SUPPLEMENTAL METHODS

Flow cytometry analysis
Phycoerythrin (PE)-conjugated monoclonal antibodies (mAb) to CD3 (clone UCHT1), CD10 (clone ALB1), CD19 (clone J4.119), CD34 (clone 581), CD45 (clone J33), CD54 (clone 84H10), CD86 (clone HA5.2B7), HLA-DR (clone Immu-357), CD105 (clone 1G2), and CD120a (clone H398); Fluorescein IsoThioCyanate (FITC)-conjugated mAb to CD19 (clone J4.119), CD20 (clone B9E9), and CD44 (clone J-173); and Phycocyanin (PC)7- and PC5-conjugated mAb to CD14 (clone RMO52), CD19 (clone J4.119), and CD20 (clone B9E9) were provided by Beckman Coulter (Villepinte, France). PE-conjugated mAb to CD73 (clone AD2), CD90 (clone 5E10), LTβR (clone hTNF-RP-M12), and CD120b (clone hTNFR-M1) were provided by Becton Dickinson (Le Pont de Claix, France) whereas PE-conjugated mAb anti-CD106 (clone 1.G11B1) was from Chemicon (Temecula, CA).

Proliferation assay was performed using the allophycocyanin (APC)-BrdU Flow kit and apoptosis evaluation using PE-conjugated active caspase-3 apoptosis kit (Becton Dickinson). Isotype-matched mAb were used as negative control and, unless otherwise specified, all analyses were performed on TOPRO-3^{neg} viable cells (Invitrogen) using a FACSCalibur (Becton Dickinson) or a Gallios (Beckman Coulter) flow cytometer. Cell-sorting was performed on DAPI^{neg} viable cells (Sigma, St Louis, MO) using a FACSArray cell sorter (Becton Dickinson).

Microarray and bioinformatics analysis
Scanned Affymetrix raw data were uploaded at https://webpub.chu-rennes.fr/extranetdim/echantadn/acces/editer.php Expression signal values and P-values were obtained for each probeset (PS) using the Partek Genomics Suite software (Partek, St Louis, MO) by the Robust Multichip Averaging algorithm using GC content of probes in normalization (GC-RMA).

Background noise was decreased by eliminating PS with a low standard deviation to mean ratio and unsupervised classification was performed with hierarchical clustering using Cluster and Treeview softwares (http://rana.lbl.gov/EisenSoftware.htm). To compare HD-MSC and FL-MSC and generate the FL-MSC signature, supervised analyses were carried out by combining: i) Significance Analysis of Microarray (SAM) software using 1000 permutations (http://www-stat.stanford.edu/~tibs/SAM/) resulting
in the selection of PS with a $|\text{FC}| > 2$ and a false discovery rate (FDR) < 5%, and ii) unpaired Mann-Whitney non parametric U-test carried out with Partek Genomics Suite software allowing the selection of PS with a $|\text{FC}| > 2$ and a P-value less than .05.

To define the TNF/LT signature, data from paired HD-MSC treated or not with TNF/LT were compared using the same approach was used except that we crossed a SAM analysis retaining PS with a $|\text{FC}| > 2$ and a FDR < .1% with a paired Student t-test selecting PS with a $|\text{FC}| > 2$ and a P-value less than .005. The FL-MSC and TNF/LT signatures corresponded each time to overlapping PS.

Generated PS lists were analyzed by Ingenuity Pathway Analysis (Ingenuity® Systems, http://www.ingenuity.com) and classified by Gene Ontology subcellular localization. Gene Set Enrichment Analysis (GSEA)¹ software was used to assess the overexpression of the TNF/LT signature in the FL-MSC versus HD-MSC microarray data. Non redundant datasets were generated and the signal-to-noise ratio (SNR) statistic was used to rank the genes. A P-value was calculated for a weighted enrichment score (ES) by using a sample-based permutation test procedure including 1000 permutations.

CCL2 depletion

CCL2 was specifically depleted in MSC supernatants using magnetic beads. Briefly, 2×10^7 Dynabeads pan mouse IgG (Invitrogen) were conjugated to 10 μg anti-CCL2 antibody (R&D systems) before a 2-hour incubation with MSC supernatants. Supernatants were thereafter seeded inside a magnetic field to allow CCL2 retention. We checked by ELISA (R&D Systems) that CCL2 was undetectable in depleted MSC supernatants whereas the level of IL-8, another highly expressed chemokine, was not affected. Conversely, the use of an isotype-matched control mAb instead of specific anti-CCL2 antibody did not modify the concentration of CCL2 in MSC supernatants.
REFERENCES

Table S1. FL patient characteristics

<table>
<thead>
<tr>
<th>Bioclinical characteristics (n=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumor grade*</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3a</td>
</tr>
<tr>
<td>3b</td>
</tr>
<tr>
<td>FLIPI risk group*</td>
</tr>
<tr>
<td>Low</td>
</tr>
<tr>
<td>Intermediate</td>
</tr>
<tr>
<td>High</td>
</tr>
<tr>
<td>IgH-BCL2 gene fusion*</td>
</tr>
<tr>
<td>Negative</td>
</tr>
<tr>
<td>Positive</td>
</tr>
<tr>
<td>Bone marrow infiltration†</td>
</tr>
<tr>
<td>Negative</td>
</tr>
<tr>
<td>Positive</td>
</tr>
</tbody>
</table>

* FL patients were classified into grades 1, 2, 3a, or 3b according to the WHO diagnosis criteria.
** Follicular Lymphoma International Prognostic Index (FLIPI) values were classified as low (0-1), intermediate (2), or high (3 to 5).
*** BCL2 rearrangements were determined by PCR according to Biomed2 recommendations† or by FISH analysis.
† Bone marrow infiltration was determined by classical histopathological analysis on bone marrow biopsies and by evaluation of the κ/λ light chain ratio among CD10^{POS} B cells on bone marrow aspirates.

Reference:
Table S2. Taqman Gene Expression Assays used for RQ-PCR experiments

<table>
<thead>
<tr>
<th>Gene Symbol</th>
<th>Gene Name</th>
<th>Unigene ID</th>
<th>Assay ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCL2</td>
<td>chemokine (C-C motif) ligand 2</td>
<td>Hs.303649</td>
<td>Hs.00234140_m1</td>
</tr>
<tr>
<td>CCL5</td>
<td>chemokine (C-C motif) ligand 5</td>
<td>Hs.514821</td>
<td>Hs.00174575_m1</td>
</tr>
<tr>
<td>CHST2</td>
<td>carbohydrate (N-acetylglycosamine-6-O) sulfotransferase 2</td>
<td>Hs.8786</td>
<td>Hs.01921028_s1</td>
</tr>
<tr>
<td>CLU</td>
<td>clusterin</td>
<td>Hs.436657</td>
<td>Hs.00156548_m1</td>
</tr>
<tr>
<td>DUSP6</td>
<td>dual specificity phosphatase 6</td>
<td>Hs.298654</td>
<td>Hs.00737962_m1</td>
</tr>
<tr>
<td>GAPDH</td>
<td>glyceraldehyde-3-phosphate dehydrogenase</td>
<td>Hs.598320</td>
<td>Hs.99999905_m1</td>
</tr>
<tr>
<td>HBEGF</td>
<td>Heparin-binding EGF-like growth factor</td>
<td>Hs.799</td>
<td>Hs.00961131_m1</td>
</tr>
<tr>
<td>IL10</td>
<td>interleukin 10</td>
<td>Hs.193717</td>
<td>Hs.99999035_m1</td>
</tr>
<tr>
<td>IL12A</td>
<td>Natural killer cell stimulatory factor1, p35</td>
<td>Hs.673</td>
<td>Hs.00168405_m1</td>
</tr>
<tr>
<td>IL15</td>
<td>interleukin 15</td>
<td>Hs.654378</td>
<td>Hs.00174106_m1</td>
</tr>
<tr>
<td>IL6</td>
<td>interleukin 6</td>
<td>Hs.654458</td>
<td>Hs.00174131_m1</td>
</tr>
<tr>
<td>IL8</td>
<td>interleukin 8</td>
<td>Hs.624</td>
<td>Hs.00174103_m1</td>
</tr>
<tr>
<td>PGF</td>
<td>placental growth factor</td>
<td>Hs.252820</td>
<td>Hs.00182176_m1</td>
</tr>
<tr>
<td>TNFRSF10A</td>
<td>tumor necrosis factor receptor superfamily, member 10A</td>
<td>Hs.591834</td>
<td>Hs.00269492_m1</td>
</tr>
<tr>
<td>TNFSF2</td>
<td>tumor necrosis factor (ligand) superfamily, member 2</td>
<td>Hs.241570</td>
<td>Hs.00174128_m1</td>
</tr>
<tr>
<td>TNFSF4</td>
<td>tumor necrosis factor (ligand) superfamily, member 4</td>
<td>Hs.181097</td>
<td>Hs.00182411_m1</td>
</tr>
<tr>
<td>VEGFA</td>
<td>vascular endothelial growth factor A</td>
<td>Hs.73793</td>
<td>Hs.00173626_m1</td>
</tr>
</tbody>
</table>
Table S3. Genes differentially expressed in FL-MSC compared with HD-MSC

Red line indicates genes overexpressed in FL-MSC, and green line indicates genes overexpressed in HD-MSC. Fold change indicates the ratio of median in FL-MSC/median in HD-MSC, when >2, or -1/(ratio of median in FL-MSC/median in HD-MSC) when <.5

<table>
<thead>
<tr>
<th>Location</th>
<th>Fold Change</th>
<th>ProbeSet ID</th>
<th>UniGene ID</th>
<th>Gene Symbol</th>
<th>Gene Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extracellular Space</td>
<td>3.7</td>
<td>209277_at</td>
<td>Hs.439231</td>
<td>TFPI2</td>
<td>tissue factor pathway inhibitor 2</td>
</tr>
<tr>
<td></td>
<td>3.6</td>
<td>228885_at</td>
<td>Hs.547172</td>
<td>HAMOC2</td>
<td>membrane domain containing 2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>208791_at</td>
<td>Hs.436657</td>
<td>CLU</td>
<td>clustatin</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>205174_s_at</td>
<td>Hs.79033</td>
<td>OCT (includes EG:25797)</td>
<td>glutaminyl-peptide cyclotransferase</td>
</tr>
<tr>
<td></td>
<td>2.8</td>
<td>1552457_at</td>
<td>Hs.522019</td>
<td>ADAMTS11</td>
<td>ADAMTS-11</td>
</tr>
<tr>
<td></td>
<td>2.7</td>
<td>2149313</td>
<td>Hs.590919</td>
<td>ADAMTS13</td>
<td>ADAM metallopeptidase with thrombospondin type 1 motif, 3</td>
</tr>
<tr>
<td></td>
<td>2.6</td>
<td>218454_at</td>
<td>Hs.131933</td>
<td>PLBD1</td>
<td>phospholipase B domain containing 1</td>
</tr>
<tr>
<td></td>
<td>2.6</td>
<td>201348_at</td>
<td>Hs.386793</td>
<td>GPX3</td>
<td>glutathione peroxidase 3 (plasma)</td>
</tr>
<tr>
<td></td>
<td>2.6</td>
<td>209278_s_at</td>
<td>Hs.438231</td>
<td>TFPI2</td>
<td>tissue factor pathway inhibitor (lipoprotein-associated coagulation inhibitor)</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>228885_at</td>
<td>Hs.547172</td>
<td>MAMDC2</td>
<td>MAM domain containing 2</td>
</tr>
<tr>
<td></td>
<td>2.4</td>
<td>205174_s_at</td>
<td>Hs.79033</td>
<td>QPCT (includes EG:25797)</td>
<td>glutaminyl-peptide cyclotransferase</td>
</tr>
<tr>
<td></td>
<td>2.3</td>
<td>208791_at</td>
<td>Hs.436657</td>
<td>CLU</td>
<td>clustatin</td>
</tr>
<tr>
<td></td>
<td>2.3</td>
<td>205174_s_at</td>
<td>Hs.79033</td>
<td>OCT (includes EG:25797)</td>
<td>glutaminyl-peptide cyclotransferase</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>211596_s_at</td>
<td>Hs.518059</td>
<td>LRIG1</td>
<td>leucine-rich repeats and immunoglobulin-like domains 1</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>209278_s_at</td>
<td>Hs.438231</td>
<td>TFPI2</td>
<td>tissue factor pathway inhibitor (lipoprotein-associated coagulation inhibitor)</td>
</tr>
<tr>
<td></td>
<td>2.1</td>
<td>229461_s_at</td>
<td>Hs.146542</td>
<td>NEGR1</td>
<td>neuronal growth regulator 1</td>
</tr>
<tr>
<td>Plasma Membrane</td>
<td>4.6</td>
<td>218309_at</td>
<td>Hs.197922</td>
<td>CAMK2N1</td>
<td>calcium/calmodulin-dependent protein kinase II inhibitor 1</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1554902_at</td>
<td>Hs.179675</td>
<td>XG</td>
<td>Xg blood group</td>
</tr>
<tr>
<td></td>
<td>3.8</td>
<td>229151_at</td>
<td>Hs.101307</td>
<td>SLC4A4</td>
<td>solute carrier family 4, sodium bicarbonate cotransporter, member 7</td>
</tr>
<tr>
<td></td>
<td>3.8</td>
<td>205856_at</td>
<td>Hs.101307</td>
<td>SLC4A4</td>
<td>solute carrier family 4, sodium bicarbonate cotransporter, member 7</td>
</tr>
<tr>
<td></td>
<td>3.6</td>
<td>231775_at</td>
<td>Hs.591834</td>
<td>TNFRSF10A (includes EG:8797)</td>
<td>tumor necrosis factor receptor superfamily, member 10a</td>
</tr>
<tr>
<td></td>
<td>3.6</td>
<td>210386_s_at</td>
<td>Hs.250072</td>
<td>SLC4A1</td>
<td>solute carrier family 4, sodium bicarbonate cotransporter, member 7</td>
</tr>
<tr>
<td></td>
<td>3.4</td>
<td>202920_at</td>
<td>Hs.620557</td>
<td>ANK2</td>
<td>ankym 2, neuronal</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>230311_s_at</td>
<td>Hs.531987</td>
<td>KRIT1</td>
<td>KRIT1, ankym repeat containing</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1554957</td>
<td>Hs.824592</td>
<td>ATP2A1B</td>
<td>ATPase, class VI, type 1B</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>224923_at</td>
<td>Hs.594243</td>
<td>SGM62</td>
<td>sphingomyelin synthase 2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>220254_at</td>
<td>Hs.654804</td>
<td>LRP12</td>
<td>low density lipoprotein-related protein 12</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>224341_s_at</td>
<td>Hs.174312</td>
<td>TLR4</td>
<td>toll-like receptor 4</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>232068_s_at</td>
<td>Hs.174312</td>
<td>TLR4</td>
<td>toll-like receptor 4</td>
</tr>
<tr>
<td></td>
<td>2.9</td>
<td>210139_at</td>
<td>Hs.480411</td>
<td>CLP2F1M1</td>
<td>cleft lip and palate associated transmembrane protein 1</td>
</tr>
<tr>
<td></td>
<td>2.9</td>
<td>200736_at</td>
<td>Hs.156727</td>
<td>ANKH</td>
<td>anklylosis, progressive homolog (mouse)</td>
</tr>
<tr>
<td></td>
<td>2.8</td>
<td>211343_at</td>
<td>Hs.69534</td>
<td>COL13A1</td>
<td>collagen, type XIII, alpha 1</td>
</tr>
<tr>
<td></td>
<td>2.8</td>
<td>222088_s_at</td>
<td>Hs.419240</td>
<td>SLC2A3</td>
<td>solute carrier family 2, facilitated glucose transporter, member 3</td>
</tr>
<tr>
<td></td>
<td>2.8</td>
<td>218451_at</td>
<td>Hs.470693</td>
<td>CDCP1</td>
<td>CUB domain containing protein 1</td>
</tr>
<tr>
<td></td>
<td>2.6</td>
<td>203508_at</td>
<td>Hs.256278</td>
<td>TNFRSF18</td>
<td>tumor necrosis factor receptor superfamily, member 1B</td>
</tr>
<tr>
<td></td>
<td>2.6</td>
<td>213413_s_at</td>
<td>Hs.156727</td>
<td>ANKH</td>
<td>anklylosis, progressive homolog (mouse)</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td>229176_at</td>
<td>Hs.156727</td>
<td>ANKH</td>
<td>anklylosis, progressive homolog (mouse)</td>
</tr>
<tr>
<td></td>
<td>2.3</td>
<td>226383_at</td>
<td>Hs.532698</td>
<td>APN18</td>
<td>anterior photic system 1 homolog B (C. elegans)</td>
</tr>
<tr>
<td></td>
<td>2.3</td>
<td>214374_at</td>
<td>Hs.172445</td>
<td>PPF1BP1</td>
<td>PTPRF interacting protein, binding protein 1 (spermin beta 1)</td>
</tr>
<tr>
<td></td>
<td>2.3</td>
<td>205579_at</td>
<td>Hs.1570</td>
<td>HRH1</td>
<td>histamine receptor H1</td>
</tr>
<tr>
<td></td>
<td>2.3</td>
<td>228239_at</td>
<td>Hs.65195</td>
<td>FAM165B</td>
<td>family with sequence similarity 165, member B</td>
</tr>
<tr>
<td></td>
<td>2.3</td>
<td>203496_at</td>
<td>Hs.524265</td>
<td>GRK5</td>
<td>G protein-coupled receptor kinase 5</td>
</tr>
<tr>
<td></td>
<td>2.3</td>
<td>242317_at</td>
<td>Hs.7917</td>
<td>HGD1A</td>
<td>HDG1 domain family, member 1A</td>
</tr>
<tr>
<td></td>
<td>2.3</td>
<td>225571_s_at</td>
<td>Hs.133421</td>
<td>LIFR</td>
<td>leukemia inhibitory factor receptor alpha</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>202053_s_at</td>
<td>Hs.654804</td>
<td>LRP12</td>
<td>low density lipoprotein-related protein 12</td>
</tr>
<tr>
<td></td>
<td>2.2</td>
<td>200503_at</td>
<td>Hs.654652</td>
<td>DOC4K</td>
<td>dedicator of cytokinesis 4</td>
</tr>
<tr>
<td></td>
<td>2.1</td>
<td>235901_s_at</td>
<td>Hs.439200</td>
<td>KIAA0090</td>
<td>KIAA0090</td>
</tr>
<tr>
<td></td>
<td>2.1</td>
<td>201635_at</td>
<td>Hs.133397</td>
<td>ITGA6</td>
<td>integrin, alpha 6</td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Classification</td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>----------------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAGI2</td>
<td>Membrane associated guanylate kinase, W and PDZ domain containing 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GNG2</td>
<td>Guanine nucleotide binding protein (G protein), gamma 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAGI2</td>
<td>Membrane associated guanylate kinase, WW and PDZ domain containing 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPB41L2</td>
<td>Erythrocyte membrane protein band 4.1-like 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAGI2</td>
<td>Membrane associated guanylate kinase, WW and PDZ domain containing 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIGLEC15</td>
<td>Sialic acid binding Ig-like lectin 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAGI2</td>
<td>Membrane associated guanylate kinase, WW and PDZ domain containing 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOCK9</td>
<td>Dedicator of cytokinesis 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FAR2</td>
<td>Fatty acyl-CoA reductase 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GNG2</td>
<td>Guanine nucleotide binding protein (G protein), gamma 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ARSB</td>
<td>Arylsulfatase B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UST</td>
<td>Uronyl-2-sulfotransferase</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLN8</td>
<td>Ceroid-lipofuscinosis, neuronal 8 (epilepsy, progressive with mental retardation)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEC62</td>
<td>SEC62 homolog (S. cerevisiae)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PDLIM5</td>
<td>PDZ and LIM domain 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GALNT4</td>
<td>UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 4 (GalNAc-T4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATG4B</td>
<td>Autophagy-related 4B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NAAA</td>
<td>N-acetylenolamide acid amidase</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SGPP1</td>
<td>Sphingosine-1-phosphate phosphatase 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAB10</td>
<td>RAB10, member RAS oncogene family</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PI3K</td>
<td>Phosphoinositide 3-kinase</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL17RD</td>
<td>Interleukin 17 receptor D</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GAPRAPL1</td>
<td>GABA(A) receptor-associated protein like 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gene ID 1</td>
<td>Gene ID 2</td>
<td>Gene ID 3</td>
<td>Gene ID 4</td>
<td>Gene ID 5</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>2.3</td>
<td>218748_s_at</td>
<td>Hs.655158</td>
<td>EXOC5</td>
<td>exocyst complex component 5</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>333212_s_at</td>
<td>Hs.523178</td>
<td>SFN</td>
<td>striatin</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>203285_s_at</td>
<td>Hs.48823</td>
<td>HS2ST1</td>
<td>heparan sulfate 2-O-sulfotransferase 1</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>214260_at</td>
<td>Hs.531713</td>
<td>COP5B</td>
<td>COP9 constitutive photomorphogenic homolog subunit B (Arabidopsis)</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>214855_s_at</td>
<td>Hs.113150</td>
<td>GARNL1</td>
<td>GTPase activating Rap/RanGAP domain-like 1</td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>226602_s_at</td>
<td>Hs.218888</td>
<td>BCR</td>
<td>breakpoint cluster region</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>229331_at</td>
<td>Hs.527090</td>
<td>SPATA18</td>
<td>spermato genesis associated 18 homolog (rat)</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>220038_at</td>
<td>Hs.656798</td>
<td>SGK3</td>
<td>ser um/glucocorticoid regulated kinase family, member 3</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>205083_at</td>
<td>Hs.406238</td>
<td>AOX1</td>
<td>aldehyde oxidase 1</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>235103_at</td>
<td>Hs.432822</td>
<td>MAN2A1</td>
<td>man nosidase alpha, class A, member 1</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>212221_x_at</td>
<td>Hs.469060</td>
<td>IDS</td>
<td>idur anate 2-sulfatase</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>203910_at</td>
<td>Hs.483238</td>
<td>ARHGAP29</td>
<td>Rho GTPase activating protein 29</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>40148_at</td>
<td>Hs.479602</td>
<td>APB2</td>
<td>amyl oid beta (A4) precursor protein-binding, family B, member 2</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>210602_s_at</td>
<td>Hs.114193</td>
<td>ZCCHC2</td>
<td>zinc finger, CCHC domain containing 2</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>213750_at</td>
<td>Hs.401842</td>
<td>RSL1D1</td>
<td>ribosomal L1 domain containing 1</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>213552_at</td>
<td>Hs.183006</td>
<td>GLCE</td>
<td>glucuronic acid epimerase</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>230174_at</td>
<td>Hs.657617</td>
<td>LYLAL1</td>
<td>lysophospholipase-like 1</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>229331_at</td>
<td>Hs.372801</td>
<td>ARL6</td>
<td>ADP-ribosylation factor-like 6</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>221589_s_at</td>
<td>Hs.293970</td>
<td>ALDH6A1</td>
<td>al dehyde dehydrogenase 6 family, member A1</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>202660_at</td>
<td>Hs.512235</td>
<td>ITPR2</td>
<td>inositol 1,4,5-triphosphate receptor, type 2</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>206113_s_at</td>
<td>Hs.8786</td>
<td>CHST2</td>
<td>carbohydrate (N-acetylglucosamine-6-O) sulfotransferase 2</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>222637_s_at</td>
<td>Hs.591162</td>
<td>FGFR10P2</td>
<td>FGF1 oncogene partner 2</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>226335_at</td>
<td>Hs.445387</td>
<td>RPS6KA3</td>
<td>ribosomal protein S6 kinase, 90kDa, polypeptide 3</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>203921_at</td>
<td>Hs.8786</td>
<td>CHST2</td>
<td>carbohydrate (N-acetylglucosamine-6-O) sulfotransferase 2</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>214700_s_at</td>
<td>Hs.115325</td>
<td>RAB7L1</td>
<td>RAB7, member RAS oncogene family-like 1</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>243438_at</td>
<td>Hs.652367</td>
<td>PDE7B</td>
<td>phosphodiesterase 7B</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>234988_at</td>
<td>Hs.632066</td>
<td>VCP-P1</td>
<td>villin containing protein (p97)polycomplex interacting protein 1</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>155405_at</td>
<td>Hs.90458</td>
<td>SPTL1C</td>
<td>serine palmitoyltransferase, long chain base subunit 1</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>218313_s_at</td>
<td>Hs.548088</td>
<td>GALNT7</td>
<td>UDP-N-acetyl-alpha-D-galactosaminepolyeppeptide N-acetylglactosaminyltransferase 7 (GalNAC-T7)</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>36920_at</td>
<td>Hs.655056</td>
<td>MMT1</td>
<td>myotubulin 1</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>224858_at</td>
<td>Hs.497873</td>
<td>WDR26</td>
<td>WD repeat domain 26</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>212414_s_at</td>
<td>Hs.387255</td>
<td>SEPT6</td>
<td>septin 6</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>52285_f_at</td>
<td>Hs.236940</td>
<td>CEPT6</td>
<td>centrosomal protein 76kDa</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>235635_at</td>
<td>Hs.592313</td>
<td>ARHGAP5</td>
<td>Rho GTPase activating protein 5</td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>229478_at</td>
<td>Hs.378414</td>
<td>MPHAS1</td>
<td>malignant fibrous histiocytoma amplified sequence 1</td>
<td></td>
</tr>
</tbody>
</table>

