparum malaria risk in Camopi. However, for this

to be achieved correctly, we must consider not only buf-

fer-based landscape features, but also factors such as

distance to each land-cover class, and non-environmen-

tal data, such as the socio-economic and behavioural

characteristics of the local populations.

Conclusions

The application of a simple and general model selection

method led to the identification of different optimal

observation horizons around dwellings as a function of

the Plasmodium species involved. This study also shows

that, assuming – based on the cohort composition –

domestic or peridomestic transmission, very significant
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relationships between environmental data and malaria

incidence can be highlighted at a very local scale. These

results suggest that it may be possible to develop an

environment-based predictive model of the incidence of

malaria in this neotropical rainforest area.
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