Nucleus

<table>
<thead>
<tr>
<th>Gene ID 1</th>
<th>Gene ID 2</th>
<th>Gene ID 3</th>
<th>Gene ID 4</th>
<th>Gene ID 5</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3</td>
<td>230438_at</td>
<td>Hs.146196</td>
<td>TBX15</td>
<td>T-box 15</td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>236313_at</td>
<td>Hs.72901</td>
<td>CDKN2B</td>
<td>cyclin-dependent kinase inhibitor 2B (p15, inhibits CDK4)</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>231071_s_at</td>
<td>Hs.484500</td>
<td>HIST1H2AC</td>
<td>histone cluster 1, H2ac</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>23148_at</td>
<td>Hs.654412</td>
<td>PBRM1</td>
<td>pre-B-cell leukemia homebox 1</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>231929_at</td>
<td>Hs.604950</td>
<td>IKZF2</td>
<td>IKAROS family zinc finger 2 (Helios)</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>233819_s_at</td>
<td>Hs.288773</td>
<td>RNF160</td>
<td>ring finger protein 160</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>211090_r_at</td>
<td>Hs.159014</td>
<td>PRPF4B</td>
<td>pre-mRNA processing factor 4 homolog B (yeast)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>231862_s_at</td>
<td>Hs.643464</td>
<td>DDX2</td>
<td>DHX52 dimeric control homolog (S. cerevisiae)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>206115_at</td>
<td>Hs.534313</td>
<td>EGR3</td>
<td>early growth response 3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>230063_at</td>
<td>Hs.516364</td>
<td>ZNF264</td>
<td>zinc finger protein 264</td>
<td></td>
</tr>
<tr>
<td>2.9</td>
<td>230291_at</td>
<td>Hs.644095</td>
<td>NFIIB</td>
<td>nuclear factor I/B</td>
<td></td>
</tr>
<tr>
<td>2.8</td>
<td>225061_at</td>
<td>Hs.51053</td>
<td>DHAJ1A4</td>
<td>DhaJ (Hsp40) homolog, subfamily A, member 4</td>
<td></td>
</tr>
<tr>
<td>2.7</td>
<td>157324_s_at</td>
<td>Hs.285197</td>
<td>SFRP2</td>
<td>SFRP protein kinase 2</td>
<td></td>
</tr>
<tr>
<td>2.6</td>
<td>231975_s_at</td>
<td>Hs.657594</td>
<td>MIER3</td>
<td>mesoderm induction early response 1, family member 3</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>209290_s_at</td>
<td>Hs.644095</td>
<td>NFIIB</td>
<td>nuclear factor I/B</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>221911_at</td>
<td>Hs.22634</td>
<td>ETV1</td>
<td>ets variant 1</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>203347_s_at</td>
<td>Hs.31016</td>
<td>MTF2</td>
<td>metal response element binding transcription factor 2</td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td>206511_s_at</td>
<td>Hs.101937</td>
<td>SIX2</td>
<td>SIX homeobox 2</td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>222762_s_at</td>
<td>Hs.193370</td>
<td>LIMD1</td>
<td>LIM domains containing 1</td>
<td></td>
</tr>
<tr>
<td>Log2 Fold Change</td>
<td>Probe ID</td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>----------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>204622_s_at</td>
<td>Hs.563344 NR4A2 nuclear receptor subfamily 4, group A, member 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>212731_at</td>
<td>Hs.530199 ANKRD46 ankyrin repeat domain 46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>205372_at</td>
<td>Hs.14968 PLAG1 pleiomorphic adenoma gene 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.4</td>
<td>202221_s_at</td>
<td>Hs.517517 EP300 E1A binding protein p300</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>231188_at</td>
<td>Hs.594023 ZSCAN2 zinc finger and SCAN domain containing 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>242704_at</td>
<td>Hs.586165 HMG1 mastermind-like 1 (Drosophila)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>155790_at</td>
<td>Hs.655964 SDC4CAG1 serologically defined colon cancer antigen 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>206310_at</td>
<td>Hs.101937 SIX2 SIX homeobox 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>209289_at</td>
<td>Hs.644095 NFB nuclear factor I/B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>212594_at</td>
<td>Hs.711490 PDCD4 programmed cell death 4 (neoplastic transformation inhibitor)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>232103_at</td>
<td>Hs.406134 BPIST1 3'UTR, 5'-phosphatase nucleotidase 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>211352_s_at</td>
<td>Hs.592142 NCOA3 nuclear receptor coactivator 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3</td>
<td>213147_at</td>
<td>Hs.592166 HOX10 homeobox A10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>212593_s_at</td>
<td>Hs.711490 PDCD4 programmed cell death 4 (neoplastic transformation inhibitor)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>207108_s_at</td>
<td>Hs.481927 NIPBL Nipped-B homolog (Drosophila)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>216248_s_at</td>
<td>Hs.563344 NR4A2 nuclear receptor subfamily 4, group A, member 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>214684_at</td>
<td>Hs.268675 MEF2A (includes EG:4205) myocyte enhancer factor 2A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>203845_at</td>
<td>Hs.533055 KAT2B K(lysine) acetyltransferase 2B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>227020_at</td>
<td>Hs.463613 YPEL2 yippee-like 2 (Drosophila)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>229317_at</td>
<td>Hs.182971 KPNA5 karyopherin alpha 5 (importin alpha 6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>201086_s_at</td>
<td>Hs.481927 HIPBL Hippel-Lindau homolog (Drosophila)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>216248_at</td>
<td>Hs.563344 NR4A2 nuclear receptor subfamily 4, group A, member 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>227020_at</td>
<td>Hs.463613 YPEL2 yippee-like 2 (Drosophila)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>229317_at</td>
<td>Hs.182971 KPNA5 karyopherin alpha 5 (importin alpha 6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>217934_at</td>
<td>Hs.182971 KPNA5 karyopherin alpha 5 (importin alpha 6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>216248_at</td>
<td>Hs.563344 NR4A2 nuclear receptor subfamily 4, group A, member 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>212593_s_at</td>
<td>Hs.711490 PDCD4 programmed cell death 4 (neoplastic transformation inhibitor)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>227934_at</td>
<td>Hs.182971 KPNA5 karyopherin alpha 5 (importin alpha 6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>224847_at</td>
<td>Hs.119882 CDK6 cyclin-dependent kinase 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>224848_at</td>
<td>Hs.119882 CDK6 cyclin-dependent kinase 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>217427_s_at</td>
<td>Hs.474206 HIRA HIR histone cell cycle regulation defective homolog A (S. cerevisiae)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>226069_at</td>
<td>Hs.524348 PRKCIK1l prickle homolog 1 (Drosophila)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>217427_s_at</td>
<td>Hs.474206 HIRA HIR histone cell cycle regulation defective homolog A (S. cerevisiae)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>226069_at</td>
<td>Hs.524348 PRKCIK1l prickle homolog 1 (Drosophila)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>226736_at</td>
<td>Hs.434075 MED28 mediator complex subunit 28</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unknown

<table>
<thead>
<tr>
<th>Log2 Fold Change</th>
<th>Probe ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.6</td>
<td>226598_at</td>
<td>LOC653071 similar to CG22820-PA, isoform A</td>
</tr>
<tr>
<td>4.4</td>
<td>244640_at</td>
<td>Hs.406307 LOC342892 zinc finger protein 850 pseudogene</td>
</tr>
<tr>
<td>4.2</td>
<td>226490_at</td>
<td>Hs.652741 NHSL1 NHS-like 1</td>
</tr>
<tr>
<td>4.2</td>
<td>204160_s_at</td>
<td>Hs.643497 ENPP4 ectonucleotide pyrophosphatase/phosphodiesterase 4 (putative function)</td>
</tr>
<tr>
<td>3.4</td>
<td>224588_s_at</td>
<td>Hs.642877 MALAT1 metastasis associated lung adenocarcinoma transcript 1 (non-protein coding)</td>
</tr>
<tr>
<td>3</td>
<td>232080_at</td>
<td>Hs.654742 HECT2 HECT, C2 and WW domain containing E3 ubiquitin protein ligase 2</td>
</tr>
<tr>
<td>3</td>
<td>155140_at</td>
<td>Hs.49421 WDR78 WD repeat domain 78</td>
</tr>
<tr>
<td>2.9</td>
<td>228152_s_at</td>
<td>Hs.535011 DDX60L DEAD (Asp-Glu-Ala-Asp) box polypeptide 60-like</td>
</tr>
<tr>
<td>2.9</td>
<td>1553106_at</td>
<td>Hs.406549 CSF2R24 chromosome 3 open reading frame 24</td>
</tr>
<tr>
<td>2.8</td>
<td>221727_at</td>
<td>Hs.69800 CDK18 chromosome 3 open reading frame 18</td>
</tr>
<tr>
<td>2.8</td>
<td>218967_s_at</td>
<td>Hs.714420 PTK phosphotyrosinase related</td>
</tr>
<tr>
<td>2.8</td>
<td>219094_at</td>
<td>Hs.266826 ARMC8 armadillo repeat containing 8</td>
</tr>
<tr>
<td>2.7</td>
<td>1569129_at</td>
<td>Hs.518099 CD3RF38 chromosome 3 open reading frame 38</td>
</tr>
<tr>
<td>2.7</td>
<td>243982_at</td>
<td>Hs.653206 KLHL24 kelch-like 28 (Drosophila)</td>
</tr>
<tr>
<td>2.7</td>
<td>209343_at</td>
<td>Hs.516769 EFHD1 EF-hand domain family, member D1</td>
</tr>
<tr>
<td>2.7</td>
<td>232112_at</td>
<td>Hs.709811 RALGPS2 Ral GEF with PH domain and SH3 binding motif 2</td>
</tr>
<tr>
<td>2.6</td>
<td>228608_at</td>
<td>Hs.525146</td>
</tr>
<tr>
<td>2.6</td>
<td>225166_at</td>
<td>Hs.484858</td>
</tr>
<tr>
<td>2.6</td>
<td>1558943_x_at</td>
<td>Hs.710250</td>
</tr>
<tr>
<td>2.6</td>
<td>235061_at</td>
<td>Hs.291000</td>
</tr>
<tr>
<td>2.6</td>
<td>225922_at</td>
<td>Hs.709500</td>
</tr>
<tr>
<td>2.6</td>
<td>225487_at</td>
<td>Hs.43899</td>
</tr>
<tr>
<td>2.6</td>
<td>226533_at</td>
<td>Hs.72325</td>
</tr>
<tr>
<td>2.5</td>
<td>229748_x_at</td>
<td>Hs.487562</td>
</tr>
<tr>
<td>2.5</td>
<td>225957_at</td>
<td>Hs.484195</td>
</tr>
<tr>
<td>2.5</td>
<td>225989_at</td>
<td>Hs.51891</td>
</tr>
<tr>
<td>2.5</td>
<td>227268_at</td>
<td>Hs.531701</td>
</tr>
<tr>
<td>2.4</td>
<td>214791_at</td>
<td>Hs.662198</td>
</tr>
<tr>
<td>2.4</td>
<td>220329_s_at</td>
<td>Hs.492121</td>
</tr>
<tr>
<td>2.4</td>
<td>227514_at</td>
<td>Hs.529341</td>
</tr>
<tr>
<td>2.4</td>
<td>220172_at</td>
<td>Hs.659439</td>
</tr>
<tr>
<td>2.4</td>
<td>237862_at</td>
<td>Hs.479954</td>
</tr>
<tr>
<td>2.4</td>
<td>223142_x_at</td>
<td>Hs.487562</td>
</tr>
<tr>
<td>2.1</td>
<td>220172_at</td>
<td>Hs.659439</td>
</tr>
<tr>
<td>2.1</td>
<td>223142_x_at</td>
<td>Hs.487562</td>
</tr>
<tr>
<td>2.1</td>
<td>225561_at</td>
<td>Hs.369052</td>
</tr>
<tr>
<td>2.1</td>
<td>229256_at</td>
<td>Hs.26612</td>
</tr>
<tr>
<td>2.1</td>
<td>241933_at</td>
<td>Hs.406917</td>
</tr>
<tr>
<td>No.</td>
<td>Gene ID</td>
<td>Description</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>2.1</td>
<td>234491_s_at</td>
<td>Hs.642842 SAV1 salavador homolog 1 (Drosophila)</td>
</tr>
<tr>
<td>2</td>
<td>226436_at</td>
<td>Hs.522895 RASSF4 Ras association (RagD/5/AF-6) domain member 4</td>
</tr>
<tr>
<td>2</td>
<td>220241_at</td>
<td>Hs.317593 TMCO3 transmembrane and coiled-coil domains 3</td>
</tr>
<tr>
<td>2</td>
<td>218610_s_at</td>
<td>Hs.460002 FLJ11151 hypothetical protein Flj 11151</td>
</tr>
<tr>
<td>2</td>
<td>228749_at</td>
<td>Hs.110489 ZDBF2 zinc finger, DBF-type containing 2</td>
</tr>
<tr>
<td>2</td>
<td>225956_at</td>
<td>Hs.481915 CSORF41 chromosome 5 open reading frame 41</td>
</tr>
<tr>
<td>2</td>
<td>235484_at</td>
<td>Hs.714854 PTAR1 protein prenyltransferase alpha subunit repeat containing 1</td>
</tr>
<tr>
<td>2</td>
<td>223167_s_at</td>
<td>Hs.473370 USP25 ubiquitin specific peptidase 25</td>
</tr>
<tr>
<td>2.9</td>
<td>236089_at</td>
<td>Hs.632121</td>
</tr>
<tr>
<td>5.1</td>
<td>1558605_at</td>
<td>Hs.597446</td>
</tr>
<tr>
<td>4.9</td>
<td>224444_at</td>
<td>Hs.632997</td>
</tr>
<tr>
<td>3.8</td>
<td>235427_at</td>
<td>Hs.611075</td>
</tr>
<tr>
<td>3.8</td>
<td>1558236_at</td>
<td>---</td>
</tr>
<tr>
<td>3.7</td>
<td>235230_at</td>
<td>Hs.655022</td>
</tr>
<tr>
<td>3.6</td>
<td>239566_at</td>
<td>Hs.656072</td>
</tr>
<tr>
<td>3.5</td>
<td>221590_s_at</td>
<td>Hs.663176 // Hs.708053</td>
</tr>
<tr>
<td>3.4</td>
<td>227051_at</td>
<td>Hs.43047</td>
</tr>
<tr>
<td>3.3</td>
<td>226192_at</td>
<td>Hs.76704</td>
</tr>
<tr>
<td>3.2</td>
<td>217540_at</td>
<td>Hs.598134</td>
</tr>
<tr>
<td>3.2</td>
<td>242245_at</td>
<td>Hs.533853</td>
</tr>
<tr>
<td>3.1</td>
<td>1558105_at</td>
<td>Hs.91389</td>
</tr>
<tr>
<td>3.1</td>
<td>228740_at</td>
<td>Hs.26766</td>
</tr>
<tr>
<td>3.1</td>
<td>215287_at</td>
<td>Hs.128434</td>
</tr>
<tr>
<td>2.9</td>
<td>230161_at</td>
<td>Hs.495605</td>
</tr>
<tr>
<td>2.8</td>
<td>238178_at</td>
<td>Hs.559668</td>
</tr>
<tr>
<td>2.6</td>
<td>243299_at</td>
<td>Hs.666703</td>
</tr>
<tr>
<td>2.6</td>
<td>227368_at</td>
<td>Hs.662821</td>
</tr>
<tr>
<td>2.5</td>
<td>235046_at</td>
<td>Hs.176376</td>
</tr>
<tr>
<td>2.5</td>
<td>242289_at</td>
<td>---</td>
</tr>
<tr>
<td>2.5</td>
<td>234986_at</td>
<td>Hs.596052</td>
</tr>
<tr>
<td>2.4</td>
<td>226197_at</td>
<td>Hs.76704</td>
</tr>
<tr>
<td>2.4</td>
<td>228333_at</td>
<td>Hs.621487</td>
</tr>
<tr>
<td>2.4</td>
<td>225035_at</td>
<td>Hs.655146</td>
</tr>
<tr>
<td>2.3</td>
<td>244663_at</td>
<td>Hs.156256</td>
</tr>
<tr>
<td>2.3</td>
<td>1556346_at</td>
<td>Hs.660628</td>
</tr>
<tr>
<td>2.3</td>
<td>234987_at</td>
<td>Hs.660221</td>
</tr>
<tr>
<td>2.3</td>
<td>222111_at</td>
<td>Hs.595286</td>
</tr>
<tr>
<td>2.3</td>
<td>235782_at</td>
<td>Hs.527515</td>
</tr>
<tr>
<td>2.3</td>
<td>238658_at</td>
<td>Hs.444083</td>
</tr>
<tr>
<td>2.3</td>
<td>228812_at</td>
<td>Hs.632900</td>
</tr>
<tr>
<td>2.3</td>
<td>229885_at</td>
<td>Hs.572073</td>
</tr>
<tr>
<td>2.2</td>
<td>AFFX-r2-Bs-phe-5_at</td>
<td>---</td>
</tr>
<tr>
<td>2.2</td>
<td>235010_at</td>
<td>Hs.706957</td>
</tr>
<tr>
<td>2.2</td>
<td>229130_at</td>
<td>Hs.409256</td>
</tr>
<tr>
<td>2.1</td>
<td>235505_s_at</td>
<td>Hs.40966</td>
</tr>
<tr>
<td>2.1</td>
<td>226520_at</td>
<td>Hs.658311</td>
</tr>
<tr>
<td>2.1</td>
<td>230300_at</td>
<td>Hs.586550</td>
</tr>
<tr>
<td>2.1</td>
<td>213138_at</td>
<td>Hs.592414</td>
</tr>
<tr>
<td>2.1</td>
<td>234259_at</td>
<td>Hs.594784</td>
</tr>
<tr>
<td>2</td>
<td>239866_at</td>
<td>Hs.110940</td>
</tr>
<tr>
<td>2</td>
<td>1558401_at</td>
<td>Hs.408497</td>
</tr>
<tr>
<td>Gene</td>
<td>Description</td>
<td>Expression</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>Extracellular Space</td>
<td>1556316_s_at</td>
<td>Hs.707281</td>
</tr>
<tr>
<td>-3.9</td>
<td>228332_s_at</td>
<td>Hs.25391</td>
</tr>
<tr>
<td>Plasma Membrane</td>
<td>1567213_at</td>
<td>Hs.409965</td>
</tr>
<tr>
<td>-5.2</td>
<td>224321_s_at</td>
<td>Hs.146513</td>
</tr>
<tr>
<td>-5.8</td>
<td>1555826_at</td>
<td>Hs.713220</td>
</tr>
<tr>
<td>-3.3</td>
<td>209972_s_at</td>
<td>Hs.301613</td>
</tr>
<tr>
<td>Cytoplasm</td>
<td>1567213_at</td>
<td>Hs.409965</td>
</tr>
<tr>
<td>-2.3</td>
<td>220538_s_at</td>
<td>Hs.271954</td>
</tr>
<tr>
<td>-2.8</td>
<td>205000_s_at</td>
<td>Hs.432395</td>
</tr>
<tr>
<td>-2.5</td>
<td>205072_at</td>
<td>Hs.709876</td>
</tr>
<tr>
<td>Change</td>
<td>Description</td>
<td>Gene Accession</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>-7.8</td>
<td>226014_at</td>
<td>LOC100133577</td>
</tr>
<tr>
<td>-5</td>
<td>229420_at</td>
<td>Hs.632573</td>
</tr>
<tr>
<td>-4.5</td>
<td>229538_s_at</td>
<td>Hs.591495</td>
</tr>
<tr>
<td>-4.1</td>
<td>225423_s_at</td>
<td>Hs.708096</td>
</tr>
<tr>
<td>-3.9</td>
<td>213297_at</td>
<td>Hs.519044</td>
</tr>
<tr>
<td>-3.6</td>
<td>222487_s_at</td>
<td>Hs.108957</td>
</tr>
<tr>
<td>-3.1</td>
<td>229594_s_at</td>
<td>Hs.182698</td>
</tr>
<tr>
<td>-3.1</td>
<td>221936_s_at</td>
<td>Hs.708096</td>
</tr>
<tr>
<td>-2.8</td>
<td>221997_s_at</td>
<td>Hs.355935</td>
</tr>
<tr>
<td>-2.5</td>
<td>211531_s_at</td>
<td>Hs.631176</td>
</tr>
<tr>
<td>-2.2</td>
<td>224271_s_at</td>
<td>Hs.652967</td>
</tr>
<tr>
<td>-2.2</td>
<td>1564257_at</td>
<td>Hs.713960</td>
</tr>
<tr>
<td>-1.9</td>
<td>222968_at</td>
<td></td>
</tr>
<tr>
<td>-1.9</td>
<td>231387_at</td>
<td>Hs.712966</td>
</tr>
<tr>
<td>-1.4</td>
<td>216054_s_at</td>
<td></td>
</tr>
<tr>
<td>-1.4</td>
<td>234225_at</td>
<td></td>
</tr>
<tr>
<td>-1.3</td>
<td>221995_s_at</td>
<td></td>
</tr>
<tr>
<td>-1.3</td>
<td>210098_s_at</td>
<td></td>
</tr>
<tr>
<td>-1.3</td>
<td>1563431_s_at</td>
<td>Hs.713288</td>
</tr>
<tr>
<td>-1</td>
<td>212952_at</td>
<td>Hs.593218</td>
</tr>
<tr>
<td>-0.9</td>
<td>1567913_at</td>
<td>Hs.621508</td>
</tr>
<tr>
<td>-0.8</td>
<td>216246_at</td>
<td></td>
</tr>
<tr>
<td>-0.7</td>
<td>230350_at</td>
<td>Hs.594199</td>
</tr>
<tr>
<td>-0.7</td>
<td>213048_s_at</td>
<td></td>
</tr>
<tr>
<td>-0.6</td>
<td>214395_s_at</td>
<td>Hs.707453</td>
</tr>
<tr>
<td>-0.4</td>
<td>213813_s_at</td>
<td></td>
</tr>
<tr>
<td>-0.4</td>
<td>211464_s_at</td>
<td></td>
</tr>
<tr>
<td>-0.3</td>
<td>233810_s_at</td>
<td></td>
</tr>
<tr>
<td>-0.2</td>
<td>229798_s_at</td>
<td></td>
</tr>
<tr>
<td>-0.2</td>
<td>221419_s_at</td>
<td></td>
</tr>
<tr>
<td>-0.1</td>
<td>1567105_at</td>
<td></td>
</tr>
<tr>
<td>-0.1</td>
<td>224375_at</td>
<td></td>
</tr>
</tbody>
</table>
Table S4. Genes differentially expressed in HD-MSC +TNF/LT compared with HD-MSC

Red line indicates genes overexpressed in HD-MSC stimulated by TNF+LT for 3 days compared to unstimulated HD-MSC and green line indicates genes overexpressed in resting HD-MSC Fold change indicates the ratio of mean expression in HD-MSC treated by TNF+LT/mean expression in resting HD-MSC when FC>2;
-1/(ratio of mean expression in HD-MSC treated by TNF+LT/mean expression in resting HD-MSC) when FC<.5.

<table>
<thead>
<tr>
<th>Location</th>
<th>Fold Change</th>
<th>ProbeSet ID</th>
<th>UniGene ID</th>
<th>Gene Symbol</th>
<th>Gene Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extracellular Space</td>
<td>20.5</td>
<td>200465_s_at</td>
<td>Hs.514821</td>
<td>CCL5</td>
<td>chemokine (C-C motif) ligand 5</td>
</tr>
<tr>
<td></td>
<td>2036.6</td>
<td>202859_s_at</td>
<td>Hs.624</td>
<td>IL8</td>
<td>interleukin 8</td>
</tr>
<tr>
<td></td>
<td>1035.1</td>
<td>1405_s_at</td>
<td>Hs.514821</td>
<td>CCL5</td>
<td>chemokine (C-C motif) ligand 5</td>
</tr>
<tr>
<td></td>
<td>876.1</td>
<td>155575_s_at</td>
<td>Hs.514821</td>
<td>CCL5</td>
<td>chemokine (C-C motif) ligand 5</td>
</tr>
<tr>
<td></td>
<td>358.3</td>
<td>211506_s_at</td>
<td>Hs.624</td>
<td>IL8</td>
<td>interleukin 8</td>
</tr>
<tr>
<td></td>
<td>247</td>
<td>39402_at</td>
<td>Hs.126256</td>
<td>IL1B</td>
<td>interleukin 1, beta</td>
</tr>
<tr>
<td></td>
<td>138</td>
<td>202357_s_at</td>
<td>Hs.408903</td>
<td>C2</td>
<td>complement component 2</td>
</tr>
<tr>
<td></td>
<td>125.1</td>
<td>203828_s_at</td>
<td>Hs.943</td>
<td>IL3</td>
<td>interleukin 3</td>
</tr>
<tr>
<td></td>
<td>118.9</td>
<td>214974_s_at</td>
<td>Hs.89714</td>
<td>CXC15</td>
<td>chemokine (C-X-C motif) ligand 5</td>
</tr>
<tr>
<td></td>
<td>93.1</td>
<td>210118_s_at</td>
<td>Hs.1272</td>
<td>IL1A</td>
<td>interleukin 1, alpha</td>
</tr>
<tr>
<td></td>
<td>89.8</td>
<td>206363_at</td>
<td>Hs.164021</td>
<td>CXC16</td>
<td>chemokine (C-X-C motif) ligand 6 (granulocyte chemotactic protein 2)</td>
</tr>
<tr>
<td></td>
<td>81.1</td>
<td>207426_s_at</td>
<td>Hs.181097</td>
<td>TNFSF4</td>
<td>tumor necrosis factor (ligand) superfamily, member 4</td>
</tr>
<tr>
<td></td>
<td>66.6</td>
<td>209267_at</td>
<td>Hs.126256</td>
<td>IL1B</td>
<td>interleukin 1, beta</td>
</tr>
<tr>
<td></td>
<td>61.3</td>
<td>204585_s_at</td>
<td>Hs.592122</td>
<td>TYMP</td>
<td>thymidine phosphorylase</td>
</tr>
<tr>
<td></td>
<td>54.7</td>
<td>216598_s_at</td>
<td>Hs.303449</td>
<td>CCL2</td>
<td>chemokine (C-C motif) ligand 2</td>
</tr>
<tr>
<td></td>
<td>40.5</td>
<td>235717_at</td>
<td>Hs.389748</td>
<td>TSLP</td>
<td>thymic stromal lymphopoietin</td>
</tr>
<tr>
<td></td>
<td>25.2</td>
<td>209840_s_at</td>
<td>Hs.3781</td>
<td>LRRN3</td>
<td>leucine rich repeat neuronal 3</td>
</tr>
<tr>
<td></td>
<td>24.6</td>
<td>205483_s_at</td>
<td>Hs.458485</td>
<td>ISG15</td>
<td>(includes EG ISG15 ubiquitin-like modifier)</td>
</tr>
<tr>
<td></td>
<td>22.3</td>
<td>209603_s_at</td>
<td>Hs.288034</td>
<td>SLC29A8</td>
<td>solute carrier family 29 (zinc transporter), member 8</td>
</tr>
<tr>
<td></td>
<td>18.3</td>
<td>205992_s_at</td>
<td>Hs.654378</td>
<td>IL15</td>
<td>interleukin 15</td>
</tr>
<tr>
<td></td>
<td>16.7</td>
<td>206025_s_at</td>
<td>Hs.437722</td>
<td>TNFAIP6</td>
<td>tumor necrosis factor, alpha-induced protein 6</td>
</tr>
<tr>
<td></td>
<td>13.4</td>
<td>206026_s_at</td>
<td>Hs.437722</td>
<td>TNFAIP6</td>
<td>tumor necrosis factor, alpha-induced protein 6</td>
</tr>
<tr>
<td></td>
<td>13.4</td>
<td>209841_s_at</td>
<td>Hs.3781</td>
<td>LRRN3</td>
<td>leucine rich repeat neuronal 3</td>
</tr>
<tr>
<td></td>
<td>12.4</td>
<td>206254_s_at</td>
<td>Hs.419815</td>
<td>EGF</td>
<td>epidermal growth factor (beta-urogastrone)</td>
</tr>
<tr>
<td></td>
<td>11.7</td>
<td>209302_s_at</td>
<td>Hs.525607</td>
<td>TNFAIP2</td>
<td>tumor necrosis factor, alpha-induced protein 2</td>
</tr>
<tr>
<td></td>
<td>10.8</td>
<td>209277_s_at</td>
<td>Hs.438231</td>
<td>TFPI2</td>
<td>tissue factor pathway inhibitor 2</td>
</tr>
<tr>
<td></td>
<td>8.7</td>
<td>241986_at</td>
<td>Hs.60998</td>
<td>BMPER</td>
<td>BMP binding endothelial regulator</td>
</tr>
<tr>
<td></td>
<td>7.5</td>
<td>213817_at</td>
<td>Hs.54861</td>
<td>IRAK3</td>
<td>interleukin-1 receptor-associated kinase 3</td>
</tr>
<tr>
<td></td>
<td>6.7</td>
<td>208747_s_at</td>
<td>Hs.458355</td>
<td>C15</td>
<td>complement component 1, s subcomponent</td>
</tr>
<tr>
<td></td>
<td>6.4</td>
<td>205174_s_at</td>
<td>Hs.79033</td>
<td>QPCT</td>
<td>(includes EG glutaminyl-peptide cyclotransferase</td>
</tr>
<tr>
<td></td>
<td>6.1</td>
<td>213967_s_at</td>
<td>Hs.58055</td>
<td>LRH1</td>
<td>leucine-rich repeats and immunoglobulin-like domains 1</td>
</tr>
<tr>
<td></td>
<td>5.7</td>
<td>205207_s_at</td>
<td>Hs.654458</td>
<td>IL6</td>
<td>interleukin 6 (interferon, beta 2)</td>
</tr>
<tr>
<td></td>
<td>5.3</td>
<td>209788_s_at</td>
<td>Hs.436166</td>
<td>ERAP1</td>
<td>endoplasmic reticulum aminopeptidase 1</td>
</tr>
<tr>
<td></td>
<td>5.2</td>
<td>211896_s_at</td>
<td>Hs.706262</td>
<td>DCN</td>
<td>decorin</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1552312_s_at</td>
<td>Hs.432818</td>
<td>MFAP3</td>
<td>microfibril-associated protein 3</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>203788_s_at</td>
<td>Hs.269109</td>
<td>SEMA3C</td>
<td>sema domain, immunoglobulin domain (lg), short basic domain, secreted, (semaphorin) 3C</td>
</tr>
<tr>
<td></td>
<td>4.9</td>
<td>212067_s_at</td>
<td>Hs.534234</td>
<td>CIR</td>
<td>complement component 1, s subcomponent</td>
</tr>
<tr>
<td></td>
<td>4.9</td>
<td>209335_s_at</td>
<td>Hs.706262</td>
<td>DCN</td>
<td>decorin</td>
</tr>
<tr>
<td></td>
<td>4.8</td>
<td>206814_s_at</td>
<td>Hs.2561</td>
<td>NGF</td>
<td>nerve growth factor (beta polypeptide)</td>
</tr>
<tr>
<td></td>
<td>4.7</td>
<td>204614_s_at</td>
<td>Hs.594481</td>
<td>SERPINA2</td>
<td>serpin peptidase inhibitor, clade B (ovalbumin), member 2</td>
</tr>
<tr>
<td></td>
<td>4.7</td>
<td>209278_s_at</td>
<td>Hs.438231</td>
<td>TFPI2</td>
<td>tissue factor pathway inhibitor 2</td>
</tr>
<tr>
<td></td>
<td>4.5</td>
<td>203744_s_at</td>
<td>Hs.406475</td>
<td>LUM</td>
<td>lumican</td>
</tr>
<tr>
<td></td>
<td>4.5</td>
<td>220147_s_at</td>
<td>Hs.590154</td>
<td>FAM8A</td>
<td>(includes EG family with sequence similarity 60, member A</td>
</tr>
<tr>
<td></td>
<td>4.3</td>
<td>217738_s_at</td>
<td>Hs.48965</td>
<td>NAMPT</td>
<td>nicotinamide phosphoamoanptide transferase</td>
</tr>
<tr>
<td></td>
<td>4.2</td>
<td>38037_at</td>
<td>Hs.799</td>
<td>HBEFG</td>
<td>hepin-binding EGF-like growth factor</td>
</tr>
<tr>
<td></td>
<td>3.9</td>
<td>211739_s_at</td>
<td>Hs.49415</td>
<td>NAMPT</td>
<td>nicotinamide phosphoamoanptide transferase</td>
</tr>
<tr>
<td></td>
<td>3.8</td>
<td>214719_s_at</td>
<td>Hs.112167</td>
<td>SLC46A3</td>
<td>solute carrier family 46, member 3</td>
</tr>
<tr>
<td></td>
<td>3.8</td>
<td>219201_s_at</td>
<td>Hs.514685</td>
<td>TWSG1</td>
<td>twisted gastrulation homology 1 (Drosophila)</td>
</tr>
<tr>
<td></td>
<td>3.6</td>
<td>218907_s_at</td>
<td>Hs.232750</td>
<td>KTEL1</td>
<td>KTEL (lys-Tyr-Glu-Leu) containing 1</td>
</tr>
<tr>
<td></td>
<td>3.6</td>
<td>221577_s_at</td>
<td>Hs.619692</td>
<td>GDF15</td>
<td>growth differentiation factor 15</td>
</tr>
<tr>
<td></td>
<td>3.6</td>
<td>213800_s_at</td>
<td>Hs.363396</td>
<td>CFIH</td>
<td>complement factor H</td>
</tr>
<tr>
<td></td>
<td>3.5</td>
<td>203765_s_at</td>
<td>Hs.1114</td>
<td>BMP1</td>
<td>bone morphogenetic protein 1</td>
</tr>
<tr>
<td></td>
<td>3.5</td>
<td>201893_s_at</td>
<td>Hs.706262</td>
<td>DCN</td>
<td>decorin</td>
</tr>
<tr>
<td></td>
<td>3.4</td>
<td>203789_s_at</td>
<td>Hs.269109</td>
<td>SEMA3C</td>
<td>sema domain, immunoglobulin domain (lg), short basic domain, secreted, (semaphorin) 3C</td>
</tr>
<tr>
<td></td>
<td>3.3</td>
<td>218903_s_at</td>
<td>Hs.821730</td>
<td>CBL</td>
<td>complement component 1, s subcomponent-like</td>
</tr>
<tr>
<td></td>
<td>3.2</td>
<td>210385_s_at</td>
<td>Hs.436186</td>
<td>ERAP1</td>
<td>endoplasmic reticulum aminopeptidase 1</td>
</tr>
<tr>
<td>Gene Name</td>
<td>Description</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLDN1</td>
<td>Claudin 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMP1</td>
<td>Bone morphogenetic protein 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POSTN</td>
<td>Peristin, osteoblast specific factor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KTEL1</td>
<td>KTEL (Lys-Tyr-Glu-Leu) containing 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TFGB1</td>
<td>Transforming growth factor, beta 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HBG1</td>
<td>Heparin-binding EGF-like growth factor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDN1</td>
<td>Endothelin 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SERPINF1</td>
<td>Serpin peptidase inhibitor, clade F (alpha-2 antiplasmin, pigment epithelium derived factor), member 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPARC</td>
<td>Secreted protein, acidic, cysteine-rich (osteonectin)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FGFB</td>
<td>Fibroblast growth factor 2 (basic)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DCBLD1</td>
<td>Discoidin, CUB and ECLCL domain containing 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDN1</td>
<td>Endothelin 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PGCP</td>
<td>Plasma glutamate carboxypeptidase</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COLIA3</td>
<td>Collagen, type III, alpha 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COLIA1</td>
<td>Collagen, type I, alpha 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MFAP2</td>
<td>Microfibrillar-associated protein 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TWSG1</td>
<td>Twist caused gastrulation homolog 1 (Drosophila)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RNASE4</td>
<td>Ribonuclease, A family, 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DKK3</td>
<td>Dickkopf homolog 3 (Xenopus laevis)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICAM1</td>
<td>Intercellular adhesion molecule 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPRC5B</td>
<td>G protein-coupled receptor, family C, group 5, member B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNFRSF9</td>
<td>Tumor necrosis factor receptor superfamily, member 9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLC38A1</td>
<td>Solute carrier family 38, member 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GPRC5B</td>
<td>G protein-coupled receptor, family C, group 5, member B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDB3</td>
<td>CDB3 molecule</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SYNGR2</td>
<td>Synaptogyrin 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ICAM2</td>
<td>Intercellular adhesion molecule 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLC7A1</td>
<td>Solute carrier family 7, member 1 (cations, amino acid transporter, y+ system)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLC22A3</td>
<td>Solute carrier family 22, member 3 (sodium-dependent vitamin B12 transporter)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IRAK2</td>
<td>Interleukin-1 receptor-associated kinase 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLC7A1</td>
<td>Solute carrier family 7, member 1 (cations, amino acid transporter, y+ system)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR2P2</td>
<td>Neurilin 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLC7A5</td>
<td>Solute carrier family 7, member 5 (cations, amino acid transporter, y+ system)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KCNJ15</td>
<td>Potassium inwardly-rectifying channel, subfamily J, member 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLC22A6</td>
<td>Solute carrier family 22, member 6 (sodium-dependent pyrimidine transporter)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ABCA1</td>
<td>ATP binding cassette, sub-family A (ABCG1), member 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLC7A1</td>
<td>Solute carrier family 7, member 1 (cations, amino acid transporter, y+ system)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NR2P2</td>
<td>Neurilin 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDS8</td>
<td>CDS8 molecule</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CDS8</td>
<td>CDS8 molecule</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GALNAc4S-6ST</td>
<td>B cell RAG-associated protein</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLDN1</td>
<td>Claudin 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IFNAR2</td>
<td>Interferon (alpha, beta and omega) receptor 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DPP4</td>
<td>Dipeptidyl-peptidase 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JAM2</td>
<td>Junctional adhesion molecule 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IFNGR1</td>
<td>Interferon gamma receptor 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNC5B</td>
<td>Unc-5 homolog B (C. elegans)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TLR3</td>
<td>Toll-like receptor 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IFG2A2</td>
<td>Integrin, alpha 2 (C:D49B, alpha 2 subunit of VLA-2 receptor)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IFNGR1</td>
<td>Interferon gamma receptor 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLCR1</td>
<td>Phospholipid scramblase 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NRP2</td>
<td>Neurilin 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLC19A2</td>
<td>Solute carrier family 19 (thiamine transporter), member 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRR4A</td>
<td>Brain protein 4A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITGAV</td>
<td>Integrin, alpha L, beta 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ITGAV</td>
<td>Integrin, beta 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Plasma Membrane

<table>
<thead>
<tr>
<th>Gene Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL7R</td>
<td>Interleukin 7 receptor</td>
</tr>
<tr>
<td>PLSCR1</td>
<td>Prefoldin 1</td>
</tr>
<tr>
<td>ITGA2</td>
<td>Integrin, alpha 2 (CD49B, alpha 2 subunit of VLA-2 receptor)</td>
</tr>
<tr>
<td>UNC5B</td>
<td>Unc-5 homolog B (C. elegans)</td>
</tr>
<tr>
<td>DPP4</td>
<td>Dipeptidyl-peptidase 4</td>
</tr>
<tr>
<td>IFNAR2</td>
<td>Interferon (alpha, beta and omega) receptor 2</td>
</tr>
<tr>
<td>NRP2</td>
<td>Neurilin 2</td>
</tr>
<tr>
<td>SLC19A2</td>
<td>Solute carrier family 19 (thiamine transporter), member 2</td>
</tr>
<tr>
<td>BRR4A</td>
<td>Brain protein 4A</td>
</tr>
<tr>
<td>ITGAV</td>
<td>Integrin, alpha L, beta 7</td>
</tr>
</tbody>
</table>

Other Proteins

<table>
<thead>
<tr>
<th>Gene Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPP4</td>
<td>Dipeptidyl-peptidase 4</td>
</tr>
<tr>
<td>IFNAR2</td>
<td>Interferon (alpha, beta and omega) receptor 2</td>
</tr>
<tr>
<td>NRP2</td>
<td>Neurilin 2</td>
</tr>
<tr>
<td>SLC19A2</td>
<td>Solute carrier family 19 (thiamine transporter), member 2</td>
</tr>
<tr>
<td>BRR4A</td>
<td>Brain protein 4A</td>
</tr>
<tr>
<td>ITGAV</td>
<td>Integrin, alpha L, beta 7</td>
</tr>
</tbody>
</table>

References

- IL7R: Interleukin 7 receptor
- PLSCR1: Prefoldin 1
- ITGA2: Integrin, alpha 2 (CD49B, alpha 2 subunit of VLA-2 receptor)
- UNC5B: Unc-5 homolog B (C. elegans)
- DPP4: Dipeptidyl-peptidase 4
- IFNAR2: Interferon (alpha, beta and omega) receptor 2
- NRP2: Neurilin 2
- SLC19A2: Solute carrier family 19 (thiamine transporter), member 2
- BRR4A: Brain protein 4A
- ITGAV: Integrin, alpha L, beta 7
<table>
<thead>
<tr>
<th>Position</th>
<th>Gene</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3</td>
<td>210405_x_at</td>
<td>HS.521456</td>
</tr>
<tr>
<td>5.2</td>
<td>210229_x_at</td>
<td>HS.511887</td>
</tr>
<tr>
<td>5.2</td>
<td>204715_at</td>
<td>HS.591976</td>
</tr>
<tr>
<td>5</td>
<td>205775_at</td>
<td>HS.714863</td>
</tr>
<tr>
<td>4.8</td>
<td>207310_at</td>
<td>HS.525572</td>
</tr>
<tr>
<td>4.8</td>
<td>200924_s_at</td>
<td>HS.502769</td>
</tr>
<tr>
<td>4.6</td>
<td>204717_s_at</td>
<td>HS.82002</td>
</tr>
<tr>
<td>4.6</td>
<td>204806_x_at</td>
<td>HS.519972</td>
</tr>
<tr>
<td>4.5</td>
<td>213909_at</td>
<td>HS.288467</td>
</tr>
<tr>
<td>4.5</td>
<td>213194_c_at</td>
<td>HS.13840</td>
</tr>
<tr>
<td>4.5</td>
<td>209295_s_at</td>
<td>HS.615388</td>
</tr>
<tr>
<td>4.3</td>
<td>223249_at</td>
<td>HS.258576</td>
</tr>
<tr>
<td>4.3</td>
<td>203441_s_at</td>
<td>HS.464892</td>
</tr>
<tr>
<td>4.3</td>
<td>230425_at</td>
<td>HS.116092</td>
</tr>
<tr>
<td>4.3</td>
<td>205327_s_at</td>
<td>HS.470174</td>
</tr>
<tr>
<td>4.2</td>
<td>203223_at</td>
<td>HS.513457</td>
</tr>
<tr>
<td>4.2</td>
<td>209131_s_at</td>
<td>HS.714865</td>
</tr>
<tr>
<td>4.2</td>
<td>200929_s_at</td>
<td>HS.521456</td>
</tr>
<tr>
<td>4.1</td>
<td>221875_s_at</td>
<td>HS.519972</td>
</tr>
<tr>
<td>4.1</td>
<td>209147_s_at</td>
<td>HS.696231</td>
</tr>
<tr>
<td>4.1</td>
<td>211799_x_at</td>
<td>HS.654404</td>
</tr>
<tr>
<td>4</td>
<td>203866_s_at</td>
<td>HS.109225</td>
</tr>
<tr>
<td>3.9</td>
<td>213110_at</td>
<td>HS.491232</td>
</tr>
<tr>
<td>3.8</td>
<td>223499_at</td>
<td>HS.632102</td>
</tr>
<tr>
<td>3.8</td>
<td>208729_x_at</td>
<td>HS.634404</td>
</tr>
<tr>
<td>3.7</td>
<td>224082_c_at</td>
<td>HS.524625</td>
</tr>
<tr>
<td>3.7</td>
<td>1554557_at</td>
<td>HS.478429</td>
</tr>
<tr>
<td>3.7</td>
<td>203125_s_at</td>
<td>HS.505545</td>
</tr>
<tr>
<td>3.7</td>
<td>211529_x_at</td>
<td>HS.512152</td>
</tr>
<tr>
<td>3.7</td>
<td>214544_s_at</td>
<td>HS.714865</td>
</tr>
<tr>
<td>3.6</td>
<td>209663_at</td>
<td>HS.81629</td>
</tr>
<tr>
<td>3.6</td>
<td>221872_at</td>
<td>HS.131269</td>
</tr>
<tr>
<td>3.6</td>
<td>20516_s_at</td>
<td>HS.506276</td>
</tr>
<tr>
<td>3.5</td>
<td>222060_at</td>
<td>HS.654891</td>
</tr>
<tr>
<td>3.4</td>
<td>207177_at</td>
<td>HS.654365</td>
</tr>
<tr>
<td>3.3</td>
<td>22042_at</td>
<td>HS.17458</td>
</tr>
<tr>
<td>3.3</td>
<td>218239_at</td>
<td>HS.656195</td>
</tr>
<tr>
<td>3.3</td>
<td>213191_s_at</td>
<td>HS.549053</td>
</tr>
<tr>
<td>3.3</td>
<td>227396_s_at</td>
<td>HS.31847</td>
</tr>
<tr>
<td>3.3</td>
<td>235198_at</td>
<td>HS.714371</td>
</tr>
<tr>
<td>3.2</td>
<td>209612_s_at</td>
<td>HS.654352</td>
</tr>
<tr>
<td>3.2</td>
<td>224341_s_at</td>
<td>HS.174312</td>
</tr>
<tr>
<td>3.2</td>
<td>211528_x_at</td>
<td>HS.512152</td>
</tr>
<tr>
<td>3.2</td>
<td>204932_at</td>
<td>HS.81791</td>
</tr>
<tr>
<td>3.2</td>
<td>201875_s_at</td>
<td>HS.493919</td>
</tr>
<tr>
<td>3.1</td>
<td>203971_at</td>
<td>HS.524213</td>
</tr>
<tr>
<td>3.1</td>
<td>203987_at</td>
<td>HS.521863</td>
</tr>
<tr>
<td>3.1</td>
<td>226825_s_at</td>
<td>HS.47966</td>
</tr>
<tr>
<td>3.1</td>
<td>209545_s_at</td>
<td>HS.10375</td>
</tr>
<tr>
<td>3.1</td>
<td>210094_s_at</td>
<td>HS.493919</td>
</tr>
<tr>
<td>3.1</td>
<td>210077_s_at</td>
<td>HS.493919</td>
</tr>
<tr>
<td>3.1</td>
<td>209295_at</td>
<td>HS.521456</td>
</tr>
<tr>
<td>3.1</td>
<td>226045_at</td>
<td>HS.503446</td>
</tr>
<tr>
<td>3.1</td>
<td>208456_s_at</td>
<td>HS.502004</td>
</tr>
<tr>
<td>3.1</td>
<td>219125_s_at</td>
<td>HS.292154</td>
</tr>
<tr>
<td>3.1</td>
<td>212831_s_at</td>
<td>HS.654352</td>
</tr>
<tr>
<td>3.1</td>
<td>230875_s_at</td>
<td>HS.29189</td>
</tr>
<tr>
<td>3.1</td>
<td>208925_at</td>
<td>HS.709386</td>
</tr>
<tr>
<td>3.1</td>
<td>218196_at</td>
<td>HS.226780</td>
</tr>
<tr>
<td>3.1</td>
<td>213353_at</td>
<td>HS.421474</td>
</tr>
<tr>
<td>3.1</td>
<td>218901_at</td>
<td>HS.477869</td>
</tr>
<tr>
<td>3.1</td>
<td>204785_s_at</td>
<td>HS.708185</td>
</tr>
<tr>
<td>3.1</td>
<td>210946_at</td>
<td>HS.696231</td>
</tr>
</tbody>
</table>
2.9 205618_at a Hs.190341 PRKG1 proline rich Gis (G-carboxyglutamic acid) 1
2.8 219314_at a Hs.132114 ELTD1 EGF, latrophilin and seven transmembrane domain containing 1
2.8 202234_s_at a Hs.75221 SLC16A1 solute carrier family 16, member 1 (monocarboxylic acid transporter 1)
2.8 204191_at a Hs.59400 IFNAR1 interferon (alpha, beta and omega) receptor 1
2.7 1553780_s_at a Hs.694701 RHEB Ras homolog enriched in brain
2.7 1558115_at a Hs.714748 RECK reversion-inducing-cysteine-rich protein with kazal motifs
2.7 218856_at a Hs.443577 TMF45F21 tumor necrosis factor receptor superfamily, member 21
2.7 201642_at a Hs.614632 IFNGR2 interferon gamma receptor 2 (interferon gamma transducer 1)
2.7 210514_s_at a Hs.512152 HLA-G major histocompatibility complex, class I, G
2.7 208783_s_at a Hs.510402 CD46 CD46 molecule, complement regulatory protein
2.7 201647_s_at a Hs.349656 SCARB2 scavenger receptor class B, member 2
2.6 220092_s_at a Hs.165859 ANTXR1 anthrax toxin receptor 1
2.6 220025_s_at a Hs.654804 LRPI2 low density lipoprotein-related protein 12
2.6 201374_at a Hs.49319 MPZL1 myelin protein zero-like 1
2.6 204204_at a Hs.24030 SLC31A2 solute carrier family 31 (copper transporters), member 2
2.6 212930_at a Hs.506276 ATP2B1 ATPase, Ca++ transporting, plasma membrane 1
2.6 204720_at a Hs.453836 CDH12 cadherin 12, N-cadherin (neutrophil)
2.6 225243_s_at a Hs.476432 SLMAP sarcolemna associated protein
2.6 226353_at a Hs.401537 SPP2LA signal peptide peptidase-like 2A
2.6 201334_at a Hs.714756 BAMB1 BMP and activin membrane-bound inhibitor homolog (Xenopus laevis)
2.5 215707_s_at a Hs.472010 PRNP prion protein
2.5 202514_at a Hs.292549 DLG1 discs, large homolog 1 (Drosophila)
2.5 225059_at a Hs.464438 AGTRAP angiotensin II receptor-associated protein
2.5 211530_s_at a Hs.512152 HLA-G major histocompatibility complex, class I, G
2.5 227059_at a Hs.443429 GPC6 glypican 6
2.5 219572_at a Hs.709214 CADPS2 Ca++-dependent secretion activator 2
2.5 218095_s_at a Hs.479766 TMEM165 transmembrane protein 165
2.5 211355_s_at a Hs.26487 FGFR1 fibroblast growth factor receptor 1
2.5 212398_at a Hs.592082 IL6ST interleukin 6 signal transducer (gp130, Oncostatin M receptor)
2.5 1555736_a_at a Hs.464438 AGTRAP angiotensin II receptor-associated protein
2.4 235068_at a Hs.649522 ZDHHC21 zinc finger, DHHC-type containing 21
2.4 201302_at a Hs.427986 ANXA4 annexin A4
2.4 243463_s_at a Hs.401334 RT1A Ras-like without CAAX 1
2.4 203440_at a Hs.44829 CD2 cadherin 2, type 1, N-cadherin (neuronal)
2.4 226651_at a Hs.591761 HOMER1 homer homolog 1 (Drosophila)
2.4 224709_s_at a Hs.508829 CDC42SE2 CDC42 small effector 2
2.4 209900_s_at a Hs.75231 SLC16A1 solute carrier family 16, member 1 (monocarboxylic acid transporter 1)
2.4 203124_s_at a Hs.505435 SLC11A2 solute carrier family 11 (proton-coupled divalent metal ion transporters), member 2
2.4 200620_at a Hs.523262 TMEB59 (includes) transmembrane protein 59
2.4 209656_s_at a Hs.8769 TME47 transmembrane protein 47
2.3 1558116_s_at a Hs.714748 RECK reversion-inducing-cysteine-rich protein with kazal motifs
2.3 203042_at a Hs.496684 LAMP2 lysosomal-associated membrane protein 2
2.3 224793_s_at a Hs.496422 TGFBR1 transforming growth factor, beta receptor 1
2.3 225847_at a Hs.444099 AADACL1 arylacetamide deacetylase-like 1
2.3 212632_at a Hs.593148 STX7 syntaxin 7
2.3 213728_at a Hs.494419 LAMP1 lysosomal-associated membrane protein 1
2.2 209882_at a Hs.492324 RT1A Ras-like without CAAX 1
2.2 202351_at a Hs.436873 ITGA4 integrin, alpha V (vitronectin receptor, alpha polypeptide, antigen CD51)
2.2 203045_at a Hs.494557 NIN1 ninpin 1
2.2 212111_at a Hs.523835 STX12 syntaxin 12
2.2 202947_s_at a Hs.59138 GYP1C glycoprotein C (Gerbich blood group) 2
2.2 200821_at a Hs.496684 LAMP2 lysosomal-associated membrane protein 2
2.2 209492_at a Hs.335933 CHIC2 cytosine-rich hydrophobic domain 2
2.2 236217_at a Hs.532315 SLC31A1 solute carrier family 31 (copper transporters), member 1
2.2 203123_s_at a Hs.505443 SLC11A2 solute carrier family 11 (proton-coupled divalent metal ion transporters), member 2
2.1 214459_s_at a Hs.654404 HLA-C major histocompatibility complex, class I, C
2.1 200973_s_at a Hs.50628 TSPAN3 tetraspanin 3
2.1 228181_at a Hs.519469 SLC30A1 solute carrier family 30 (zinc transporter), member 1
2.1 217456_s_at a Hs.468017 HLA-E major histocompatibility complex, class I, E
2.1 223090_x_at a Hs.24135 VEZT vezatin, adherens junctions transmembrane protein
2.1 211075_at a Hs.446414 CD49D CD49 molecule
2.0 221584_s_at a Hs.144705 KCNM1 potassium large conductance calcium-activated channel, subfamily M, alpha member 1
2.0 203041_s_at a Hs.496684 LYSZ lysosomal-associated membrane protein 2
297.9 210538_s_at Hs.127709 BIRC3 baculoviral IAP repeat-containing 3
240.1 204224_s_at Hs.80742 GCH1 GTP cyclohydrolase 1
166.5 204802_at Hs.1027 RADR Ras-related associated with diabetes
159.9 224477_s_at Hs.48046 SOD2 superoxide dismutase 2, mitochondrial
131.6 202411_at Hs.512634 IP27 interferon, alpha-inducible protein 27
129.6 220892_s_at Hs.494261 PSAT1 phosphoserine aminotransferase 1
119 204939_s_at Hs.11038 PLN phospholamban
89.2 202902_s_at Hs.181301 CTSS cathepsin S
77.7 215223_s_at Hs.48046 SOD2 superoxide dismutase 2, mitochondrial
70.5 204802_s_at Hs.1027 RADR Ras-related associated with diabetes
51.4 21641_s_at Hs.48046 SOD2 superoxide dismutase 2, mitochondrial
43.6 202901_s_at Hs.181301 CTSS cathepsin S
43.4 209928_s_at Hs.442619 MSC (includes EGF:1) mitogen-activated protein kinase 8
38.1 204285_s_at Hs.96 PMAP1 phorbol-12-myristate-13-acetate-induced protein 1
32 202295_s_at Hs.148441 CTSH cathepsin H
29.4 226181_at Hs.34851 TUBE1 tubulin, epsilon 1
29.2 202887_s_at Hs.521012 DDT4 DNA damage-inducible transcript 4
27 223062_s_at Hs.494261 PSAT1 phosphoserine aminotransferase 1
26.3 213256_at Hs.132441 MARCH3 membrane-associated ring finger (C 3HC4) 3
25.7 204415_at Hs.511371 IF6 interferon, alpha-inducible protein 6
24.1 204286_s_at Hs.96 PMAP1 phorbol-12-myristate-13-acetate-induced protein 1
23.6 202181_s_at Hs.533013 CBS (includes EGF:1) cystathionine-beta-synthase
21.8 202647_at Hs.76512 PKC2 phosphoinositol-4-phosphate 5-kinase 2 (mitochondrial)
20.1 204493_at Hs.591054 BID BH3 interacting domain death agonist
18.4 239629_at Hs.390736 CFLAR CASP8 and FADD-like apoptosis regulator
18.3 202626_s_at Hs.699154 LYN v-yes-1 Yamaguchi sarcoma viral oncogene homolog
17.3 232617_at Hs.181301 CTSS cathepsin S
15.6 217127_at Hs.19964 CTH cystathionase (cystathionine gamma-lyase)
15.2 201660_at Hs.516135 HTR2B inositol 1,4,5-trisphosphate receptor, type 2
14.1 238669_at Hs.201978 PTGS1 prostaglandin-endoperoxide synthase 1 (prostaglandin G/H synthase and cyclooxygenase)
14.1 211862_s_at Hs.390736 CFLAR CASP8 and FADD-like apoptosis regulator
13.6 235489_at Hs.663194 RHOT ras homolog gene family, member J
13.2 201502_s_at Hs.81328 NFKB1A nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha
13 240983_s_at Hs.274873 CAR5 cysteiny1-RNA synthetase
12.2 202625_at Hs.699154 LYN v-yes-1 Yamaguchi sarcoma viral oncogene homolog
11.9 1553972_s_at Hs.533013 CBS (includes EGF:1) cystathionine-beta-synthase
11.8 211087_f_at Hs.474377 APO3L3 (includes EGF:1) apolipoprotein L, 3
10.8 213132_s_at Hs.437277 SOSTM1 sequestosome 1
10.4 207076_s_at Hs.160786 ASS1 argininosuccinate synthetase 1
10.1 207076_s_at Hs.160786 ASS1 argininosuccinate synthetase 1
9.6 209193_at Hs.81170 PIM1 pim-1 oncogene
9.5 200625_s_at Hs.497599 WARS tryptophanyl-tRNA synthetase
9.3 218319_at Hs.7886 PELI1 pellino homolog 1 (Drosophila)
9.3 203879_at Hs.518451 PKC3D phosphoinositide-3-kinase, catalytic, delta polypeptide
9.2 200889_s_at Hs.524250 GABARAP1A gamma-aminobutyric acid A receptor-associated protein like 1
9 210564_s_at Hs.390736 CFLAR CASP8 and FADD-like apoptosis regulator
8.7 210564_s_at Hs.390736 CFLAR CASP8 and FADD-like apoptosis regulator
8.7 206085_s_at Hs.159044 CTH cystathionase (cystathionine gamma-lyase)
8.2 201761_at Hs.443093 MTHFD2 methylenetetrahydrofolate dehydrogenase (NADP + dependent), 2. methylenetetrahydrofolate cyclohydrolase
8.2 211865_s_at Hs.522357 CBRF8F1 chromosome 9 open reading frame 91
7.9 209933_x_at Hs.390736 CFLAR CASP8 and FADD-like apoptosis regulator
7.9 235252_s_at Hs.113354 KSR1 kinase suppressor of ras 1
7.8 232322_x_at Hs.188606 STARD10 STAR-related lipid transfer (START) domain containing 10
7.6 225668_at Hs.239360 TRIM47 tripartite motif-containing 47
7.5 204347_at Hs.10862 AK3L1 adenylate kinase 3-like 1
7.5 210630_at Hs.10862 AK3L1 adenylate kinase 3-like 1
7.2 215833_s_at Hs.201978 PTGS1 prostaglandin-endoperoxide synthase 1 (prostaglandin G/H synthase and cyclooxygenase)
7.1 201754_at Hs.699154 LYN v-yes-1 Yamaguchi sarcoma viral oncogene homolog
7 201430_s_at Hs.519659 DPTSL3 dihydroorotidindase-like 3
6.9 202301_s_at Hs.352018 TAP1 transporter 1, ATP-binding cassette, sub-family B (MDR/TAP)
6.8 219024_at Hs.71366 PLEKH1A pleckstrin homology domain containing, family A (phosphoinositide binding specific) member 1
6.6 205128_x_at Hs.201978 PTGS1 prostaglandin-endoperoxide synthase 1 (prostaglandin G/H synthase and cyclooxygenase)
6.5 226046_at Hs.138821 MAPK8 mitogen-activated protein kinase 8
6.5 223195_s_at Hs.469543 SESN2 sestrin 2
| 6.2 | 218170_s_at | Hs.483296 | ISG1 | isochromatase domain containing 1 |
| 6.0 | 242907_at | -- | GBP1 | guanylate binding protein 2, interferon-inducible |
| 6.1 | 223103_at | Hs.188606 | STARD10 | STAR-related lipid transfer (START) domain containing 10 |
| 6.0 | 201993_at | Hs.207459 | ST6GAL1 | ST6 beta-galactosamidase alpha 2-6-sialyltransferase 1 |
| 6.0 | 226624_at | Hs.739566 | PLEKH1A | pleckstrin homology domain-containing family A (phosphoinositide binding specific) member 1 |
| 5.9 | 223196_s_at | Hs.469543 | SESN2 | sestrin 2 |
| 5.9 | 205113_s_at | Hs.603730 | UST | uronyl-2-sulfotransferase |
| 5.8 | 211316_x_at | Hs.380736 | CFLAR | CASP8 and FADD-like apoptosis regulator |
| 5.8 | 203964_at | Hs.54483 | NMI | N-myc (and STAT) interactor |
| 5.8 | 210600_s_at | Hs.656274 | TNFAIP8 | tumor necrosis factor, alpha-induced protein 8 |
| 5.6 | 227143_s_at | Hs.591054 | BID | BH3 interacting domain death agonist |
| 5.5 | 201445_s_at | Hs.823166 | IFI44 | interferon-induced protein 44 |
| 5.5 | 203931_at | Hs.469529 | CNN1 | calponin 1, basic, smooth muscle |
| 5.5 | 225894_at | Hs.655519 | SYNO2 | synaptotagmin 2 |
| 5.4 | 221357_s_at | Hs.62661 | GBP1 | guanylate binding protein 1, interferon-inducible, 67kDa |
| 5.4 | 226051_at | Hs.55940 | SELM | Seltenoprotein M |
| 5.4 | 211725_s_at | Hs.591054 | BID | BH3 interacting domain death agonist |
| 5.3 | 229580_at | Hs.516632 | DNAJ C10 | DNAJ (Hsp40) homolog, subfamily C, member 10 |
| 5.3 | 211455_s_at | Hs.431893 | RBP1 | branched chain aminotransferase B, cytosolic |
| 5.3 | 200629_at | Hs.497599 | WARS | tryptophanyl-tRNA synthetase |
| 5.2 | 40148_at | Hs.478602 | APBA2 | amyloid beta (A4) precursor protein-binding, family B, member 2 |
| 5.1 | 202557_at | Hs.352341 | HSPA13 | heat shock protein 70kDa family, member 13 |
| 5 | 228872_at | Hs.42151 | HNMT | histamine-N-methyltransferase |
| 5 | 204070_at | Hs.17486 | RARAES3 | retinoic acid receptor responder (tazarotene induced) 3 |
| 4.9 | 201312_s_at | Hs.544830 | ST3GAL1 | ST3 beta-galactoside alpha-2,3-sialyltransferase 1 |
| 4.9 | 202270_at | Hs.62661 | GBP1 | guanylate binding protein 1, interferon-inducible, 67kDa |
| 4.8 | 204085_s_at | Hs.30213 | CLN5 | cereol-ipolysucinosis, neuronal 5 |
| 4.8 | 221789_at | Hs.516632 | DNAJ C10 | DNAJ (Hsp40) homolog, subfamily C, member 10 |
| 4.8 | 205501_at | Hs.348762 | PDE10A | phosphodiesterase 10A |
| 4.7 | 226004_s_at | Hs.334305 | DGAT1 | diacylglycerol O-acyltransferase homolog 2 (mouse) |
| 4.7 | 204112_s_at | Hs.42151 | HNMT | histamine-N-methyltransferase |
| 4.7 | 212231_at | Hs.499884 | SGPL1 | sphingosine-1-phosphate lyase 1 |
| 4.6 | 208296_s_at | Hs.656274 | TNFAIP8 | tumor necrosis factor, alpha-induced protein 8 |
| 4.5 | 219343_at | Hs.561954 | CDC37L1 | cell division cycle 37 homolog (S. cerevisiae) like 1 |
| 4.5 | 202703_at | Hs.332706 | OPTN | optineurin |
| 4.4 | 202269_s_at | Hs.62661 | GBP1 | guanylate binding protein 1, interferon-inducible, 67kDa |
| 4.4 | 209451_at | Hs.556406 | TANK | TRAF family member-associatd Nrf2 activator |
| 4.3 | 221781_at | Hs.516632 | DNAJ C10 | DNAJ (Hsp40) homolog, subfamily C, member 10 |
| 4.2 | 204345_s_at | Hs.10862 | AK31 | adenylate kinase 3-like 1 |
| 4.1 | 219773_at | Hs.371036 | MOX4 | NADPH oxidase A |
| 4.1 | 201272_at | Hs.522112 | AKR1B1 | aldo-keto reductase family 1, member B1 (aldose reductase) |
| 4.1 | 226799_at | Hs.506381 | FGDC6 | FYVE, RhoGEF and PH domain containing 6 |
| 4.1 | 201397_at | Hs.497296 | PHGDH | phosphoglyceraldehyde dehydrogenase |
| 4.1 | 204214_s_at | Hs.287714 | RAB32 | RAB32, member RAS oncogene family |
| 4.1 | 228967_at | Hs.15080 | EIF1 | eukaryotic translation initiation factor 1 |
| 4.0 | 235745_at | Hs.700027 | ER11 | endoplasmic reticulum to nucleus signaling 1 |
| 4.0 | 225604_at | Hs.493819 | GLP2R | GLI pathogenesis-related 2 |
| 3.9 | 223263_s_at | Hs.591162 | FGFR1PD2 | FGFR1 oncogene partner 2 |
| 3.9 | 155414_s_at | Hs.478031 | SLC33A1 | solute carrier family 33 (acetyl-CoA transporter), member 1 |
| 3.9 | 209185_s_at | Hs.442344 | IRS2 | insulin receptor substrate 2 |
| 3.9 | 238905_at | Hs.656339 | RH0J | ras homolog gene family, member J |
| 3.9 | 201718_s_at | Hs.9216 | CASP7 | caspase 7, apoptosis-related cysteine peptidase |
| 3.9 | 204279_at | Hs.654585 | PSMB9 | proteasome (prosome, macropain) subunit, beta type, 9 (large multifunctional peptidase 2) |
| 3.9 | 217867_s_at | Hs.529408 | BACE2 | beta-site APP-cleaving enzyme 2 |
| 3.8 | 220153_s_at | Hs.709660 | ENTPD1 | ectonucleoside triphosphate diphosphohydrolase 7 |
| 3.8 | 201431_s_at | Hs.519659 | DYSPL3 | dehydrogenase-like 3 |
| 3.8 | 222446_s_at | Hs.529408 | BACE2 | beta-site APP-cleaving enzyme 2 |
| 3.8 | 203165_s_at | Hs.708031 | SLC33A1 | solute carrier family 33 (acetyl-CoA transporter), member 1 |
| 3.7 | 216250_at | Hs.125474 | LPXN | leupaxin |
| 3.7 | 208829_at | Hs.714746 | TAPBP | TAP binding protein (tapasin) |
| 3.7 | 209566_at | Hs.7089 | INSG2 | insulin induced gene 2 |
| 3.6 | 222846_at | Hs.389733 | RAB8B | RAB8B, member RAS oncogene family |
2.8
23502_s_at Hs.432822 MAN2A1 mannosidase, alpha, class 2A, member 1
2.8
213702_s_at Hs.507243 ATP2C1 ATPase, Ca++ transporting, type 2C, member 1
2.8
204332_s_at Hs.207776 ATP6AP2 ATPase, H+ transporting, lysosomal accessory protein 2
2.8
201631_s_at Hs.591785 YARS tyrosyl-tRNA synthetase
2.8
221471_s_at Hs.632707 PLEKHA3 pleckstrin homology domain containing, family A (phosphoinositide binding specific) member 3
2.8
221471_s_at Hs.632707 AZIN1 antizyme inhibitor 1
2.8
201737_s_at Hs.524502 STAU2 protamine (prosome, macropain) subunit, subunit 1 (PA28 alpha)
2.8
204015_s_at Hs.30213 CARS cysteinyl-tRNA synthetase
2.8
223982_s_at Hs.617340 PCMTD1 protein-L-isoaspartate (D-aspartate) O-methyltransferase domain containing 1
2.8
212375_s_at Hs.387096 PSME1 peptidylprolyl isomerase C (cyclophilin C)
2.8
223949_s_at Hs.29491 SAT1 spermidine/spermine N1-acetyltransferase 1
2.8
209579_s_at Hs.403346 DCI decenyl-Coenzyme A delta isomerase (3,2 trans-enoyl-Coenzyme A isomerase)
2.8
235612_s_at Hs.23406 PAGT1B peptidylglycine alpha methylation transferase (glycine N-acetyltransferase) type B
2.8
201962_s_at Hs.514502 RNF41 ring finger protein 41
2.8
209666_s_at Hs.188998 CHUK Cdc2 4a/b kinase
2.8
20895_s_at Hs.154023 ERP44 endoplasmic reticulum protein 44
2.8
214231_s_at Hs.524910 FTHL1 ferritin, heavy polypeptide 1
2.8
223982_s_at Hs.617340 PLEKHA3 pleckstrin homology domain containing, family A (phosphoinositide binding specific) member 3
2.8
221471_s_at Hs.632707 YARS tyrosyl-tRNA synthetase
2.8
221471_s_at Hs.632707 AZIN1 antizyme inhibitor 1
2.8
201737_s_at Hs.524502 STAU2 protamine (prosome, macropain) subunit, subunit 1 (PA28 alpha)
2.8
204015_s_at Hs.30213 CARS cysteinyl-tRNA synthetase
2.8
223982_s_at Hs.617340 PCMTD1 protein-L-isoaspartate (D-aspartate) O-methyltransferase domain containing 1
2.8
212375_s_at Hs.387096 PSME1 peptidylprolyl isomerase C (cyclophilin C)
2.8
223949_s_at Hs.29491 SAT1 spermidine/spermine N1-acetyltransferase 1
2.8
209579_s_at Hs.403346 DCI decenyl-Coenzyme A delta isomerase (3,2 trans-enoyl-Coenzyme A isomerase)
2.4 22157_1_st Hs.510528 Traf3 Tnf receptor-associated factor 3
2.4 212184_5_st Hs.269775 MAPK7ip2 mitogen-activated protein kinase kinase kinase 7 interacting protein 2
2.4 219122_5_st Hs.353090 Thg1l trNA-histidine guanylyltransferase 1-like (S. cerevisiae)
2.4 213754_5_st Hs.567029 Pamp1 poly(A) binding protein interacting protein 1
2.4 214649_5_st Hs.181126 Mtrm2 myotubularin related protein 2
2.4 209898_6_st Hs.432652 Itsn2 intersectin 2
2.4 204188_6_st Hs.581125 Prp6 peptidyl-prolyl isomerase D
2.4 203380_6_st Hs.469537 Aldh1a3 aldehyde dehydrogenase 3 family, member A3
2.4 217168_6_st Hs.146393 Herpud1 homocysteine-inducible, endoplasmic reticulum stress-inducible, ubiquitin-like domain member 1
2.4 204910_6_st Hs.421194 Tp53tp1 tyrosine phosphatase, subunit 1
2.4 227904_6_at Hs.706616 Az1 S-arachidonate induced 2
2.4 156000_6_st Hs.523715 Vps37c vacuolar protein sorting 37 homolog C (S. cerevisiae)
2.4 218665_6_at Hs.119889 Raph2c RAP2C, member of RAS oncogene family
2.4 213372_5_at Hs.607312 Parg3 progerin and adipocyte receptor family member III
2.4 223309_6_at Hs.617340 Pnpl8a patatin-like phospholipase domain containing B
2.4 205995_6_at Hs.470907 Ak2 adenylyl kinase 2
2.4 204274_6_at Hs.491668 Ebag9 estrogen receptor binding site associated, antigen, 9
2.4 205571_6_at Hs.714759 Lipt1 lipoyltransferase 1
2.4 208315_6_at Hs.510528 Traf3 Tnf receptor-associated factor 3
2.4 213939_5_at Hs.571333 Fkp14 FK506 binding protein 14, 22 kDa
2.4 213902_6_at Hs.527412 Asah1 N-acetylphosphosine amidohydrolase (acid ceramidase) 1
2.4 210283_5_at Hs.567029 Parp1 poly(A) binding protein interacting factor 3
2.4 214096_6_at Hs.714300 Shmt2 serine hydroxymethyltransferase 2 (mitochondrial)
2.4 224787_6_at Hs.406799 Rab18 Rab18, member RAS oncogene family
2.4 216060_6_at Hs.634934 Dan1 dishevelled associated activator of morphogenesis 1
2.4 200969_6_at Hs.531826 Serp1 stress-associated endoplasmic reticulum protein 1
2.4 209040_5_at Hs.180062 Psm8 proteasome (prosome, macropain) subunit, beta type, 8 (large multifunctional peptidase 7)
2.4 202006_6_at Hs.618182 Pfpm12 protein tyrosine phosphatase, non-receptor type 12
2.4 208666_5_at Hs.523662 Cschnk1a1 casein kinase 1, alpha 1
2.4 217819_6_at Hs.654773 Golk1a7 golgi autoantigen, golgin subfamily a, 7
2.4 225602_6_at Hs.493819 Glpfr2 GLI pathogenesis-related 2
2.4 218744_6_at Hs.605158 Eoxc5 exocyst complex component 5
2.4 204054_6_at Hs.500466 Pten phosphatase and tensin homolog
2.4 201425_6_at Hs.632733 Aldh9 Aldo dehydrogenase 9 family (2) (mitochondrial)
2.4 224025_6_at Hs.390127 Atg7 ATG7 autophagy related 7 homolog (S. cerevisiae)
2.4 200902_6_at Hs.362728 Sept15 septin 15 kDa selenoprotein
2.4 218617_6_at Hs.356554 Trf1 trNA isopenityltransferase 1
2.4 209285_6_at Hs.38909 Rcat1 branched chain aminotransferase 1, cytosolic
2.4 223370_6_at Hs.41068 Plect1 homolog domain containing, family A (phosphoinositide binding specific) member 3
2.4 220731_5_at Hs.437385 Necap2 necap endocytosis associated 2
2.4 200748_5_at Hs.524810 Fth1 ferritin, heavy polypeptide 1
2.4 201625_5_at Hs.520819 Ins1, insulin induced gene 1
2.4 210592_5_at Hs.28491 Sat1 spermidine/spermine N1-acetyltransferase 1
2.4 202929_5_at Hs.181907 Csehfr3 chromosome 5 open reading frame 3
2.4 221808_5_at Hs.495704 Rab9a Rab9a, member RAS oncogene family
2.4 210293_5_at Hs.36973 Sec23b Sec23 homolog B (S. cerevisiae)
2.4 222754_5_at Hs.567495 Trf11 RNA nucleolytic transference, CCA-adding, 1
2.4 207855_6_at Hs.658489 Cllc1 chloride channel CLIC-like 1
2.4 209799_5_at Hs.43322 Prkaa1 protein kinase, AMP-activated, alpha 1 catalytic subunit
2.4 224893_5_at Hs.59864 Erf23 mukacytic translation initiation factor 2a subunit 3 gamma, 53Da
2.4 207564_5_at Hs.405410 Ogt (includes EGFl2-linked N-acetylgalcosamine (GlcNAc) transferase (UDP-N-acetylgalcosamine:polypeptide-N-acetylgalcosaminylin transferase)
2.4 207274_5_at Hs.48732 Prkacb protein kinase, CAMP-dependent, catalytic, beta
2.4 225291_5_at Hs.38731 Pnh1 poly(ADP-ribose)polymerase 1
2.4 218034_5_at Hs.699155 Canx calnexin
2.4 202569_5_at Hs.35828 Mark3 Map/microtubule affinity-regulating kinase 3
2.4 223019_5_at Hs.469612 Trpm13 tripartite motif-containing 13
2.4 223209_5_at Hs.32148 Sel5 selenoprotein 5
2.4 201661_5_at Hs.655772 Acsl3 acyl-CoA synthetase long-chain family member 3
2.4 217826_5_at Hs.163776 Ubq2 ubiquitin-conjugating enzyme E2 J 1 (UBC6 homolog, yeast)
2.4 155248_5_at Hs.410388 Lct8 lactamase, beta
2.4 209072_5_at Hs.508148 Abil abI inhibitor 1
2.4 209082_5_at Hs.508148 Abil abI inhibitor 1
2.4 226317_5_at Hs.431092 Pps4r2 protein phosphatase 4, regulatory subunit 2
| 2.2 | 222014_s_at | Hs.591679 | NFKBIA | NFKBIA, member of NF-kappa B family |
| 2.2 | 223651_at | Hs.438993 | BIRC5 | BIRC5, member of IAP family |
| 2.2 | 218085_at | Hs.635133 | CHP85 | chromatin modifying protein 5 |
| 2.2 | 222023_s_at | Hs.120319 | RDN16 | retinol dehydrogenase 14 (all-trans/R/11-cis) |
| 2.2 | 209146_at | Hs.102649 | SC4DMO1 | steroid C4-methyl oxidase-like |
| 2.2 | 201765_s_at | Hs.604479 | HEXA | hexaminidase A (alpha polypeptide) |
| 2.1 | 222442_s_at | Hs.436274 | LARS | leucyl-RNA synthetase |
| 2.1 | 201097_s_at | Hs.465764 | TMEM44 | translocase of inner mitochondrial membrane 44 homolog (yeast) |
| 2.1 | 204549_s_at | Hs.321045 | IKKKE | inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase epsilon |
| 2.1 | 209069_s_at | Hs.482018 | PAP1 | poly(A) binding protein interacting protein 1 |
| 2.1 | 208726_s_at | Hs.429180 | EIF2S2 | eukaryotic translation initiation factor 2, subunit 2 beta, 38kDa |
| 2.1 | 223295_s_at | Hs.16803 | LUC7L | LUC7-like (s. cerevisiae) |
| 2.1 | 218666_at | Hs.119899 | RAP2C | RAP2C, member of RAS oncogene family |
| 2.1 | 223046_at | Hs.44450 | EGLN1 | egl nine homolog 1 (c. elegans) |
| 2.1 | 202631_at | Hs.654626 | LPPAT1 | lysophosphatidylglycerol acyltransferase 1 |
| 2.1 | 201736_at | Hs.315230 | EIF1B | eukaryotic translation initiation factor 1B |
| 2.1 | 204053_s_at | Hs.21160 | ME1 | malic enzyme 1, NADP(+)-dependent, cytosolic |
| 2.1 | 208985_s_at | Hs.404056 | EIF3J | eukaryotic translation initiation factor 3, subunit J |
| 2.1 | 203867_s_at | Hs.11590 | CTSP | cathespin P |

Nucleus

8.2	212909_at	Hs.183173	IFNL1	interferon induced with helicase C domain 1
3.8	228617_at	Hs.441975	XAF1	XIAP associated factor 1
3.0	206133_at	Hs.441975	XAF1	XIAP associated factor 1
28	39549_at	Hs.156832	NPS2	neuronal PAS domain protein 2
27.2	223611_at	Hs.72901	CDKN2B	cyclin-dependent kinase inhibitor 2B (p15, inhibits CDK4)
26.1	202643_s_at	Hs.211600	TNFAP3	tumor necrosis factor, alpha-induced protein 3
23	1554966_a_at	Hs.110472	FLIP	FLIP, Fas-associated death domain
19.6	203927_at	Hs.458276	NFKBIE	nuclear factor of kappa light polypeptide gene enhancer in B-cells, inhibitor, epsilon
19	204702_s_at	Hs.404741	MEF2L	nuclear factor (erythroid-derived 2)-like 3
16.8	202724_at	Hs.370666	FOXO1	forkhead box D1
14.2	213462_at	Hs.156832	NPS2	neuronal PAS domain protein 2
12.7	218543_s_at	Hs.12646	PARP12	poly (ADP-ribose) polymerase family, member 12
11.7	204135_at	Hs.104672	FLIP	FLIP, Fas-associated death domain
11.6	202843_at	Hs.6790	DNAJ B9	DNAJ (Hsp40) homolog, subfamily B, member 9
9.7	230636_s_at	Hs.150507	KLF9	Kruppel-like factor 9
9.2	227020_at	Hs.16803	YPPF2	yippee-like 2 (Drosophila)
9.1	202644_s_at	Hs.211600	TNFAP3	tumor necrosis factor, alpha-induced protein 3
8.7	210285_s_at	Hs.440691	WAP	Wilm tumor 1 associated protein
8.2	155248_t_at	Hs.459153	BNC1	brain nucleolin 1
8	209290_s_at	Hs.209523	SIAH1	seven in absentia homolog 1 (Drosophila)
8	221530_s_at	Hs.177841	BHLHE41	basic helix-loop-helix family, member e41
7.9	209415_s_at	Hs.632258	IFUS	interferon-induced protein 35
7.8	218145_at	Hs.516826	TRIB3	tribbles homolog 3 (Drosophila)
7.7	224848_at	Hs.119828	CDK6	cyclin-dependent kinase 6
7.7	209230_s_at	Hs.513463	NUPR1	nuclear protein 1
7.5	1554462_at	Hs.6790	DNAJ B9	DNAJ (Hsp40) homolog, subfamily B, member 9
7.4	207190_s_at	Hs.543880	TNFAP1	transforming growth factor alpha-inducing protein 1
7.3	226658_at	Hs.494269	ARNTL2	aryl hydrocarbon receptor nuclear translocator-like 2
7.0	205258_s_at	Hs.368341	RUNX1T1	runt-related transcription factor 1; translocated to, 1 (cycin D-related)
7	204203_at	Hs.429666	CEBPB	CCAAT/enhancer binding protein C/EBP, gamma
6.8	204341_at	Hs.123534	TRIM16	tripartite motif-containing 16
6.7	216125_s_at	Hs.709269	RANBP9	RAN binding protein 9
6.6	203137_at	Hs.449051	WAP	Wilm tumor 1 associated protein
6.1	228348_at	Hs.127186	NCOA7	nuclear receptor coactivator 7
6.1	205255_s_at	Hs.368341	RUNX1T1	runt-related transcription factor 1; translocated to, 1 (cycin D-related)
5.8	207039_at	Hs.512599	CDKN2A	cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4)
5.8	216471_at	Hs.404741	MEF2L	nuclear factor (erythroid-derived 2)-like 3
5.7	39548_at	Hs.156832	NPS2	neuronal PAS domain protein 2
5.7	218486_at	Hs.12229	KLF11	Kruppel-like factor 11
5.6	224847_at	Hs.119882	CDK6	cyclin-dependent kinase 6
5.4	224204_x_at	Hs.434269	ARNTL2	aryl hydrocarbon receptor nuclear translocator-like 2
5.2	223650_s_at	Hs.494288	MIRF2	nuclear receptor binding factor 2
5	202842_s_at	Hs.6790	DNAJ B9	DNAJ (Hsp40) homolog, subfamily B, member 9
5	209706_at	Hs.55999	NXK3-1	NK 3 homeobox 1
Rod1 regulator of differentiation 1 (S. pombe)

ASCC1

GTPase activating protein (SH3 domain) binding protein 2

ZBTB5

GTPase activating protein (SH3 domain) binding protein 2

RRM2B

Growth arrest and DNA-damage-inducible, alpha

GADD45A

Cysteine and glycine-rich protein 2

CSRP2

Threonyl-tRNA synthetase

TARS

Mdm2 p53 binding protein homolog (mouse)

MDM2

MAX interactor 1

MXI1

Metal response element binding transcription factor 2

MTF2

Cellular repressor of E1A-stimulated genes 1

CREG1

Ribosomal L24 domain containing 1

RPL24D1

Hepatoma-derived growth factor, related protein 3

HDGFRP3

 Aryl hydrocarbon receptor nuclear translocator-like 2

NR3C1

Aryl hydrocarbon receptor

NR1D2

Signal transducer and activator of transcription 5A

NRBF2

Signal transducer and activator of differentiation 1 (S. pombe)

ROD1

Activating signal cointegrator 1 complex subunit 1

AHR

Activating signal cointegrator 1 complex subunit 2

NR2F2
<table>
<thead>
<tr>
<th>Gene ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>224387_at</td>
<td>C0RMD5</td>
</tr>
<tr>
<td>225419_at</td>
<td>NGFRI1</td>
</tr>
<tr>
<td>212636_at</td>
<td>GKI</td>
</tr>
<tr>
<td>155313_at</td>
<td>CDK8</td>
</tr>
<tr>
<td>209704_at</td>
<td>MTF2</td>
</tr>
<tr>
<td>210320_s_at</td>
<td>DDX52</td>
</tr>
<tr>
<td>229836_at</td>
<td>NUP22</td>
</tr>
<tr>
<td>218499_at</td>
<td>RP6-213H12.1</td>
</tr>
<tr>
<td>228736_at</td>
<td>HELO</td>
</tr>
<tr>
<td>218572_at</td>
<td>CHMP4A</td>
</tr>
<tr>
<td>209924_at</td>
<td>HOGF9P3</td>
</tr>
<tr>
<td>227766_at</td>
<td>LIG4</td>
</tr>
<tr>
<td>221200_at</td>
<td>XPO1</td>
</tr>
<tr>
<td>221512_at</td>
<td>TP51NP1</td>
</tr>
<tr>
<td>202840_s_at</td>
<td>DEDD</td>
</tr>
<tr>
<td>221586_s_at</td>
<td>E2F5</td>
</tr>
<tr>
<td>222623_s_at</td>
<td>ZNF639</td>
</tr>
<tr>
<td>200779_s_at</td>
<td>ATF4</td>
</tr>
<tr>
<td>48825_s_at</td>
<td>ING4</td>
</tr>
<tr>
<td>224617_at</td>
<td>ROD1</td>
</tr>
<tr>
<td>223085_at</td>
<td>RNF19A</td>
</tr>
<tr>
<td>223268_at</td>
<td>C10ORF54</td>
</tr>
<tr>
<td>201473_at</td>
<td>JUNB</td>
</tr>
<tr>
<td>209644_x_at</td>
<td>CDK2NA</td>
</tr>
<tr>
<td>204430_at</td>
<td>NUP1</td>
</tr>
<tr>
<td>202981_x_at</td>
<td>SIAH1</td>
</tr>
<tr>
<td>224642_at</td>
<td>FTYTD1</td>
</tr>
<tr>
<td>203919_at</td>
<td>TCEA2</td>
</tr>
<tr>
<td>205548_s_at</td>
<td>BTG3</td>
</tr>
<tr>
<td>203675_at</td>
<td>DAD1</td>
</tr>
<tr>
<td>209339_at</td>
<td>SIAH2</td>
</tr>
<tr>
<td>229630_s_at</td>
<td>WTAP</td>
</tr>
<tr>
<td>204236_at</td>
<td>FLI1</td>
</tr>
<tr>
<td>227798_at</td>
<td>SMAD1</td>
</tr>
<tr>
<td>206216_s_at</td>
<td>CCR4-NOT</td>
</tr>
<tr>
<td>208762_at</td>
<td>SUMO1</td>
</tr>
<tr>
<td>1538700_at</td>
<td>ZNF620</td>
</tr>
<tr>
<td>206216_s_at</td>
<td>CCR4-NOT</td>
</tr>
<tr>
<td>206245_s_at</td>
<td>IWS1ABP</td>
</tr>
<tr>
<td>209748_at</td>
<td>SPAST</td>
</tr>
<tr>
<td>211296_at</td>
<td>DCP2</td>
</tr>
<tr>
<td>204488_at</td>
<td>HTATIP2</td>
</tr>
<tr>
<td>212855_at</td>
<td>DCUN1D4</td>
</tr>
<tr>
<td>203331_s_at</td>
<td>TGF1</td>
</tr>
<tr>
<td>217741_s_at</td>
<td>ZFAND5</td>
</tr>
<tr>
<td>202582_s_at</td>
<td>RANBP9</td>
</tr>
<tr>
<td>205539_at</td>
<td>ZNF295</td>
</tr>
<tr>
<td>212200_at</td>
<td>ANKLE2</td>
</tr>
<tr>
<td>222815_at</td>
<td>RLMIM</td>
</tr>
<tr>
<td>219351_at</td>
<td>ZNF547</td>
</tr>
<tr>
<td>203746_at</td>
<td>TP53</td>
</tr>
<tr>
<td>204831_at</td>
<td>CDK8</td>
</tr>
<tr>
<td>2058254_s_at</td>
<td>SRPK2</td>
</tr>
<tr>
<td>209674_at</td>
<td>CRY1</td>
</tr>
<tr>
<td>219336_s_at</td>
<td>ASCC1</td>
</tr>
<tr>
<td>210996_s_at</td>
<td>SMAD1</td>
</tr>
<tr>
<td>209586_s_at</td>
<td>PRUN1</td>
</tr>
<tr>
<td>213134_s_at</td>
<td>BTG3</td>
</tr>
<tr>
<td>228992_s_at</td>
<td>MED28</td>
</tr>
<tr>
<td>214714_at</td>
<td>ZNF39</td>
</tr>
<tr>
<td>226032_at</td>
<td>ANKRD11</td>
</tr>
<tr>
<td>1554036_at</td>
<td>ZBTB24</td>
</tr>
<tr>
<td>213743_at</td>
<td>CCNT2</td>
</tr>
<tr>
<td>Gene/Protein</td>
<td>Accession</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td>TP53RK (includes EPABPC4L)</td>
<td>Hs.310458</td>
</tr>
<tr>
<td>TMEM217 (includes LOC401097)</td>
<td>Hs.371067</td>
</tr>
<tr>
<td>229429_x_at</td>
<td>Hs.645966</td>
</tr>
<tr>
<td>219131_at</td>
<td>Hs.522933</td>
</tr>
<tr>
<td>212328_at</td>
<td>Hs.335163</td>
</tr>
<tr>
<td>219093_at</td>
<td>Hs.310458</td>
</tr>
<tr>
<td>219270_at</td>
<td>Hs.405028</td>
</tr>
<tr>
<td>226952_at</td>
<td>Hs.474479</td>
</tr>
<tr>
<td>203077_s_at</td>
<td>Hs.12253</td>
</tr>
<tr>
<td>205299_s_at</td>
<td>Hs.371107</td>
</tr>
<tr>
<td>207338_s_at</td>
<td>Hs.632222</td>
</tr>
<tr>
<td>221598_s_at</td>
<td>Hs.371107</td>
</tr>
<tr>
<td>226117_at</td>
<td>Hs.310640</td>
</tr>
<tr>
<td>225817_at</td>
<td>Hs.148997</td>
</tr>
<tr>
<td>227099_s_at</td>
<td>Hs.714890</td>
</tr>
<tr>
<td>227609_at</td>
<td>Hs.546467</td>
</tr>
<tr>
<td>227625_at</td>
<td>Hs.593171</td>
</tr>
<tr>
<td>227657_at</td>
<td>Hs.659104</td>
</tr>
<tr>
<td>227617_at</td>
<td>Hs.155569</td>
</tr>
<tr>
<td>227625_at</td>
<td>Hs.593171</td>
</tr>
<tr>
<td>227657_at</td>
<td>Hs.659104</td>
</tr>
<tr>
<td>227617_at</td>
<td>Hs.155569</td>
</tr>
<tr>
<td>227625_at</td>
<td>Hs.593171</td>
</tr>
<tr>
<td>227657_at</td>
<td>Hs.659104</td>
</tr>
<tr>
<td>227617_at</td>
<td>Hs.155569</td>
</tr>
<tr>
<td>227625_at</td>
<td>Hs.593171</td>
</tr>
<tr>
<td>227657_at</td>
<td>Hs.659104</td>
</tr>
<tr>
<td>227617_at</td>
<td>Hs.155569</td>
</tr>
<tr>
<td>227625_at</td>
<td>Hs.593171</td>
</tr>
<tr>
<td>227657_at</td>
<td>Hs.659104</td>
</tr>
<tr>
<td>227617_at</td>
<td>Hs.155569</td>
</tr>
<tr>
<td>227625_at</td>
<td>Hs.593171</td>
</tr>
<tr>
<td>227657_at</td>
<td>Hs.659104</td>
</tr>
<tr>
<td>227617_at</td>
<td>Hs.155569</td>
</tr>
<tr>
<td>227625_at</td>
<td>Hs.593171</td>
</tr>
<tr>
<td>227657_at</td>
<td>Hs.659104</td>
</tr>
<tr>
<td>227617_at</td>
<td>Hs.155569</td>
</tr>
<tr>
<td>227625_at</td>
<td>Hs.593171</td>
</tr>
<tr>
<td>227657_at</td>
<td>Hs.659104</td>
</tr>
</tbody>
</table>
6.5 1560916_a_at Hs.408623 DPF19L1 dpy-19-like 1 (C. elegans)
6.4 242418_at Hs.655680 CDRF27 chromosome 2 open reading frame 27
6.3 219602_s_at Hs.585839 FAM188B family with sequence similarity 38, member B
6.2 219023_at Hs.435992 C4ORF16 chromosome 4 open reading frame 16
6.1 223194_s_at Hs.713388 SLC22A23 solute carrier family 22, member 23
6.6 226188_at Hs.372208 HSPC159 galectin-related protein
5.5 242477_at Hs.593830 TTC39B tetrahydrofolate repeat domain 39B
5.4 226135_at Hs.700656 UHRF1P1 UHRF1 binding protein 1
5.3 225003_at Hs.8036 TME205 transmembrane protein 205
5.2 227572_s_at Hs.445386 TME206 transmembrane protein 206
5.1 222893_at Hs.294103 LMBD2 LMB 1 domain containing 2
5.2 232080_at Hs.654742 HECW2 HECT C2 and WW domain containing E3 ubiquitin protein ligase 2
5.1 222001_at Hs.649566 FAM191A2 family with sequence similarity 91, member A2
5.1 219133_s_at Hs.15692 LRC49 leucine rich repeat containing 49
5.1 1568592_at Hs.489254 TRIM69 tripartite motif-containing 69
5.1 232183_at Hs.154706 SERAC1 serine active site containing 1
5.1 242009_at Hs.159430 FNDC3B fibronectin type III domain containing 38
4.9 1555870_at Hs.515688 RNF207 ring finger protein 207
4.8 213555_at Hs.709886 RWDO2A RWD domain containing 2A
4.7 213166_at Hs.211761 C14ORF104 chromosome 14 open reading frame 104
4.7 221756_at Hs.26670 PIK3P1 phosphoinositide-3-kinase interacting protein 1
4.7 238647_at Hs.82098 C14ORF28 chromosome 14 open reading frame 28
4.6 220244_at Hs.591661 LOHC8C2A loss of heterozygosity, 13, chromosomal region 2, gene A
4.6 243042_at Hs.632419 FAM73A family with sequence similarity 73, member A
4.5 38241_at Hs.167741 BTKNA3 butyrophilin, subfamily 3, member A3
4.5 224312_s_at Hs.651206 KLHL28 kelch-like 28 (Drosophila)
4.5 226601_at Hs.272251 KLHL5 kelch-like 5 (Drosophila)
4.5 227334_at Hs.657355 USP54 ubiquitin specific peptidase 54
4.4 204821_at Hs.187741 BTKNA3 butyrophilin, subfamily 3, member A3
4.3 235181_at Hs.204619 CDRF60 chromosome 2 open reading frame 60
4.2 226259_at Hs.650567 EXOC6 exocyst complex component 6
4.2 205298_s_at Hs.373938 BN2A2a butyrophilin, subfamily 2, member A2
4.2 221256_c_at Hs.280511 CCGP1 cell cycle progression 1
4.1 32541_at Hs.650661 PPP3CC protein phosphatase 3 (formerly 2B), catalytic subunit, gamma isoform
4.1 232002_at Hs.42972 ALDH1L2 aldehyde dehydrogenase 1 family, member L2
4.1 220987_s_at Hs.131180 NUAK2 NUAK family, SNF1-like kinase, 2
4.2 231899_at Hs.376289 ZC3H12C zinc finger CCHC-type containing 12C
4.2 228917_at Hs.210586 C13orf31 chromosome 13 open reading frame 31
4.1 229678_at Hs.380738 LOC728431 hypothetical LOC728431
4 228133_at Hs.148741 RNF144B ring finger protein 144B
4 222409_s_at Hs.451590 YPELS ype1-like S (Drosophila)
4 233733_at Hs.561708 LOC401320 hypothetical LOC401320
3.9 225063_s_at Hs.440643 CDBRF33 chromosome 8 open reading frame 83
3.9 1566129_s_at Hs.518099 C3ORF38 chromosome 3 open reading frame 38
3.9 1555872_s_at Hs.380240 MGC21881 hypothetically locus MGC21881
3.9 227272_at Hs.32433 C15ORF52 chromosome 15 open reading frame 52
3.9 226748_at Hs.655657 LOX, putative peptidylglycan-binding, domain containing 2
3.9 217436_x_at Hs.181244 C13orf31 chromosome 13 open reading frame 31
3.9 217436_x_at Hs.181244 C13orf31 chromosome 13 open reading frame 31
3.8 227427_at Hs.233495 PLEKH8A pleckstrin homology domain containing, family A (phosphoinositide binding specific) member B
3.8 220329_s_at Hs.486835 RMDN1 required for mitotic nuclear division 1 homolog (S. cerevisiae)
3.7 220329_s_at Hs.486835 RMDN1 required for mitotic nuclear division 1 homolog (S. cerevisiae)
3.7 224739_at Hs.530381 PUM3 pum-3 oncogene
3.7 225819_at Hs.346410 TBRG1 includes Transforming growth factor beta regulator 1
3.7 213392_at Hs.480217 I0C0K I0 motif containing K
3.7 228149_at Hs.489374 C7ORF60 chromosome 7 open reading frame 60
3.6 226925_at Hs.657897 ACPL2 acid phosphatase-like 2
3.6 227256_at Hs.183817 USP31 ubiquitin specific peptidase 31
3.6 228482_at Hs.164595 CDR4 T cell malignant region transcript 4
3.6 224735_at Hs.2246 CYBASC3 cytochrome b, ascorbate dependent 3
3.6 155748_s_at Hs.221482 SHB Src homology 2 domain containing adaptor protein B
3.6 221511_x_at Hs.285051 CCGP1 cell cycle progression 1
3.6 209020_at Hs.75798 C2ORF111 chromosome 20 open reading frame 111
3.5 224839_s_at Hs.460693 OPT2 glutamic pyruvate transaminase (alanine aminotransferase) 2
3.5 227856_at Hs.34349 C4ORF32 chromosome 4 open reading frame 32

Gene names:
- kelch-like 5 (Drosophila)
- 225819_at Hs.436410
- 3.8
- 220329_s_at Hs.486835
- 227247_at Hs.32433
- 3.9
- 226748_at Hs.655657
- 3.9
- 226001_at Hs.654742
- 233732_at Hs.561708
- PLEKHA8
- HLA-J
- C15ORF52
- C3ORF38
- C13ORF31
- C14ORF28
- ALDH1L2
- GPT2
- C7ORF60
- KLHL5
- KLHL28
- FAM73A
- USP54
- C13ORF31
<table>
<thead>
<tr>
<th>Gene ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC036928</td>
<td>hypothetical protein</td>
</tr>
<tr>
<td>ENY2</td>
<td>enhancer of yellow 2 homolog (Drosophila)</td>
</tr>
<tr>
<td>RNF114</td>
<td>ring finger protein 114</td>
</tr>
<tr>
<td>TIPRL</td>
<td>TIP41, TOR signaling pathway regulator-like (S. cerevisiae)</td>
</tr>
<tr>
<td>MBNL2</td>
<td>muscleblind-like 2 (Drosophila)</td>
</tr>
<tr>
<td>C5ORF28</td>
<td>chromosome 5 open reading frame 28</td>
</tr>
<tr>
<td>TIPRL</td>
<td>TIP41, TOR signaling pathway regulator-like (S. cerevisiae)</td>
</tr>
<tr>
<td>C5ORF26</td>
<td>chromosome 5 open reading frame 26</td>
</tr>
<tr>
<td>SFT2D2</td>
<td>SFT2 domain containing 2</td>
</tr>
<tr>
<td>FNDC3B</td>
<td>fibronectin type III domain containing 3B</td>
</tr>
<tr>
<td>DPY19L1</td>
<td>dpy-19-like 1 (C. elegans)</td>
</tr>
<tr>
<td>C20ORF199</td>
<td>chromosome 20 open reading frame 199</td>
</tr>
<tr>
<td>SMYD4</td>
<td>SET and MYND domain containing 4</td>
</tr>
<tr>
<td>AMMECR1</td>
<td>Alport syndrome, mental retardation, midface hypoplasia and elliptocytosis chromosomal region gene 1</td>
</tr>
<tr>
<td>GTPBP2</td>
<td>GTP binding protein 2</td>
</tr>
<tr>
<td>BTN3A1</td>
<td>transmembrane protein 33</td>
</tr>
<tr>
<td>TMCO3</td>
<td>transmembrane and coiled-coil domains 3</td>
</tr>
<tr>
<td>DPY19L1</td>
<td>dpy-19-like 1 (C. elegans)</td>
</tr>
<tr>
<td>C5ORF24</td>
<td>chromosome 5 open reading frame 24</td>
</tr>
<tr>
<td>TIPRL</td>
<td>TIP41, TOR signaling pathway regulator-like (S. cerevisiae)</td>
</tr>
<tr>
<td>LOC283567</td>
<td>hypothetical protein</td>
</tr>
<tr>
<td>PPP3CC</td>
<td>protein phosphatase 3 (formerly 2B), catalytic subunit, gamma isoform</td>
</tr>
<tr>
<td>TMEM173</td>
<td>transmembrane protein 173</td>
</tr>
<tr>
<td>COBLL1</td>
<td>COBL-like 1</td>
</tr>
<tr>
<td>C5ORF28</td>
<td>chromosome 5 open reading frame 28</td>
</tr>
<tr>
<td>PKG</td>
<td>protein kinase (cAMP-dependent, catalytic) inhibitor gamma</td>
</tr>
<tr>
<td>C5ORF26</td>
<td>chromosome 5 open reading frame 26</td>
</tr>
<tr>
<td>SFT2 domain containing 2</td>
<td></td>
</tr>
<tr>
<td>C2ORF56</td>
<td>hypothetical protein</td>
</tr>
<tr>
<td>BC036928</td>
<td>hypothetical protein</td>
</tr>
<tr>
<td>ALK14247</td>
<td>hypothetical protein</td>
</tr>
<tr>
<td>BC036928</td>
<td>hypothetical protein</td>
</tr>
<tr>
<td>ALK14247</td>
<td>hypothetical protein</td>
</tr>
<tr>
<td>BC036928</td>
<td>hypothetical protein</td>
</tr>
<tr>
<td>ALK14247</td>
<td>hypothetical protein</td>
</tr>
<tr>
<td>BC036928</td>
<td>hypothetical protein</td>
</tr>
<tr>
<td>ALK14247</td>
<td>hypothetical protein</td>
</tr>
<tr>
<td>BC036928</td>
<td>hypothetical protein</td>
</tr>
<tr>
<td>ALK14247</td>
<td>hypothetical protein</td>
</tr>
<tr>
<td>BC036928</td>
<td>hypothetical protein</td>
</tr>
<tr>
<td>ALK14247</td>
<td>hypothetical protein</td>
</tr>
<tr>
<td>BC036928</td>
<td>hypothetical protein</td>
</tr>
<tr>
<td>ALK14247</td>
<td>hypothetical protein</td>
</tr>
<tr>
<td>Gene ID</td>
<td>Accession</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>223192</td>
<td>Hs.403790</td>
</tr>
<tr>
<td>218826</td>
<td>Hs.524014</td>
</tr>
<tr>
<td>224826</td>
<td>Hs.636359</td>
</tr>
<tr>
<td>228024</td>
<td>Hs.343873</td>
</tr>
<tr>
<td>222825</td>
<td>Hs.30532</td>
</tr>
<tr>
<td>200868</td>
<td>Hs.149449</td>
</tr>
<tr>
<td>204656</td>
<td>Hs.521482</td>
</tr>
<tr>
<td>220808</td>
<td>Hs.446325</td>
</tr>
<tr>
<td>221423</td>
<td>Hs.372050</td>
</tr>
<tr>
<td>222751</td>
<td>Hs.706966</td>
</tr>
<tr>
<td>226301</td>
<td>Hs.347144</td>
</tr>
<tr>
<td>219774</td>
<td>Hs.107845</td>
</tr>
<tr>
<td>226496</td>
<td>Hs.634700</td>
</tr>
<tr>
<td>209479</td>
<td>Hs.420139</td>
</tr>
<tr>
<td>220235</td>
<td>Hs.25245</td>
</tr>
<tr>
<td>223860</td>
<td>Hs.227457</td>
</tr>
<tr>
<td>222370</td>
<td>Hs.714832</td>
</tr>
<tr>
<td>225955</td>
<td>Hs.591142</td>
</tr>
<tr>
<td>203695</td>
<td>Hs.520708</td>
</tr>
<tr>
<td>228652</td>
<td>Hs.109540</td>
</tr>
<tr>
<td>224831</td>
<td>Hs.127126</td>
</tr>
<tr>
<td>218647</td>
<td>Hs.301564</td>
</tr>
<tr>
<td>224953</td>
<td>Hs.372050</td>
</tr>
<tr>
<td>218277</td>
<td>Hs.28403</td>
</tr>
<tr>
<td>225439</td>
<td>Hs.558577</td>
</tr>
<tr>
<td>210004</td>
<td>Hs.708038</td>
</tr>
<tr>
<td>213082</td>
<td>Hs.654897</td>
</tr>
<tr>
<td>223349</td>
<td>Hs.293753</td>
</tr>
<tr>
<td>Gene</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>3.5</td>
<td>239012_at</td>
</tr>
<tr>
<td>3.4</td>
<td>235733_at</td>
</tr>
<tr>
<td>3.3</td>
<td>228603_at</td>
</tr>
<tr>
<td>3.2</td>
<td>217604_at</td>
</tr>
<tr>
<td>3</td>
<td>225422_at</td>
</tr>
<tr>
<td>3</td>
<td>223549_at</td>
</tr>
<tr>
<td>2.9</td>
<td>224735_at</td>
</tr>
<tr>
<td>2.9</td>
<td>227585_at</td>
</tr>
<tr>
<td>2.8</td>
<td>235733_at</td>
</tr>
<tr>
<td>2.8</td>
<td>228603_at</td>
</tr>
<tr>
<td>2.7</td>
<td>217604_at</td>
</tr>
<tr>
<td>2.7</td>
<td>225422_at</td>
</tr>
<tr>
<td>2.6</td>
<td>229997_x_at</td>
</tr>
<tr>
<td>2.6</td>
<td>1558236_at</td>
</tr>
<tr>
<td>2.5</td>
<td>226779_at</td>
</tr>
<tr>
<td>2.4</td>
<td>229537_at</td>
</tr>
<tr>
<td>2.4</td>
<td>217625_x_at</td>
</tr>
<tr>
<td>2.3</td>
<td>229355_at</td>
</tr>
<tr>
<td>2.3</td>
<td>209140_x_at</td>
</tr>
<tr>
<td>2.3</td>
<td>226756_at</td>
</tr>
<tr>
<td>2.2</td>
<td>242300_at</td>
</tr>
<tr>
<td>2.2</td>
<td>214078_at</td>
</tr>
<tr>
<td>2.2</td>
<td>238739_at</td>
</tr>
<tr>
<td>2.2</td>
<td>235801_at</td>
</tr>
<tr>
<td>2.1</td>
<td>228312_at</td>
</tr>
<tr>
<td>2.1</td>
<td>227458_at</td>
</tr>
<tr>
<td>2.1</td>
<td>226520_at</td>
</tr>
<tr>
<td>2.1</td>
<td>227585_at</td>
</tr>
<tr>
<td>2.1</td>
<td>225412_at</td>
</tr>
<tr>
<td>2.1</td>
<td>238739_at</td>
</tr>
<tr>
<td>2.1</td>
<td>228520_s_at</td>
</tr>
<tr>
<td>2.1</td>
<td>226756_at</td>
</tr>
<tr>
<td>2.1</td>
<td>226756_at</td>
</tr>
<tr>
<td>2</td>
<td>209652_s_at</td>
</tr>
<tr>
<td>2</td>
<td>221029_s_at</td>
</tr>
<tr>
<td>2</td>
<td>202912_at</td>
</tr>
<tr>
<td>2</td>
<td>228253_at</td>
</tr>
<tr>
<td>2</td>
<td>220794_at</td>
</tr>
<tr>
<td>2</td>
<td>201860_s_at</td>
</tr>
<tr>
<td>2</td>
<td>212573_at</td>
</tr>
<tr>
<td>2</td>
<td>201508_at</td>
</tr>
<tr>
<td>2</td>
<td>211026_s_at</td>
</tr>
<tr>
<td>2</td>
<td>218421_at</td>
</tr>
<tr>
<td>2</td>
<td>1554428_s_at</td>
</tr>
</tbody>
</table>

Extracellular Space

<table>
<thead>
<tr>
<th>Gene</th>
<th>Description</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6</td>
<td>226779_at</td>
<td>Hs.599179</td>
</tr>
<tr>
<td>2.5</td>
<td>1560792_at</td>
<td>Hs.662003</td>
</tr>
<tr>
<td>2.4</td>
<td>229537_at</td>
<td>Hs.635110</td>
</tr>
<tr>
<td>2.4</td>
<td>217625_x_at</td>
<td>Hs.529860</td>
</tr>
<tr>
<td>2.3</td>
<td>229355_at</td>
<td>Hs.595430</td>
</tr>
<tr>
<td>2.3</td>
<td>209140_x_at</td>
<td>Hs.549053</td>
</tr>
<tr>
<td>2.3</td>
<td>226756_at</td>
<td>Hs.714959</td>
</tr>
<tr>
<td>2.2</td>
<td>214078_at</td>
<td>Hs.655757</td>
</tr>
<tr>
<td>2.2</td>
<td>238739_at</td>
<td>Hs.30280</td>
</tr>
<tr>
<td>2.2</td>
<td>228312_at</td>
<td>Hs.25391</td>
</tr>
<tr>
<td>2.2</td>
<td>217625_x_at</td>
<td>Hs.529860</td>
</tr>
<tr>
<td>2.1</td>
<td>226756_at</td>
<td>Hs.668867</td>
</tr>
</tbody>
</table>

Plasma Membrane

<table>
<thead>
<tr>
<th>Gene</th>
<th>Description</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6</td>
<td>226779_at</td>
<td>Hs.599179</td>
</tr>
<tr>
<td>2.5</td>
<td>1560792_at</td>
<td>Hs.662003</td>
</tr>
<tr>
<td>2.4</td>
<td>229537_at</td>
<td>Hs.635110</td>
</tr>
<tr>
<td>2.4</td>
<td>217625_x_at</td>
<td>Hs.529860</td>
</tr>
<tr>
<td>2.3</td>
<td>229355_at</td>
<td>Hs.595430</td>
</tr>
<tr>
<td>2.3</td>
<td>209140_x_at</td>
<td>Hs.549053</td>
</tr>
<tr>
<td>2.3</td>
<td>226756_at</td>
<td>Hs.714959</td>
</tr>
<tr>
<td>2.2</td>
<td>214078_at</td>
<td>Hs.655757</td>
</tr>
<tr>
<td>2.2</td>
<td>238739_at</td>
<td>Hs.30280</td>
</tr>
<tr>
<td>2.2</td>
<td>228312_at</td>
<td>Hs.25391</td>
</tr>
<tr>
<td>2.2</td>
<td>217625_x_at</td>
<td>Hs.529860</td>
</tr>
<tr>
<td>2.1</td>
<td>226756_at</td>
<td>Hs.668867</td>
</tr>
<tr>
<td>2</td>
<td>209652_s_at</td>
<td>Hs.252820</td>
</tr>
<tr>
<td>2</td>
<td>221029_s_at</td>
<td>Hs.306051</td>
</tr>
<tr>
<td>2</td>
<td>202912_at</td>
<td>Hs.491582</td>
</tr>
<tr>
<td>2</td>
<td>228253_at</td>
<td>Hs.591563</td>
</tr>
<tr>
<td>2</td>
<td>220794_at</td>
<td>Hs.98206</td>
</tr>
<tr>
<td>2</td>
<td>201508_at</td>
<td>Hs.462998</td>
</tr>
<tr>
<td>2</td>
<td>212573_at</td>
<td>Hs.167115</td>
</tr>
<tr>
<td>2</td>
<td>201508_at</td>
<td>Hs.462998</td>
</tr>
<tr>
<td>2</td>
<td>212573_at</td>
<td>Hs.167115</td>
</tr>
<tr>
<td>2</td>
<td>201508_at</td>
<td>Hs.462998</td>
</tr>
<tr>
<td>2</td>
<td>212573_at</td>
<td>Hs.167115</td>
</tr>
<tr>
<td>2</td>
<td>201508_at</td>
<td>Hs.462998</td>
</tr>
<tr>
<td>2</td>
<td>212573_at</td>
<td>Hs.167115</td>
</tr>
<tr>
<td>2</td>
<td>201508_at</td>
<td>Hs.462998</td>
</tr>
<tr>
<td>2</td>
<td>212573_at</td>
<td>Hs.167115</td>
</tr>
</tbody>
</table>

Insulin-like growth factor receptor

<table>
<thead>
<tr>
<th>Gene</th>
<th>Description</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6</td>
<td>229442_at</td>
<td>Hs.208701</td>
</tr>
<tr>
<td>2.5</td>
<td>1556316_s_at</td>
<td>Hs.707281</td>
</tr>
<tr>
<td>2.5</td>
<td>1554428_s_at</td>
<td>Hs.68229</td>
</tr>
</tbody>
</table>

Glycosylation Inhibiting Factor

<table>
<thead>
<tr>
<th>Gene</th>
<th>Description</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6</td>
<td>229442_at</td>
<td>Hs.208701</td>
</tr>
<tr>
<td>2.5</td>
<td>1556316_s_at</td>
<td>Hs.707281</td>
</tr>
<tr>
<td>2.5</td>
<td>1554428_s_at</td>
<td>Hs.68229</td>
</tr>
</tbody>
</table>

Plasminogen activator, tissue

<table>
<thead>
<tr>
<th>Gene</th>
<th>Description</th>
<th>Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6</td>
<td>229442_at</td>
<td>Hs.208701</td>
</tr>
<tr>
<td>2.5</td>
<td>1556316_s_at</td>
<td>Hs.707281</td>
</tr>
<tr>
<td>2.5</td>
<td>1554428_s_at</td>
<td>Hs.68229</td>
</tr>
<tr>
<td>Gene ID</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>227411</td>
<td>WTP</td>
<td></td>
</tr>
<tr>
<td>2026466</td>
<td>AXL receptor tyrosine kinase</td>
<td></td>
</tr>
<tr>
<td>210220</td>
<td>FZD2</td>
<td></td>
</tr>
<tr>
<td>203124</td>
<td>EMP1</td>
<td></td>
</tr>
<tr>
<td>207373</td>
<td>PPFBP1</td>
<td></td>
</tr>
<tr>
<td>396_f</td>
<td>EPOR</td>
<td></td>
</tr>
<tr>
<td>226545</td>
<td>CD109</td>
<td></td>
</tr>
<tr>
<td>228660</td>
<td>SEMA4F</td>
<td></td>
</tr>
<tr>
<td>215034</td>
<td>TM4SF1</td>
<td></td>
</tr>
<tr>
<td>203131</td>
<td>PDGFRα</td>
<td></td>
</tr>
<tr>
<td>215050</td>
<td>EPMP2</td>
<td></td>
</tr>
<tr>
<td>227897</td>
<td>RAP2B</td>
<td></td>
</tr>
<tr>
<td>203017</td>
<td>S5ZIP</td>
<td></td>
</tr>
<tr>
<td>219282</td>
<td>TRPV2</td>
<td></td>
</tr>
<tr>
<td>226625</td>
<td>TGFBR3</td>
<td></td>
</tr>
<tr>
<td>226728</td>
<td>SLCC2A1</td>
<td></td>
</tr>
<tr>
<td>204973</td>
<td>EMP2</td>
<td></td>
</tr>
<tr>
<td>201325</td>
<td>EMP1</td>
<td></td>
</tr>
<tr>
<td>202756</td>
<td>GPC1</td>
<td></td>
</tr>
<tr>
<td>201951</td>
<td>ALCAM</td>
<td></td>
</tr>
<tr>
<td>225079</td>
<td>EPMP2</td>
<td></td>
</tr>
<tr>
<td>200623</td>
<td>CALM3</td>
<td></td>
</tr>
<tr>
<td>215783</td>
<td>ALPL</td>
<td></td>
</tr>
<tr>
<td>201952</td>
<td>ALCAM</td>
<td></td>
</tr>
<tr>
<td>215300</td>
<td>PDGFRα</td>
<td></td>
</tr>
<tr>
<td>201137</td>
<td>HLA-DRB1</td>
<td></td>
</tr>
<tr>
<td>230372</td>
<td>HAS2</td>
<td></td>
</tr>
<tr>
<td>214709</td>
<td>SNX1</td>
<td></td>
</tr>
<tr>
<td>218902</td>
<td>MOTC1</td>
<td></td>
</tr>
<tr>
<td>210124</td>
<td>SEMA4F</td>
<td></td>
</tr>
<tr>
<td>203065</td>
<td>CAV1</td>
<td></td>
</tr>
<tr>
<td>225867</td>
<td>VASH</td>
<td></td>
</tr>
<tr>
<td>204451</td>
<td>FZD1</td>
<td></td>
</tr>
<tr>
<td>204462</td>
<td>SLCC1A1</td>
<td></td>
</tr>
<tr>
<td>235518</td>
<td>solute carrier family 8 (sodium/calcium exchanger)</td>
<td></td>
</tr>
<tr>
<td>213000</td>
<td>solute carrier family 8 (sodium/calcium exchanger)</td>
<td></td>
</tr>
<tr>
<td>239217</td>
<td>ABCB3</td>
<td></td>
</tr>
<tr>
<td>225093</td>
<td>UTN</td>
<td></td>
</tr>
<tr>
<td>211235</td>
<td>ATP2B</td>
<td></td>
</tr>
<tr>
<td>212494</td>
<td>TEC1</td>
<td></td>
</tr>
<tr>
<td>202031</td>
<td>SFRP1</td>
<td></td>
</tr>
<tr>
<td>226571</td>
<td>PTPRS</td>
<td></td>
</tr>
<tr>
<td>208749</td>
<td>FLOT1</td>
<td></td>
</tr>
<tr>
<td>210142</td>
<td>FLOT1</td>
<td></td>
</tr>
<tr>
<td>226189</td>
<td>ITGB8</td>
<td></td>
</tr>
<tr>
<td>211600</td>
<td>PTPRO</td>
<td></td>
</tr>
<tr>
<td>201809</td>
<td>ENG</td>
<td></td>
</tr>
<tr>
<td>205532</td>
<td>CDH6</td>
<td></td>
</tr>
<tr>
<td>386711</td>
<td>PLXN1</td>
<td></td>
</tr>
<tr>
<td>213895</td>
<td>EMP1</td>
<td></td>
</tr>
<tr>
<td>219250</td>
<td>FLR3</td>
<td></td>
</tr>
<tr>
<td>209972</td>
<td>JTV1</td>
<td></td>
</tr>
<tr>
<td>203908</td>
<td>SLC4A4</td>
<td></td>
</tr>
<tr>
<td>212298</td>
<td>NR1P1</td>
<td></td>
</tr>
<tr>
<td>209815</td>
<td>PTHC1</td>
<td></td>
</tr>
<tr>
<td>227481</td>
<td>CNKSR3</td>
<td></td>
</tr>
<tr>
<td>223092</td>
<td>ANKH</td>
<td></td>
</tr>
<tr>
<td>222853</td>
<td>FLMR3</td>
<td></td>
</tr>
<tr>
<td>238140</td>
<td>EPHN5</td>
<td></td>
</tr>
<tr>
<td>223093</td>
<td>ANKH</td>
<td></td>
</tr>
<tr>
<td>212990</td>
<td>LYPD1</td>
<td></td>
</tr>
<tr>
<td>211432</td>
<td>TYRO3</td>
<td></td>
</tr>
</tbody>
</table>

Table Notes:
- **Wnts tumor 1 interacting protein**: A protein involved in various signaling pathways.
- **AXL receptor tyrosine kinase**: A key component in the regulation of cell growth and survival.
- **FZD2**: A member of the frizzled family, involved in Wnt signaling.
- **EMP1**: Required for the development of the blood vessel system.
- **PPFBP1**: Involved in the regulation of cell proliferation and migration.
- **EPOR**: Essential for erythropoiesis, the production of red blood cells.
- **CD109**: Plays a role in cell adhesion and signaling.
- **SEMA4F**: Involved in the development of the nervous system.
- **TM4SF1**: Involved in the regulation of cell adhesion and migration.
- **PDGFRα**: A receptor for platelet-derived growth factor, involved in cell proliferation.
- **EPMP2**: Crucial for epithelial membrane functions.
- **RAP2B**: Involved in cell adhesion and signaling.
- **S5ZIP**: Involved in the regulation of cell adhesion and migration.
- **TRPV2**: A member of the transient receptor potential family, involved in ion channel function.
- **TGFBR3**: A key component in the transforming growth factor beta signaling pathway.
- **SLCC2A1**: Soluble carrier family member, involved in the transport of various solutes.
- **CAV1**: A component of caveolae, involved in cell membrane signaling.
- **ALPL**: Involved in the transport of calcium and phosphate.
- **ALCAM**: Activated leukocyte cell adhesion molecule.
- **PDGFRα**: Platelet-derived growth factor receptor, alpha.
- **HLA-DRB1**: Major histocompatibility complex, class II, B beta 1.
- **HAS2**: Hyaluronan synthase 2.
- **SNX1**: Syntaxin 1, involved in vesicle trafficking.
- **MOTC1**: Motif of the CUB domain containing 1.
- **SEMA4F**: Sema domain, immunoglobulin domain (Ig), transmembrane domain (TM) and short cytoplasmic domain, (semaphorin) 4F.
<table>
<thead>
<tr>
<th>Log2 Fold Change</th>
<th>Gene ID</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.9</td>
<td>210662_s_at</td>
<td>Hs.12104</td>
<td>CDH6</td>
</tr>
<tr>
<td>-0.7</td>
<td>212230_at</td>
<td>Hs.70850</td>
<td>PPAP2B</td>
</tr>
<tr>
<td>-0.7</td>
<td>219025_at</td>
<td>Hs.145727</td>
<td>CD248</td>
</tr>
<tr>
<td>-0.6</td>
<td>210510_s_at</td>
<td>Hs.113107</td>
<td>MRP1</td>
</tr>
<tr>
<td>-0.6</td>
<td>205533_s_at</td>
<td>Hs.111704</td>
<td>CD6</td>
</tr>
<tr>
<td>-0.5</td>
<td>204401_at</td>
<td>Hs.10082</td>
<td>KCN4</td>
</tr>
<tr>
<td>-0.5</td>
<td>203835_at</td>
<td>Hs.151044</td>
<td>LRRC32</td>
</tr>
<tr>
<td>-0.5</td>
<td>212226_s_at</td>
<td>Hs.405136</td>
<td>PPAP2B</td>
</tr>
<tr>
<td>-0.4</td>
<td>208161_s_at</td>
<td>Hs.463421</td>
<td>ABC3</td>
</tr>
<tr>
<td>-0.4</td>
<td>230147_at</td>
<td>Hs.42502</td>
<td>FZL2</td>
</tr>
<tr>
<td>-0.4</td>
<td>203869_s_at</td>
<td>Hs.482502</td>
<td>F2R</td>
</tr>
<tr>
<td>-0.3</td>
<td>219789_at</td>
<td>Hs.237028</td>
<td>NPR3</td>
</tr>
<tr>
<td>-0.3</td>
<td>223094_s_at</td>
<td>Hs.156872</td>
<td>ANKH</td>
</tr>
<tr>
<td>-0.3</td>
<td>202478_s_at</td>
<td>Hs.467751</td>
<td>TRIB2</td>
</tr>
<tr>
<td>-0.3</td>
<td>219416_at</td>
<td>Hs.128856</td>
<td>SCARA3</td>
</tr>
<tr>
<td>-0.3</td>
<td>209355_s_at</td>
<td>Hs.405136</td>
<td>PPAP2B</td>
</tr>
<tr>
<td>-0.2</td>
<td>227812_at</td>
<td>Hs.149168</td>
<td>THFRSF19</td>
</tr>
<tr>
<td>-0.2</td>
<td>224762_at</td>
<td>Hs.479384</td>
<td>SERINC2</td>
</tr>
<tr>
<td>-0.2</td>
<td>219790_at</td>
<td>Hs.237028</td>
<td>NPR3</td>
</tr>
<tr>
<td>-0.2</td>
<td>224647_at</td>
<td>Hs.112923</td>
<td>SCUBE3</td>
</tr>
<tr>
<td>-0.2</td>
<td>201650_at</td>
<td>Hs.514174</td>
<td>JUP</td>
</tr>
<tr>
<td>-0.2</td>
<td>205056_s_at</td>
<td>Hs.527295</td>
<td>ENPP1</td>
</tr>
<tr>
<td>-0.2</td>
<td>206631_at</td>
<td>Hs.2096</td>
<td>PTGER2</td>
</tr>
<tr>
<td>-0.1</td>
<td>224321_at</td>
<td>Hs.144513</td>
<td>TMEM22</td>
</tr>
<tr>
<td>-0.1</td>
<td>212558_at</td>
<td>Hs.436944</td>
<td>SPRF1</td>
</tr>
<tr>
<td>-0.1</td>
<td>219937_at</td>
<td>Hs.199814</td>
<td>TRIOH</td>
</tr>
<tr>
<td>-0.1</td>
<td>230290_at</td>
<td>Hs.12923</td>
<td>SLC3A2</td>
</tr>
<tr>
<td>-0.1</td>
<td>202191_s_at</td>
<td>Hs.464422</td>
<td>COLEC12</td>
</tr>
<tr>
<td>-0.1</td>
<td>200836_at</td>
<td>Hs.151307</td>
<td>SLC1A4A</td>
</tr>
<tr>
<td>-0.1</td>
<td>206766_at</td>
<td>Hs.158237</td>
<td>ITGA10</td>
</tr>
<tr>
<td>-0.1</td>
<td>205000_s_at</td>
<td>Hs.60339</td>
<td>NMT2</td>
</tr>
<tr>
<td>-0.1</td>
<td>222547_at</td>
<td>Hs.631550</td>
<td>MAP4K4</td>
</tr>
<tr>
<td>-0.1</td>
<td>210680_s_at</td>
<td>Hs.180408</td>
<td>SLC2A5</td>
</tr>
<tr>
<td>-0.1</td>
<td>221660_at</td>
<td>Hs.247831</td>
<td>MYC2P1L</td>
</tr>
<tr>
<td>-0.1</td>
<td>2152619_s_at</td>
<td>Hs.62180</td>
<td>ANLN</td>
</tr>
<tr>
<td>-0.1</td>
<td>202035_s_at</td>
<td>Hs.499886</td>
<td>ALDH3A2</td>
</tr>
<tr>
<td>-0.1</td>
<td>222154_s_at</td>
<td>Hs.511743</td>
<td>TUBB3</td>
</tr>
<tr>
<td>-0.1</td>
<td>203386_at</td>
<td>Hs.210891</td>
<td>TRC4D1</td>
</tr>
<tr>
<td>-0.1</td>
<td>209190_s_at</td>
<td>Hs.529451</td>
<td>DIAPH1</td>
</tr>
<tr>
<td>-0.1</td>
<td>203756_s_at</td>
<td>Hs.531719</td>
<td>ARHGEF17</td>
</tr>
<tr>
<td>-0.1</td>
<td>228310_at</td>
<td>Hs.69793</td>
<td>ENAM</td>
</tr>
<tr>
<td>-0.1</td>
<td>225665_at</td>
<td>Hs.444451</td>
<td>ZAK</td>
</tr>
<tr>
<td>-0.1</td>
<td>203216_at</td>
<td>Hs.367992</td>
<td>MMP2</td>
</tr>
<tr>
<td>-0.1</td>
<td>202238_s_at</td>
<td>Hs.518450</td>
<td>HTH</td>
</tr>
<tr>
<td>-0.1</td>
<td>222077_s_at</td>
<td>Hs.505469</td>
<td>RACGAP1</td>
</tr>
<tr>
<td>-0.1</td>
<td>208050_s_at</td>
<td>Hs.369829</td>
<td>CASP2</td>
</tr>
<tr>
<td>-0.1</td>
<td>209286_at</td>
<td>Hs.369934</td>
<td>CDC42EP3</td>
</tr>
<tr>
<td>-0.1</td>
<td>218424_at</td>
<td>Hs.647822</td>
<td>STEAP</td>
</tr>
<tr>
<td>-0.1</td>
<td>222942_s_at</td>
<td>Hs.538627</td>
<td>TIA1M2</td>
</tr>
<tr>
<td>-0.1</td>
<td>205125_at</td>
<td>Hs.80776</td>
<td>PLCG1</td>
</tr>
<tr>
<td>-0.1</td>
<td>227847_at</td>
<td>Hs.20820</td>
<td>EPM2AP1</td>
</tr>
<tr>
<td>-0.1</td>
<td>205640_s_at</td>
<td>Hs.528641</td>
<td>ALDH3B1</td>
</tr>
<tr>
<td>-0.1</td>
<td>222068_s_at</td>
<td>Hs.62180</td>
<td>ANLN</td>
</tr>
<tr>
<td>-0.1</td>
<td>207876_s_at</td>
<td>Hs.58414</td>
<td>FLNC</td>
</tr>
<tr>
<td>-0.1</td>
<td>211992_at</td>
<td>Hs.356604</td>
<td>WNK1</td>
</tr>
<tr>
<td>-0.1</td>
<td>206298_at</td>
<td>Hs.655672</td>
<td>ARNAGAP2</td>
</tr>
<tr>
<td>-0.1</td>
<td>212242_at</td>
<td>Hs.75318</td>
<td>TUBA4A</td>
</tr>
<tr>
<td>-0.1</td>
<td>226070_at</td>
<td>Hs.435714</td>
<td>PAK1</td>
</tr>
<tr>
<td>-0.1</td>
<td>32094_at</td>
<td>Hs.118804</td>
<td>CHST3</td>
</tr>
<tr>
<td>-0.1</td>
<td>222463_s_at</td>
<td>Hs.504003</td>
<td>BACE1</td>
</tr>
<tr>
<td>-0.1</td>
<td>225590_at</td>
<td>Hs.301804</td>
<td>SH3RF1</td>
</tr>
<tr>
<td>-0.1</td>
<td>224496_s_at</td>
<td>Hs.369520</td>
<td>SYT12</td>
</tr>
<tr>
<td>-0.1</td>
<td>209834_s_at</td>
<td>Hs.158304</td>
<td>CHST3</td>
</tr>
<tr>
<td>Hs.507362</td>
<td>VISA</td>
<td>virus-induced signaling adapter</td>
<td></td>
</tr>
<tr>
<td>Hs.434866</td>
<td>CDC5</td>
<td>cell division cycle-associated 5</td>
<td></td>
</tr>
<tr>
<td>Hs.648612</td>
<td>PCSK7</td>
<td>proprotein convertase subtilis/in/vernin type 7</td>
<td></td>
</tr>
<tr>
<td>Hs.637017</td>
<td>MAP1B</td>
<td>microtubule-associated protein 1B</td>
<td></td>
</tr>
<tr>
<td>Hs.647024</td>
<td>STX1A</td>
<td>syntaxin 1A (brain)</td>
<td></td>
</tr>
<tr>
<td>Hs.24587</td>
<td>EFS</td>
<td>embryonal Fyn-associated substrate</td>
<td></td>
</tr>
<tr>
<td>Hs.699209</td>
<td>ZNF395</td>
<td>zinc finger protein 395</td>
<td></td>
</tr>
<tr>
<td>Hs.598144</td>
<td>EML4</td>
<td>evisceroderm microtubule-associated protein like 4</td>
<td></td>
</tr>
<tr>
<td>Hs.247460</td>
<td>NNL</td>
<td>neurolysin (metalloproteinase M3 family)</td>
<td></td>
</tr>
<tr>
<td>Hs.500711</td>
<td>DNMBP</td>
<td>dynamin binding protein</td>
<td></td>
</tr>
<tr>
<td>Hs.15154</td>
<td>SRPX</td>
<td>sushi-repeat-containing protein, X-linked</td>
<td></td>
</tr>
<tr>
<td>Hs.3104</td>
<td>KIF14</td>
<td>kinesin family member 14</td>
<td></td>
</tr>
<tr>
<td>Hs.443134</td>
<td>GB2A</td>
<td>glucosidase, beta (bile acid) 2</td>
<td></td>
</tr>
<tr>
<td>Hs.708922</td>
<td>ASMT</td>
<td>aminopeptidase (V3 oxidation state) methyltransferase</td>
<td></td>
</tr>
<tr>
<td>Hs.54216</td>
<td>CDC3</td>
<td>cell division cycle-associated 3</td>
<td></td>
</tr>
<tr>
<td>Hs.16355</td>
<td>MYH10</td>
<td>myosin, heavy chain 10, non-muscle</td>
<td></td>
</tr>
<tr>
<td>Hs.443636</td>
<td>PXN</td>
<td>paxillin</td>
<td></td>
</tr>
<tr>
<td>Hs.637017</td>
<td>MAP1B</td>
<td>microtubule-associated protein 1B</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>ND2</td>
<td>NADH dehydrogenase, subunit 2 (complex I)</td>
<td></td>
</tr>
<tr>
<td>Hs.529793</td>
<td>SDCS</td>
<td>suppressor of cytokine signaling 3</td>
<td></td>
</tr>
<tr>
<td>Hs.457114</td>
<td>PAK1</td>
<td>p21 protein-activated protein kinase 1</td>
<td></td>
</tr>
<tr>
<td>Hs.648394</td>
<td>EIF4B</td>
<td>eukaryotic translation initiation factor 4B</td>
<td></td>
</tr>
<tr>
<td>Hs.119954</td>
<td>CIT</td>
<td>citron (rho-interacting, serine/threonine kinase 21)</td>
<td></td>
</tr>
<tr>
<td>Hs.269560</td>
<td>CDKS5</td>
<td>cyclin-dependent kinase 5</td>
<td></td>
</tr>
<tr>
<td>Hs.371240</td>
<td>AKAP12</td>
<td>A kinase (PKA) anchor protein 12</td>
<td></td>
</tr>
<tr>
<td>Hs.75602</td>
<td>GSTM5</td>
<td>glutathione S-transferase mu 5</td>
<td></td>
</tr>
<tr>
<td>Hs.91002</td>
<td>UBE2C</td>
<td>ubiquitin-conjugating enzyme E2 C</td>
<td></td>
</tr>
<tr>
<td>Hs.471508</td>
<td>IRS1</td>
<td>insulin receptor substrate 1</td>
<td></td>
</tr>
<tr>
<td>Hs.533446</td>
<td>BAALC</td>
<td>brain and acute leukemia, cytoplasmic</td>
<td></td>
</tr>
<tr>
<td>Hs.512639</td>
<td>TK1</td>
<td>thymidine kinase 1, mitochondrial</td>
<td></td>
</tr>
<tr>
<td>Hs.580566</td>
<td>NUDT17</td>
<td>nucleoside diphosphate-linked moiety X-type motif 17</td>
<td></td>
</tr>
<tr>
<td>Hs.527971</td>
<td>NES</td>
<td>nestin</td>
<td></td>
</tr>
<tr>
<td>Hs.446522</td>
<td>RPL14</td>
<td>ribosomal protein L14</td>
<td></td>
</tr>
<tr>
<td>Hs.269560</td>
<td>CDKS5</td>
<td>cyclin-dependent kinase 5</td>
<td></td>
</tr>
<tr>
<td>Hs.503043</td>
<td>CPT1A</td>
<td>carnitine palmitoyltransferase 1A (liver)</td>
<td></td>
</tr>
<tr>
<td>Hs.43908</td>
<td>PKAR2B</td>
<td>protein kinase, CAMP-dependent, regulatory, type II, beta</td>
<td></td>
</tr>
<tr>
<td>Hs.40660</td>
<td>RPS10</td>
<td>ribosomal protein S10</td>
<td></td>
</tr>
<tr>
<td>Hs.515122</td>
<td>TK1</td>
<td>thymidine kinase 1, soluble</td>
<td></td>
</tr>
<tr>
<td>Hs.63560</td>
<td>PDE1C</td>
<td>phosphodiesterase 1C, calmodulin-dependent 70kDa</td>
<td></td>
</tr>
<tr>
<td>Hs.73025</td>
<td>KIF20A</td>
<td>kinesin family member 20A</td>
<td></td>
</tr>
<tr>
<td>Hs.51612</td>
<td>CALR</td>
<td>calreticulin</td>
<td></td>
</tr>
<tr>
<td>Hs.50823</td>
<td>PDCD6</td>
<td>programmed cell death 6</td>
<td></td>
</tr>
<tr>
<td>Hs.194301</td>
<td>MAP1A</td>
<td>microtubule-associated protein 1A</td>
<td></td>
</tr>
<tr>
<td>Hs.52416</td>
<td>CDC3</td>
<td>cell division cycle-associated 3</td>
<td></td>
</tr>
<tr>
<td>Hs.371240</td>
<td>AKAP12</td>
<td>A kinase (PKA) anchor protein 12</td>
<td></td>
</tr>
<tr>
<td>Hs.515122</td>
<td>TK1</td>
<td>thymidine kinase 1, soluble</td>
<td></td>
</tr>
<tr>
<td>Hs.1030</td>
<td>RIN1</td>
<td>Ras and Rab interactor 1</td>
<td></td>
</tr>
<tr>
<td>Hs.89945</td>
<td>PSMB4</td>
<td>proteasome (prosome, macropain) subunit, beta type 4</td>
<td></td>
</tr>
<tr>
<td>Hs.3104</td>
<td>KIF14</td>
<td>kinesin family member 14</td>
<td></td>
</tr>
<tr>
<td>Hs.405662</td>
<td>CRABP2</td>
<td>cellular retinoic acid binding protein 2</td>
<td></td>
</tr>
<tr>
<td>Hs.57871</td>
<td>CARD10</td>
<td>caspase recruitment domain family, member 10</td>
<td></td>
</tr>
<tr>
<td>Hs.368982</td>
<td>CASP2</td>
<td>caspase 2, apoptosis-related cysteine peptidase</td>
<td></td>
</tr>
<tr>
<td>Hs.699998</td>
<td>ZNF395</td>
<td>zinc finger protein 395</td>
<td></td>
</tr>
<tr>
<td>Hs.500711</td>
<td>DNMBP</td>
<td>dynamin binding protein</td>
<td></td>
</tr>
<tr>
<td>Hs.488188</td>
<td>ATP5GVE1</td>
<td>ATPase, H+ transporting, lysosomal 9kDa, V0 subunit 1</td>
<td></td>
</tr>
<tr>
<td>Hs.213470</td>
<td>PSMB7</td>
<td>proteasome (prosome, macropain) subunit, beta type 7</td>
<td></td>
</tr>
<tr>
<td>Hs.515122</td>
<td>CALR</td>
<td>calreticulin</td>
<td></td>
</tr>
<tr>
<td>Hs.522413</td>
<td>DNM1</td>
<td>dynamin 1</td>
<td></td>
</tr>
<tr>
<td>Hs.471508</td>
<td>IR51</td>
<td>insulin receptor substrate 1</td>
<td></td>
</tr>
<tr>
<td>Hs.534612</td>
<td>RAB7B</td>
<td>RAB7, member RAS oncogene family</td>
<td></td>
</tr>
<tr>
<td>Hs.600940</td>
<td>RDH5</td>
<td>retinal dehydrogenase 5 (11-cis/9-cis)</td>
<td></td>
</tr>
</tbody>
</table>
-2.4 204568_at Hs.709252 RAD54L RAD54-like (S. cerevisiae)
-2.4 203046_s_at Hs.118631 TIMELESS timeless homolog (Drosophila)
-2.4 201697_at Hs.202672 DNMT1 DNA (cytosine-5-)methyltransferase 1
-2.4 212691_at Hs.308340 NUP188 nucleoporin 188kDa
-2.4 38158_at Hs.153479 ESPL1 extra spindle pole bodies homolog 1 (S. cerevisiae)
-2.4 213344_s_at Hs.477879 H2AFX H2A histone family, member X
-2.4 221545_s_at Hs.363107 MEDI6 mediator complex subunit 16
-2.4 202355_s_at Hs.654530 NUP214 nucleoporin 214kDa
-2.4 201368_at Hs.503093 ZFP33L2 zinc finger protein 33, C3H type-like 2
-2.4 212784_at Hs.380236 CIC capicua homolog (Drosophila)
-2.5 223133_s_at Hs.197011 MEK6 NIMA (never in mitosis gene a)-related kinase 6
-2.5 203764_at Hs.77695 DLGAP5 discs, large (Drosophila) homolog-associated protein 5
-2.5 209642_at Hs.46649 BUB1 budding uninhibited by benzimidazoles 1 homolog (yeast)
-2.5 209920_at Hs.701977 NRZ2 nuclear receptor subfamily 2, group F, member 2
-2.5 208079_s_at Hs.250822 AURKA aurora kinase A
-2.5 204124_s_at Hs.474217 CDC45L CDC45 cell division cycle 45-like (S. cerevisiae)
-2.5 216952_s_at Hs.513286 LMNB2 lamin B2
-2.5 232231_at Hs.535845 RUNX2 runt-related transcription factor 2
-2.5 201830_s_at Hs.25155 NET1 neurepithelial cell transforming 1
-2.5 222236_x_at Hs.593485 ZNF43 zinc finger protein 43
-2.5 201224_s_at Hs.18192 SRRM1 serine/arginine repetitive matrix 1
-2.5 35671_at Hs.372178 GTF3C1 general transcription factor IIIC, polypeptide 1, alpha 220kDa
-2.5 209713_s_at Hs.226390 RRM2 ribonucleoside reductase M2 polypeptide
-2.7 218039_at Hs.615092 NUSAP1 nucleolar and spindle associated protein 1
-2.7 212126_at Hs.349823 CBX5 chromobox homolog 5 (HP1 alpha homolog, Drosophila)
-2.7 205345_at Hs.591642 BARDO1 BRCA1-associated RING domain 3
-2.7 226388_at Hs.446354 TCEA3 transcription elongation factor A (SIII, 3)
-2.7 220744_s_at Hs.855284 IPT122 intralflagellar transport 122 homolog (Chlamydomonas)
-2.7 209660_s_at Hs.436912 KIFC1 kinesin family member C1
-2.8 208711_s_at Hs.523852 CCND1 cyclin D1
-2.8 229638_at Hs.714419 SIX1 SIX homeobox 1
-2.8 228208_x_at Hs.709873 ZNF354C zinc finger protein 354C
-2.8 224572_s_at Hs.693837 IRF2BP2 interferon regulatory factor 2 binding protein 2
-2.8 203755_at Hs.631697 BUB1B budding uninhibited by benzimidazoles 1 homolog (yeast)
-2.8 218663_at Hs.567576 NAPC (includes E) non-SMC condensin I complex, subunit G
-2.8 208149_x_at Hs.449600 DDX11 DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 (CHL1-like helicase homolog, S. cerevisiae)
-2.8 204092_s_at Hs.290822 AURKA aurora kinase A
-2.8 201663_s_at Hs.58992 SMC4 structural maintenance of chromosomes 4
-2.9 1555653_at Hs.518539 MCM2 minichromosome maintenance component 2
-2.9 218565_at Hs.224137 C9orf114 chromosome 9 open reading frame 114
-2.9 222036_at Hs.460184 MCM4 minichromosome maintenance complex component 4
-2.9 201904_s_at Hs.479663 CTD5P1L CTD (carboxy-terminal domain, RNA polymerase II, polypeptide A) small phosphatase-like
-2.9 203422_at Hs.297493 POLD1 polymerase (DNA directed), delta 1, catalytic subunit 125kDa
-2.9 212949_at Hs.308045 NAPC non-SMC condensin I complex, subunit H
-3.0 201850_at Hs.516155 CAPG capping protein (actin filament), gelsolin-like
-3.0 205240_at Hs.584901 GPM2 G-protein signaling modulator 2 (AGS3-like, C. elegans)
-3.0 202726_s_at Hs.1770 LUG1 ligase I, DNA, ATP-dependent
-3.0 218662_s_at Hs.567567 NAPC (includes E) non-SMC condensin I complex, subunit G
-3.0 206699_s_at Hs.79064 HPAS1 neuronal PAS domain protein 3
-3.0 204159_at Hs.523524 CDKN2C cyclin-dependent kinase inhibitor 2C (p18, inhibits CDK4)
-3.0 209400_at Hs.717465 KIF2C kinesin family member 2C
-3.0 202322_at Hs.371178 GTF3C1 general transcription factor IIIC, polypeptide 1, alpha 220kDa
-3.0 202183_s_at Hs.613351 KIF22 kinesin family member 22
-3.0 204817_at Hs.153479 ESPL1 extra spindle pole bodies homolog 1 (S. cerevisiae)
-3.0 202870_s_at Hs.528471 CDC20 cell division cycle 20 homolog (S. cerevisiae)
-3.0 205333_at Hs.169348 BLM Bloom syndrome
-3.0 205167_s_at Hs.656 CDC25C cell division cycle 25 homolog C (S. pombe)
-3.0 204812_s_at Hs.1973 CCNF cyclin F
-3.0 203276_s_at Hs.89407 LMNB1 lamin B1
-3.0 202107_s_at Hs.474881 MCM2 minichromosome maintenance complex component 2
-3.0 209199_s_at Hs.683994 MEJ2C myocyte enhancer factor 2C
-3.0 212803_at Hs.159223 NAB2 NGF-I A binding protein 2 (EGR1 binding protein 2)
<table>
<thead>
<tr>
<th>Gene ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>203462_at</td>
<td>nuclear receptor subfamily 2, group F, member 2 (Drosophila)</td>
</tr>
<tr>
<td>218315_at</td>
<td>ribosomal protein L27a</td>
</tr>
<tr>
<td>205436_s_at</td>
<td>H2AFX</td>
</tr>
<tr>
<td>218003_s_at</td>
<td>PRKCI</td>
</tr>
<tr>
<td>230909_at</td>
<td>PRKCB1</td>
</tr>
<tr>
<td>213844_at</td>
<td>HOX5A2</td>
</tr>
<tr>
<td>216377_s_at</td>
<td>MCM5</td>
</tr>
<tr>
<td>204131_s_at</td>
<td>breast cancer 1, early onset</td>
</tr>
<tr>
<td>230165_at</td>
<td>SGO1</td>
</tr>
<tr>
<td>229487_at</td>
<td>EF1</td>
</tr>
<tr>
<td>218300_at</td>
<td>F-box only homology 2 domain containing 1</td>
</tr>
<tr>
<td>227242_s_at</td>
<td>E2F3</td>
</tr>
<tr>
<td>204444_at</td>
<td>KRF1</td>
</tr>
<tr>
<td>226665_at</td>
<td>PRKCB1</td>
</tr>
<tr>
<td>211519_s_at</td>
<td>KIF2C</td>
</tr>
<tr>
<td>209200_at</td>
<td>MEF2C</td>
</tr>
<tr>
<td>226661_at</td>
<td>CDCA2</td>
</tr>
<tr>
<td>208025_s_at</td>
<td>HMGA2</td>
</tr>
<tr>
<td>212919_s_at</td>
<td>LDB2</td>
</tr>
<tr>
<td>201774_s_at</td>
<td>NCAPD2</td>
</tr>
<tr>
<td>206074_at</td>
<td>MCM5</td>
</tr>
<tr>
<td>201831_at</td>
<td>ZFP36</td>
</tr>
<tr>
<td>218355_at</td>
<td>KIF4A</td>
</tr>
<tr>
<td>235442_at</td>
<td>SGO1L2</td>
</tr>
<tr>
<td>207069_s_at</td>
<td>SMAD6</td>
</tr>
<tr>
<td>209119_s_at</td>
<td>NRRF2</td>
</tr>
<tr>
<td>213979_s_at</td>
<td>CTBP1</td>
</tr>
<tr>
<td>218950_at</td>
<td>ERCC6</td>
</tr>
<tr>
<td>218585_s_at</td>
<td>DTL</td>
</tr>
<tr>
<td>201292_at</td>
<td>TOP2A</td>
</tr>
<tr>
<td>225655_at</td>
<td>UHRF1</td>
</tr>
<tr>
<td>216979_s_at</td>
<td>NPA51</td>
</tr>
<tr>
<td>219306_at</td>
<td>KIF15</td>
</tr>
<tr>
<td>221922_at</td>
<td>GPM32</td>
</tr>
<tr>
<td>201755_s_at</td>
<td>MCM5</td>
</tr>
<tr>
<td>212919_s_at</td>
<td>LDB2</td>
</tr>
<tr>
<td>21792_s_at</td>
<td>CDK25C</td>
</tr>
<tr>
<td>209918_s_at</td>
<td>ASPM</td>
</tr>
<tr>
<td>219729_at</td>
<td>PRKX2</td>
</tr>
<tr>
<td>227243_s_at</td>
<td>EF8</td>
</tr>
<tr>
<td>207147_at</td>
<td>DLX2</td>
</tr>
<tr>
<td>202580_s_at</td>
<td>FOXM1</td>
</tr>
<tr>
<td>227478_at</td>
<td>SETBP1</td>
</tr>
<tr>
<td>221520_s_at</td>
<td>CDCA8</td>
</tr>
<tr>
<td>209172_s_at</td>
<td>CENPF</td>
</tr>
<tr>
<td>207828_s_at</td>
<td>CENPF</td>
</tr>
<tr>
<td>212033_at</td>
<td>MKI67</td>
</tr>
<tr>
<td>220085_at</td>
<td>HELLS</td>
</tr>
<tr>
<td>222027_at</td>
<td>NUCKS1</td>
</tr>
<tr>
<td>212044_s_at</td>
<td>RPL27A (includes E ribosomal protein L27a)</td>
</tr>
<tr>
<td>208323_at</td>
<td>CASC5</td>
</tr>
<tr>
<td>1553015_s_at</td>
<td>RCLO4</td>
</tr>
<tr>
<td>227404_s_at</td>
<td>EGR1</td>
</tr>
<tr>
<td>221911_at</td>
<td>ETV1</td>
</tr>
<tr>
<td>209122_s_at</td>
<td>NRRF2</td>
</tr>
<tr>
<td>227719_at</td>
<td>SMAD9</td>
</tr>
<tr>
<td>215073_s_at</td>
<td>NRRF2</td>
</tr>
<tr>
<td>201306_s_at</td>
<td>ZFP36L2</td>
</tr>
<tr>
<td>201694_s_at</td>
<td>EGR1</td>
</tr>
<tr>
<td>208937_s_at</td>
<td>ID1</td>
</tr>
<tr>
<td>206481_s_at</td>
<td>LIM domain binding 2</td>
</tr>
<tr>
<td>212021_s_at</td>
<td>MKI67</td>
</tr>
<tr>
<td>DSEL</td>
<td>-9.2</td>
</tr>
<tr>
<td>-11</td>
<td>229092_at</td>
</tr>
<tr>
<td>-11.1</td>
<td>234464_s_at</td>
</tr>
<tr>
<td>-20.6</td>
<td>228989_at</td>
</tr>
<tr>
<td>-1.9</td>
<td>218462_at</td>
</tr>
<tr>
<td>-2</td>
<td>221863_at</td>
</tr>
<tr>
<td>-2</td>
<td>228837_at</td>
</tr>
<tr>
<td>-2</td>
<td>212098_at</td>
</tr>
<tr>
<td>-2</td>
<td>227490_at</td>
</tr>
<tr>
<td>-2</td>
<td>223482_at</td>
</tr>
<tr>
<td>-2.1</td>
<td>36030_at</td>
</tr>
<tr>
<td>-2.1</td>
<td>63825_at</td>
</tr>
<tr>
<td>-2.1</td>
<td>221335_s_at</td>
</tr>
<tr>
<td>-2.1</td>
<td>227188_at</td>
</tr>
<tr>
<td>-2.1</td>
<td>219063_at</td>
</tr>
<tr>
<td>-2.2</td>
<td>225202_at</td>
</tr>
<tr>
<td>-2.2</td>
<td>212906_at</td>
</tr>
<tr>
<td>-2.2</td>
<td>223276_at</td>
</tr>
<tr>
<td>-2.2</td>
<td>202389_s_at</td>
</tr>
<tr>
<td>-2.2</td>
<td>214273_s_at</td>
</tr>
<tr>
<td>-2.2</td>
<td>205631_at</td>
</tr>
<tr>
<td>-2.2</td>
<td>213234_at</td>
</tr>
<tr>
<td>-2.2</td>
<td>213835_at</td>
</tr>
<tr>
<td>-2.2</td>
<td>226416_at</td>
</tr>
<tr>
<td>-2.2</td>
<td>226118_at</td>
</tr>
<tr>
<td>-2.2</td>
<td>223348_s_at</td>
</tr>
<tr>
<td>-2.3</td>
<td>232235_at</td>
</tr>
<tr>
<td>-2.3</td>
<td>230972_at</td>
</tr>
<tr>
<td>-2.3</td>
<td>206180_at</td>
</tr>
<tr>
<td>-2.3</td>
<td>223019_at</td>
</tr>
<tr>
<td>-2.3</td>
<td>212830_at</td>
</tr>
<tr>
<td>-2.3</td>
<td>228654_at</td>
</tr>
<tr>
<td>-2.3</td>
<td>221290_s_at</td>
</tr>
<tr>
<td>-2.3</td>
<td>231411_s_at</td>
</tr>
<tr>
<td>-2.3</td>
<td>226559_at</td>
</tr>
<tr>
<td>-2.4</td>
<td>217275_at</td>
</tr>
<tr>
<td>-2.4</td>
<td>214672_at</td>
</tr>
<tr>
<td>-2.4</td>
<td>202975_s_at</td>
</tr>
<tr>
<td>-2.4</td>
<td>36888_at</td>
</tr>
<tr>
<td>-2.4</td>
<td>202976_s_at</td>
</tr>
<tr>
<td>-2.4</td>
<td>226456_at</td>
</tr>
<tr>
<td>-2.5</td>
<td>232826_s_at</td>
</tr>
<tr>
<td>-2.5</td>
<td>218843_at</td>
</tr>
<tr>
<td>-2.5</td>
<td>235092_at</td>
</tr>
<tr>
<td>-2.5</td>
<td>224932_at</td>
</tr>
<tr>
<td>-2.5</td>
<td>226485_at</td>
</tr>
<tr>
<td>-2.6</td>
<td>218717_s_at</td>
</tr>
<tr>
<td>-2.6</td>
<td>234994_at</td>
</tr>
<tr>
<td>-2.6</td>
<td>213862_s_at</td>
</tr>
<tr>
<td>-2.7</td>
<td>221965_s_at</td>
</tr>
<tr>
<td>-2.7</td>
<td>213422_s_at</td>
</tr>
<tr>
<td>-2.7</td>
<td>224880_at</td>
</tr>
<tr>
<td>-2.7</td>
<td>220233_at</td>
</tr>
<tr>
<td>-2.7</td>
<td>227444_at</td>
</tr>
<tr>
<td>-2.7</td>
<td>221191_s_at</td>
</tr>
<tr>
<td>-2.7</td>
<td>225337_at</td>
</tr>
<tr>
<td>-2.7</td>
<td>224771_at</td>
</tr>
<tr>
<td>-2.7</td>
<td>225533_at</td>
</tr>
<tr>
<td>-2.8</td>
<td>204094_s_at</td>
</tr>
<tr>
<td>-2.8</td>
<td>228836_at</td>
</tr>
<tr>
<td>-2.8</td>
<td>214772_at</td>
</tr>
<tr>
<td>-2.8</td>
<td>201813_s_at</td>
</tr>
<tr>
<td>-2.9</td>
<td>225337_at</td>
</tr>
</tbody>
</table>
-2.9 22274_5_at Hs.656025 KIAA1244 KIAA1244
-3.0 202214_s_at Hs.109214 CUL4B culin 4B
-3.0 203255_at Hs.352677 FBXO11 F-box protein 11
-3.0 201895_s_at Hs.405929 PSRC1 protocadherin-rich coiled-coil 1
-3.1 2160292_at Hs.152944 VWA5A von Willebrand factor A domain containing 5A
-3.1 23875_6_at Hs.20575 GAS2L3 growth arrest-specific 2 like 3
-3.3 226287_at Hs.144373 C20orf34 coiled-coil domain containing 34
-3.3 212736_at Hs.466005 C16orf45 chromosome 16 open reading frame 45
-3.3 225687_at Hs.427216 FAM83D family with sequence similarity 83, member D
-3.3 235709_at Hs.20575 GAS2L3 growth arrest-specific 2 like 3
-3.3 222039_at Hs.139094 KIF18B (includes Ekinase family member 188
-3.4 217734_s_at Hs.654815 WDR6 (includes EG W repeat domain 6
-3.4 236834_at Hs.302287 SCD2 sech family domain containing 2
-3.5 222728_at Hs.516777 SHHBP4 S-H junction binding protein 4
-3.5 226923_at Hs.302287 SCD2 sech family domain containing 2
-3.6 222173_s_at Hs.371016 TBCD2 TBC domain family, member 2
-3.6 213118_at Hs.716024 ANKR3D5 ankyrin repeat domain 35
-3.6 212069_s_at Hs.495349 BAT2L HLA-B associated transcript 2-like
-3.8 230020_at Hs.195403 DOCK5 dedicator of cytokinesis 5
-3.8 216048_s_at Hs.445030 RHOBTB3 Rho-related BTB domain containing 3
-3.8 229058_at Hs.98052 C9orf109 chromosome 9 open reading frame 109
-3.8 233548_at Hs.502266 C11orf41 chromosome 11 open reading frame 41
-3.9 2431920_s_at Hs.579108 ARH1T1A ADP-ribosylation factor-like 17 pseudogene 1
-3.9 213273_at Hs.211308 ODZ4 (includes EG ozd, odd Ozten-m homolog 4 (Drosophila
-4.1 213273_at Hs.193133 SASH1 SAM and SH3 domain containing 1
-4.1 227058_at Hs.614612 C13orf33 chromosome 13 open reading frame 33
-4.1 221815_at Hs.122337 ABHD2 abhydrolase domain containing 2
-4.2 228117_s_at Hs.188781 PLEKHG4 pleckstrin homology domain containing, family G (with RhGef domain) member 4
-4.6 218888_at Hs.448406 NET2 neuropilin (NRP) and bcl-2 (TLL) like 2
-4.7 156085_at Hs.351856 C10orf136 chromosome 10 open reading frame 136
-4.8 221603_at Hs.405929 FBXO16 F-box protein 16
-4.9 219921_s_at Hs.195403 DOCK5 dedicator of cytokinesis 5
-4.9 230263_at Hs.195403 DOCK5 dedicator of cytokinesis 5
-5.1 213007_at Hs.511126 FANCi Fanconi anemia, complementation group I
-5.3 40472_at Hs.358214 LPCAT4 lysophosphatidylcholine acyltransferase 4
-5.3 155576_at Hs.589057 KRTAP2-1 keratin associated protein 2-1
-5.8 209789_at Hs.551213 CORO2B coro2, actin binding protein, 2B
-6.0 229442_at Hs.612573 HGC 16001 ribosomal protein L23a pseudogene 42
-6.0 235332_at Hs.534499 KRTAP2-5 keratin associated protein 1-5
-6.1 213008_at Hs.511126 FANCi Fanconi anemia, complementation group I
-6.1 225767_at Hs.370699 LOC 284801 hypothetical protein LOC 284801
-6.1 227744_at Hs.444406 NET2 neuropilin (NRP) and bcl-2 (TLL) like 2
-6.2 212793_at Hs.712560 DAAM2 dishevelled-associated activator of morphogenesis 2
-6.3 219278_s_at Hs.154694 MAPK6 mitogen-activated protein kinase kinase 6
-6.3 219054_at Hs.13928 C5orf23 chromosome 5 open reading frame 23
-6.7 205376_at Hs.658245 INPP4B inositol polyphosphate-4-phosphatase, type II, 105kDa
-6.9 226652_at Hs.529857 TRPS1 immediate early response 5-like
-9.1 1557180_at Hs.172982 C11orf87 chromosome 11 open reading frame 87
-10.1 226014_at Hs.518930 C6orf62 chromosome 6 open reading frame 62
-10.3 213757_s_at Hs.519930 LOC 100133577 hypothetical protein LOC 100133577
-13.5 224346_at Hs.529857 TRPS1 immediate early response 5-like
-17.2 1557181_at Hs.172982 C11orf87 chromosome 11 open reading frame 87
-19.1 229938_s_at Hs.591945 IGAP3 IG motif containing GTPase activating protein 3
-27.6 23632_at Hs.172982 C11orf87 chromosome 11 open reading frame 87
-51.9 230799_at Hs.100143459 similar to HCG198771B
-7.2 245147_at Hs.657250
-2.1 225906_at Hs.594823
-2.1 227545_at Hs.54809
-2.1 229313_s_at Hs.712089
-2.2 156238_at Hs.408461
-2.2 221821_at Hs.28832
-2.2 235363_at Hs.28360
-2.2 229465_s_at Hs.644834
<table>
<thead>
<tr>
<th></th>
<th>Gene ID</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2.2</td>
<td>236632_at</td>
<td>Hs.632595</td>
</tr>
<tr>
<td>-2.3</td>
<td>1567913_at</td>
<td>Hs.621508</td>
</tr>
<tr>
<td>-2.3</td>
<td>230655_at</td>
<td>Hs.15422</td>
</tr>
<tr>
<td>-2.3</td>
<td>230740_at</td>
<td>Hs.648929</td>
</tr>
<tr>
<td>-2.4</td>
<td>229544_at</td>
<td>Hs.167087 // Hs.621424</td>
</tr>
<tr>
<td>-2.4</td>
<td>228309_at</td>
<td>---</td>
</tr>
<tr>
<td>-2.4</td>
<td>235609_at</td>
<td>Hs.598759</td>
</tr>
<tr>
<td>-2.4</td>
<td>226107_at</td>
<td>Hs.239666 // Hs.601347</td>
</tr>
<tr>
<td>-2.4</td>
<td>231431_s_at</td>
<td>Hs.530791</td>
</tr>
<tr>
<td>-2.5</td>
<td>224284_x_at</td>
<td>---</td>
</tr>
<tr>
<td>-2.5</td>
<td>213705_at</td>
<td>Hs.592466</td>
</tr>
<tr>
<td>-2.5</td>
<td>227432_s_at</td>
<td>Hs.705877</td>
</tr>
<tr>
<td>-2.6</td>
<td>234225_at</td>
<td>---</td>
</tr>
<tr>
<td>-2.6</td>
<td>2358250_s_at</td>
<td>Hs.23554</td>
</tr>
<tr>
<td>-2.6</td>
<td>216246_at</td>
<td>---</td>
</tr>
<tr>
<td>-2.7</td>
<td>208120_x_at</td>
<td>---</td>
</tr>
<tr>
<td>-2.8</td>
<td>1563431_x_at</td>
<td>Hs.713288</td>
</tr>
<tr>
<td>-2.8</td>
<td>233088_at</td>
<td>Hs.666722</td>
</tr>
<tr>
<td>-2.9</td>
<td>213048_s_at</td>
<td>---</td>
</tr>
<tr>
<td>-2.9</td>
<td>228273_at</td>
<td>Hs.633096</td>
</tr>
<tr>
<td>-3</td>
<td>228120_at</td>
<td>Hs.656677</td>
</tr>
<tr>
<td>-3</td>
<td>223797_at</td>
<td>Hs.655270</td>
</tr>
<tr>
<td>-3.1</td>
<td>241617_x_at</td>
<td>---</td>
</tr>
<tr>
<td>-3.2</td>
<td>211454_x_at</td>
<td>---</td>
</tr>
<tr>
<td>-3.3</td>
<td>212957_at</td>
<td>Hs.593218</td>
</tr>
<tr>
<td>-3.4</td>
<td>239474_at</td>
<td>Hs.664818</td>
</tr>
<tr>
<td>-3.5</td>
<td>228159_at</td>
<td>Hs.40506</td>
</tr>
<tr>
<td>-3.5</td>
<td>214395_x_at</td>
<td>Hs.704553</td>
</tr>
<tr>
<td>-4.7</td>
<td>229490_s_at</td>
<td>Hs.133294</td>
</tr>
<tr>
<td>-4.8</td>
<td>221990_s_at</td>
<td>---</td>
</tr>
<tr>
<td>-5.5</td>
<td>216554_s_at</td>
<td>---</td>
</tr>
<tr>
<td>-5.8</td>
<td>213813_x_at</td>
<td>---</td>
</tr>
<tr>
<td>-6</td>
<td>230345_at</td>
<td>Hs.170843</td>
</tr>
<tr>
<td>-6.3</td>
<td>239202_at</td>
<td>Hs.702338</td>
</tr>
<tr>
<td>-6.8</td>
<td>222968_at</td>
<td>---</td>
</tr>
<tr>
<td>-6.9</td>
<td>231387_at</td>
<td>Hs.712966</td>
</tr>
<tr>
<td>-7.4</td>
<td>244013_at</td>
<td>Hs.124976</td>
</tr>
<tr>
<td>-8</td>
<td>242890_at</td>
<td>Hs.658935</td>
</tr>
<tr>
<td>-8.4</td>
<td>230546_at</td>
<td>Hs.176376</td>
</tr>
<tr>
<td>-13.2</td>
<td>230750_at</td>
<td>Hs.594199</td>
</tr>
<tr>
<td>-26.3</td>
<td>229004_at</td>
<td>Hs.534221</td>
</tr>
</tbody>
</table>
Table S5. Common genes of the FL-MSC and TNF/LT signatures

Red lines indicates genes that are overexpressed in FL-MSC and HD-MSC + TNF/LT and green line indicates genes that are underexpressed in FL-MSC and HD-MSC + TNF/LT

The fold changes indicate either a ratio of mean expression (HD-MSC + TNF/LT versus HD-MSC) or a ratio of median expression (FL-MSC versus HD-MSC)

<table>
<thead>
<tr>
<th>ProbeSet ID</th>
<th>Gene Symbol</th>
<th>Gene Title</th>
<th>UniGene ID</th>
<th>Fold change HD-MSC+TNF/LT versus HD-MSC</th>
<th>Fold change FL-MSC versus HD-MSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>216598_s_at</td>
<td>CCL2</td>
<td>chemokine (C-C motif) ligand 2</td>
<td>Hs.303649</td>
<td>54.7</td>
<td>2.2</td>
</tr>
<tr>
<td>226181_at</td>
<td>TUBE1</td>
<td>tubulin. epsilon 1</td>
<td>Hs.34851</td>
<td>29.4</td>
<td>2.7</td>
</tr>
<tr>
<td>236313_at</td>
<td>CDKN2B</td>
<td>cyclin-dependent kinase inhibitor 2B (p15. inhibits CDK4)</td>
<td>Hs.72901</td>
<td>27.2</td>
<td>4.7</td>
</tr>
<tr>
<td>204493_at</td>
<td>BID</td>
<td>BH3 interacting domain death agonist</td>
<td>Hs.791054</td>
<td>20.1</td>
<td>2.5</td>
</tr>
<tr>
<td>213142_x_at</td>
<td>PION</td>
<td>pigeon homolog (Drosophila)</td>
<td>Hs.186649</td>
<td>19.8</td>
<td>2.1</td>
</tr>
<tr>
<td>226533_at</td>
<td>HINT3</td>
<td>histidine triad nucleotide binding protein 3</td>
<td>Hs.72325</td>
<td>18.5</td>
<td>2.6</td>
</tr>
<tr>
<td>202660_at</td>
<td>ITPR2</td>
<td>inositol 1.4.5-triphosphate receptor. type 2</td>
<td>Hs.512235</td>
<td>15.2</td>
<td>2.1</td>
</tr>
<tr>
<td>209277_at</td>
<td>TFP12</td>
<td>tissue factor pathway inhibitor 2</td>
<td>Hs.438231</td>
<td>10.8</td>
<td>3.7</td>
</tr>
<tr>
<td>227020_at</td>
<td>YPEL2</td>
<td>yippee-like 2 (Drosophila)</td>
<td>Hs.463613</td>
<td>9.3</td>
<td>2.2</td>
</tr>
<tr>
<td>208868_s_at</td>
<td>GABARAPL1</td>
<td>GABA(A) receptor-associated protein like 1</td>
<td>Hs.524250</td>
<td>9.2</td>
<td>2.3</td>
</tr>
<tr>
<td>1553106_at</td>
<td>C5orf24</td>
<td>chromosome 5 open reading frame 24</td>
<td>Hs.406549</td>
<td>8.1</td>
<td>2.9</td>
</tr>
<tr>
<td>224848_at</td>
<td>CDK6</td>
<td>cyclin-dependent kinase 6</td>
<td>Hs.119882</td>
<td>7.7</td>
<td>2.0</td>
</tr>
<tr>
<td>205174_s_at</td>
<td>QPCT</td>
<td>glutaminyl-peptide cyclotransferase</td>
<td>Hs.79033</td>
<td>6.4</td>
<td>3.0</td>
</tr>
<tr>
<td>211596_s_at</td>
<td>LRIG1</td>
<td>leucine-rich repeats and immunoglobulin-like domains 1</td>
<td>Hs.518055</td>
<td>6.1</td>
<td>2.1</td>
</tr>
<tr>
<td>205139_s_at</td>
<td>UST</td>
<td>uronyl-2-sulfotransferase</td>
<td>Hs.657370</td>
<td>5.9</td>
<td>3.0</td>
</tr>
<tr>
<td>224847_at</td>
<td>CDK6</td>
<td>cyclin-dependent kinase 6</td>
<td>Hs.119882</td>
<td>5.7</td>
<td>2.1</td>
</tr>
<tr>
<td>40148_at</td>
<td>APBB2</td>
<td>amyloid beta (A4) precursor protein-binding. family B. member 2</td>
<td>Hs.479602</td>
<td>5.3</td>
<td>2.2</td>
</tr>
<tr>
<td>232080_at</td>
<td>HECW2</td>
<td>HECT. C2 and WW domain containing E3 ubiquitin protein ligase 2</td>
<td>Hs.654742</td>
<td>5.2</td>
<td>3.0</td>
</tr>
<tr>
<td>228772_at</td>
<td>HNMT</td>
<td>histamine N-methyltransferase</td>
<td>Hs.42151</td>
<td>5.0</td>
<td>3.1</td>
</tr>
<tr>
<td>222636_at</td>
<td>MED28</td>
<td>mediator complex subunit 28</td>
<td>Hs.430475</td>
<td>4.8</td>
<td>2.0</td>
</tr>
<tr>
<td>209278_s_at</td>
<td>TFP12</td>
<td>tissue factor pathway inhibitor 2</td>
<td>Hs.438231</td>
<td>4.7</td>
<td>2.6</td>
</tr>
<tr>
<td>243042_at</td>
<td>FAM73A</td>
<td>family with sequence similarity 73. member A</td>
<td>Hs.632419</td>
<td>4.6</td>
<td>2.5</td>
</tr>
<tr>
<td>231899_at</td>
<td>ZC3H12C</td>
<td>zinc finger CCCH-type containing 12C</td>
<td>Hs.376289</td>
<td>4.2</td>
<td>2.3</td>
</tr>
<tr>
<td>1569129_s_at</td>
<td>C3orf38</td>
<td>chromosome 3 open reading frame 38</td>
<td>Hs.518099</td>
<td>3.9</td>
<td>2.7</td>
</tr>
<tr>
<td>223263_s_at</td>
<td>FGFR1OP2</td>
<td>FGFR1 oncogene partner 2</td>
<td>Hs.591162</td>
<td>3.9</td>
<td>2.1</td>
</tr>
<tr>
<td>227247_at</td>
<td>PLEKHA8</td>
<td>pleckstrin homology domain containing. family A (phosphoinositide binding specif</td>
<td>Hs.233495</td>
<td>3.8</td>
<td>2.1</td>
</tr>
<tr>
<td>220329_s_at</td>
<td>RMND1</td>
<td>required for meiotic nuclear division 1 homolog (S. cerevisiae)</td>
<td>Hs.486835</td>
<td>3.8</td>
<td>2.3</td>
</tr>
<tr>
<td>204396_s_at</td>
<td>GRK5</td>
<td>G protein-coupled receptor kinase 5</td>
<td>Hs.524625</td>
<td>3.8</td>
<td>2.3</td>
</tr>
<tr>
<td>1554557_at</td>
<td>ATP11B</td>
<td>ATPase. class VI. type 11B</td>
<td>Hs.478429</td>
<td>3.7</td>
<td>3.3</td>
</tr>
<tr>
<td>216250_s_at</td>
<td>LPXN</td>
<td>leupaxin</td>
<td>Hs.125474</td>
<td>3.7</td>
<td>2.8</td>
</tr>
<tr>
<td>222846_at</td>
<td>RAB8B</td>
<td>RAB8B. member RAS oncogene family</td>
<td>Hs.389733</td>
<td>3.6</td>
<td>2.5</td>
</tr>
<tr>
<td>Gene ID</td>
<td>Description</td>
<td>Species ID</td>
<td>Ratio</td>
<td>Fold</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------------</td>
<td>-------</td>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>34408_at</td>
<td>RTN2 reticulon 2</td>
<td>Hs.47517</td>
<td>3.5</td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td>232060_at</td>
<td>ROR1 receptor tyrosine kinase-like orphan receptor 1</td>
<td>Hs.65491</td>
<td>3.5</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>216593_s_at</td>
<td>PIGC phosphatidylinositol glycan anchor biosynthesis. class C</td>
<td>Hs.188456</td>
<td>3.5</td>
<td>2.4</td>
<td></td>
</tr>
<tr>
<td>225922_at</td>
<td>FNIP2 folliculin interacting protein 2</td>
<td>Hs.709500</td>
<td>3.4</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>228239_at</td>
<td>FAM165B family with sequence similarity 165. member B</td>
<td>Hs.656195</td>
<td>3.3</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>229317_at</td>
<td>KPN A5 karyopherin alpha 5 (importin alpha 6)</td>
<td>Hs.182971</td>
<td>3.3</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>224341_x_at</td>
<td>TLR4 toll-like receptor 4</td>
<td>Hs.174312</td>
<td>3.2</td>
<td>3.1</td>
<td></td>
</tr>
<tr>
<td>33322_i_at</td>
<td>SFN stratifin</td>
<td>Hs.523718</td>
<td>3.2</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>203347_s_at</td>
<td>MTF2 metal response element binding transcription factor 2</td>
<td>Hs.31016</td>
<td>3</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>52285_f_at</td>
<td>CEP76 centrosomal protein 76kDa</td>
<td>Hs.236940</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>226520_at</td>
<td>--- ---</td>
<td>Hs.658311</td>
<td>2.9</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>235103_at</td>
<td>MAN2A1 mannosidase. alpha. class 2A. member 1</td>
<td>Hs.432822</td>
<td>2.8</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>213750_at</td>
<td>RSL1D1 ribosomal L1 domain containing 1</td>
<td>Hs.401842</td>
<td>2.8</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>220241_at</td>
<td>TMCO3 transmembrane and coiled-coil domains 3</td>
<td>Hs.317593</td>
<td>2.7</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>1558236_at</td>
<td>--- ---</td>
<td>Hs.369451</td>
<td>2.7</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>220253_s_at</td>
<td>LRP12 low density lipoprotein-related protein 12</td>
<td>Hs.654804</td>
<td>2.6</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>215707_s_at</td>
<td>PRNP prion protein</td>
<td>Hs.472010</td>
<td>2.5</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>225956_at</td>
<td>CSorf41 chromosome 5 open reading frame 41</td>
<td>Hs.484195</td>
<td>2.5</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>223178_at</td>
<td>NT5DC1 5' nucleotidase domain containing 1</td>
<td>Hs.520341</td>
<td>2.5</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>1558254_s_at</td>
<td>SRPK2 SFRS protein kinase 2</td>
<td>Hs.285197</td>
<td>2.3</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>218748_s_at</td>
<td>EXOC5 exocyst complex component 5</td>
<td>Hs.655158</td>
<td>2.3</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>241933_at</td>
<td>QRSL1 Glutamyl-tRNA synthase (glutamine-hydrolyzing)-like 1</td>
<td>Hs.406917</td>
<td>2.2</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>238860_at</td>
<td>C6orf130 chromosome 6 open reading frame 130</td>
<td>Hs.227457</td>
<td>2.1</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>221350_at</td>
<td>HOXC8 homeobox C8</td>
<td>Hs.664500</td>
<td>-2</td>
<td>-2.4</td>
<td></td>
</tr>
<tr>
<td>221660_at</td>
<td>MYLC2PL myosin light chain 2. precursor lymphocyte-specific</td>
<td>Hs.247831</td>
<td>-2.1</td>
<td>-2.1</td>
<td></td>
</tr>
<tr>
<td>1554428_s_at</td>
<td>NLGN2 neurogin 2</td>
<td>Hs.26229</td>
<td>-2.1</td>
<td>-2.4</td>
<td></td>
</tr>
<tr>
<td>209057_x_at</td>
<td>CDC5L CDC5 cell division cycle 5-like (S. pombe)</td>
<td>Hs.485471</td>
<td>-2.3</td>
<td>-2.1</td>
<td></td>
</tr>
<tr>
<td>1567913_at</td>
<td>--- ---</td>
<td>Hs.621508</td>
<td>-2.3</td>
<td>-2.9</td>
<td></td>
</tr>
<tr>
<td>228312_at</td>
<td>PI16 peptidase inhibitor 16</td>
<td>Hs.25391</td>
<td>-2.3</td>
<td>-2.3</td>
<td></td>
</tr>
<tr>
<td>224375_at</td>
<td>--- ---</td>
<td>Hs.25110</td>
<td>-2.5</td>
<td>-2.1</td>
<td></td>
</tr>
<tr>
<td>234225_at</td>
<td>--- ---</td>
<td>Hs.25391</td>
<td>-2.6</td>
<td>-4.2</td>
<td></td>
</tr>
<tr>
<td>216246_at</td>
<td>--- ---</td>
<td>Hs.25391</td>
<td>-2.6</td>
<td>-2.8</td>
<td></td>
</tr>
<tr>
<td>201205_at</td>
<td>--- ---</td>
<td>Hs.25391</td>
<td>-2.8</td>
<td>-2.9</td>
<td></td>
</tr>
<tr>
<td>228208_x_at</td>
<td>ZNF354C zinc finger protein 354C</td>
<td>Hs.709873</td>
<td>-2.8</td>
<td>-3.3</td>
<td></td>
</tr>
<tr>
<td>1563431_x_at</td>
<td>--- ---</td>
<td>Hs.713288</td>
<td>-2.8</td>
<td>-3.6</td>
<td></td>
</tr>
<tr>
<td>218565_at</td>
<td>C9orf114 chromosome 9 open reading frame 114</td>
<td>Hs.224137</td>
<td>-2.9</td>
<td>-2.7</td>
<td></td>
</tr>
<tr>
<td>213048_s_at</td>
<td>--- ---</td>
<td>Hs.593218</td>
<td>-2.9</td>
<td>-2.6</td>
<td></td>
</tr>
<tr>
<td>213002_at</td>
<td>MARCKS myristoylated alanine-rich protein kinase C substrate</td>
<td>---</td>
<td>-3.1</td>
<td>-2.9</td>
<td></td>
</tr>
<tr>
<td>211454_x_at</td>
<td>FKS G49 FKSG49</td>
<td>---</td>
<td>-3.2</td>
<td>-2.4</td>
<td></td>
</tr>
<tr>
<td>212952_at</td>
<td>--- ---</td>
<td>Hs.446522</td>
<td>-3.3</td>
<td>-7.7</td>
<td></td>
</tr>
<tr>
<td>219138_at</td>
<td>RPL14 ribosomal protein L14</td>
<td>Hs.406620</td>
<td>-3.5</td>
<td>-3.7</td>
<td></td>
</tr>
<tr>
<td>214001_x_at</td>
<td>--- ---</td>
<td>Hs.707453</td>
<td>-3.5</td>
<td>-2.6</td>
<td></td>
</tr>
<tr>
<td>Gene Symbol</td>
<td>Gene Name</td>
<td>Hs.</td>
<td>log2 Fold Change 1</td>
<td>log2 Fold Change 2</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------------------</td>
<td>------</td>
<td>-------------------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>212953_x_at</td>
<td>CALR</td>
<td></td>
<td>-3.7</td>
<td>-3.2</td>
<td></td>
</tr>
<tr>
<td>209972_s_at</td>
<td>JTV1</td>
<td></td>
<td>-3.9</td>
<td>-3.9</td>
<td></td>
</tr>
<tr>
<td>228204_at</td>
<td>PSMB4</td>
<td></td>
<td>-4.6</td>
<td>-4.6</td>
<td></td>
</tr>
<tr>
<td>201774_s_at</td>
<td>NCAPD2</td>
<td></td>
<td>-2.8</td>
<td>-2.8</td>
<td></td>
</tr>
<tr>
<td>213979_s_at</td>
<td>CTBP1</td>
<td></td>
<td>-2.6</td>
<td>-2.6</td>
<td></td>
</tr>
<tr>
<td>202648_at</td>
<td></td>
<td></td>
<td>-5.6</td>
<td>-5.6</td>
<td></td>
</tr>
<tr>
<td>201171_at</td>
<td>ATP6V0E1</td>
<td></td>
<td>-5.9</td>
<td>-5.9</td>
<td></td>
</tr>
<tr>
<td>221995_s_at</td>
<td></td>
<td></td>
<td>-3.7</td>
<td>-3.7</td>
<td></td>
</tr>
<tr>
<td>214315_x_at</td>
<td>CALR</td>
<td></td>
<td>-6.7</td>
<td>-6.7</td>
<td></td>
</tr>
<tr>
<td>216554_s_at</td>
<td></td>
<td></td>
<td>-5.3</td>
<td>-5.3</td>
<td></td>
</tr>
<tr>
<td>222027_at</td>
<td>NUCKS1</td>
<td></td>
<td>-5.6</td>
<td>-10</td>
<td></td>
</tr>
<tr>
<td>212044_s_at</td>
<td>RPL27A</td>
<td></td>
<td>-5.6</td>
<td>-5.6</td>
<td></td>
</tr>
<tr>
<td>213813_x_at</td>
<td></td>
<td></td>
<td>-2.4</td>
<td>-2.4</td>
<td></td>
</tr>
<tr>
<td>213736_at</td>
<td>COX5B</td>
<td></td>
<td>-2.4</td>
<td>-2.4</td>
<td></td>
</tr>
<tr>
<td>229420_at</td>
<td></td>
<td></td>
<td>-5.9</td>
<td>-5</td>
<td></td>
</tr>
<tr>
<td>202028_s_at</td>
<td>RPL38</td>
<td></td>
<td>-6.3</td>
<td>-6.3</td>
<td></td>
</tr>
<tr>
<td>221943_x_at</td>
<td>RPL38</td>
<td></td>
<td>-5.3</td>
<td>-5.3</td>
<td></td>
</tr>
<tr>
<td>222966_at</td>
<td></td>
<td></td>
<td>-10</td>
<td>-10</td>
<td></td>
</tr>
<tr>
<td>231387_at</td>
<td></td>
<td></td>
<td>-5.9</td>
<td>-5.9</td>
<td></td>
</tr>
<tr>
<td>213642_at</td>
<td></td>
<td></td>
<td>-8.3</td>
<td>-8.3</td>
<td></td>
</tr>
<tr>
<td>214041_x_at</td>
<td>RPL37A</td>
<td></td>
<td>-4.4</td>
<td>-4.4</td>
<td></td>
</tr>
<tr>
<td>213875_x_at</td>
<td>C6orf62</td>
<td></td>
<td>-10</td>
<td>-10</td>
<td></td>
</tr>
<tr>
<td>234464_s_at</td>
<td>EME1</td>
<td></td>
<td>-4.4</td>
<td>-4.4</td>
<td></td>
</tr>
<tr>
<td>224321_at</td>
<td>TMEFF2</td>
<td></td>
<td>-8.3</td>
<td>-8.3</td>
<td></td>
</tr>
<tr>
<td>230750_at</td>
<td></td>
<td></td>
<td>-2.6</td>
<td>-2.6</td>
<td></td>
</tr>
<tr>
<td>224346_at</td>
<td></td>
<td></td>
<td>-12.5</td>
<td>-12.5</td>
<td></td>
</tr>
<tr>
<td>1556316_s_at</td>
<td>LOC284889</td>
<td></td>
<td>-33.3</td>
<td>-33.3</td>
<td></td>
</tr>
<tr>
<td>213350_at</td>
<td>RPS11</td>
<td></td>
<td>-20</td>
<td>-20</td>
<td></td>
</tr>
<tr>
<td>229538_s_at</td>
<td>IQGAP3</td>
<td></td>
<td>-4.6</td>
<td>-4.6</td>
<td></td>
</tr>
</tbody>
</table>
Figure S1. MSC morphology and phenotype.
HD-MSC (n=6) and FL-MSC (n=10) were analyzed at the end of P1.
(a) Phase contrast microscopy of representative HD-MSC (Left panel) and FL-MSC (Right panel) cultures. Magnification x 10 is shown.
(b) Filled histograms represent isotype-matched controls, and full lines the staining with specific antibodies. Shown is one representative phenotype of FL-MSC.
Figure S2. FISH analysis of FL-MSC
Interphase fluorescence in situ hybridization (FISH) was performed according to standard procedures using LSI IGH/BCL2 dual color, dual fusion translocation probe (Vysis-Abbott, Rungis, France) on P1 FL-MSC (Left panels) and on CD19pos B cells purified from autologous invaded lymph nodes (Right panels). After nuclei counterstaining by DAPI (Vector, Burlingame, USA), the cells were viewed using a fluorescent Axioplan II microscope (Zeiss, Le Pecq, France). In a normal nucleus the expected pattern is the two orange, two green signal pattern. In a nucleus harboring a t(14;18), the most common pattern is one orange signal, one green signal, and two orange/green (yellow) fusion signals. FISH patterns were determined by analyzing 100 non-overlapping nuclei. Two representative pairs of FL-MSC/malignant B cells are shown.
Figure S3. Expression of CDKN2A by MSC
RNA was extracted from HD-MSC (n=6) and FL-MSC (n=10) at the end of P1 and CDKN2A expression was determined by RQ-PCR experiments as described¹. Each sample was normalized to 18S, and Saos-2, a human osteosarcoma cell line expressing a high level of CDKN2A due to a homozygous Rb deletion, was used as a standard to calculate the relative CDKN2A expression in MSC.

Figure S4. Subcellular repartition and physiopathological functions of proteins encoded by genes of the FL-MSC signature.

The 408-PS list defining the FL-MSC signature was analyzed by Ingenuity Pathway Analysis software. (a) Subcellular localization of the gene products. Genes coding for membrane or extracellular proteins were subjected to hierarchical clustering using Cluster and TreeView softwares. The relative level of gene expression is depicted according to the shown color scale. (b) Top-3 physiopathological functions highlighted by Ingenuity Pathway.

<table>
<thead>
<tr>
<th>Physiopathological System Development and Function</th>
<th>No of molecules</th>
<th>P values (min-max)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hematological System Development and Function</td>
<td>31</td>
<td>9.95E-05 - 3.26E-02</td>
</tr>
<tr>
<td>Hematopoiesis</td>
<td>22</td>
<td>9.95E-05 - 2.96E-02</td>
</tr>
<tr>
<td>Immune Cell Trafficking</td>
<td>13</td>
<td>4.93E-04 - 3.26E-02</td>
</tr>
</tbody>
</table>
Figure S5. Identification of the genes found in both FL-MSC signature and TNF/LT signature. A Venn diagram revealed the 109 probesets which overlapped between TNF/LT signature and FL-MSC signature including 101 genes which are coordinately up or downregulated in the two signatures.
Figure S6. Inhibition of LPS-induced TNF production in macrophages by MSC
Monocytes were cultured during 7 days with or without HD-MSC, or FL-MSC from grade 1, grade 2, or grade 3a FL patients before stimulation or not by LPS during 18 hours. TNF concentration was then measured in cell supernatants by ELISA. Results are expressed as the percentage of TNF production by LPS-stimulated macrophages alone, arbitrary assigned to 100%.
Figure S7. Role of TNF in the malignant B cell-driven CCL2 production in HD-MSC

CCL2 was quantified by ELISA in the supernatants of HD-MSC cocultured or not (CTRL) with RL or VAL for 3 days. When indicated, B-cell lines were separated from HD-MSC by Transwell chambers with 0.4-μm pore filters in the presence or not of recombinant TNFRI-Fc chimera (R&D Systems, 200 ng/mL).