S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman, Basic local alignment search tool, Journal of Molecular Biology, vol.215, issue.3, pp.403-410, 1990.
DOI : 10.1016/S0022-2836(05)80360-2

S. Eddy, Profile hidden Markov models, Bioinformatics, vol.14, issue.9, pp.755-763, 1998.
DOI : 10.1093/bioinformatics/14.9.755

A. Bateman, E. Birney, L. Cerruti, R. Durbin, L. Etwiller et al., The Pfam Protein Families Database, Nucleic Acids Research, vol.30, issue.1, pp.276-280, 2002.
DOI : 10.1093/nar/30.1.276

URL : https://hal.archives-ouvertes.fr/hal-01294685

D. Hranueli, J. Cullum, B. Basrak, P. Goldstein, and P. Long, Plasticity of the Streptomyces Genome-Evolution and Engineering of New Antibiotics, Current Medicinal Chemistry, vol.12, issue.14, pp.1697-1704, 2005.
DOI : 10.2174/0929867054367176

Y. Chan, A. Podevels, B. Kevany, and M. Thomas, Biosynthesis of polyketide synthase extender units, Nat. Prod. Rep., vol.256, issue.1, pp.90-114, 2009.
DOI : 10.1039/B801658P

A. Starcevic, J. Zucko, J. Simunkovic, P. Long, J. Cullum et al., ClustScan: an integrated program package for the semi-automatic annotation of modular biosynthetic gene clusters and in silico prediction of novel chemical structures, Nucleic Acids Research, vol.36, issue.21, pp.6882-6892, 2008.
DOI : 10.1093/nar/gkn685

J. Thompson, D. Higgins, and T. Gibson, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Research, vol.22, issue.22, pp.4673-4680, 1994.
DOI : 10.1093/nar/22.22.4673

P. Caffrey, Conserved Amino Acid Residues Correlating With Ketoreductase Stereospecificity in Modular Polyketide Synthases, ChemBioChem, vol.111, issue.7, pp.654-657, 2003.
DOI : 10.1002/cbic.200300581

G. Yadav, R. Gokhale, and D. Mohanty, Computational Approach for Prediction of Domain Organization and Substrate Specificity of Modular Polyketide Synthases, Journal of Molecular Biology, vol.328, issue.2, pp.335-363, 2003.
DOI : 10.1016/S0022-2836(03)00232-8

S. Hannenhalli and R. Russell, Analysis and prediction of functional sub-types from protein sequence alignments, Journal of Molecular Biology, vol.303, issue.1, pp.61-76, 2000.
DOI : 10.1006/jmbi.2000.4036

W. Pirovano, K. Feenstra, and J. Heringa, Sequence comparison by sequence harmony identifies subtype-specific functional sites, Nucleic Acids Research, vol.34, issue.22, pp.6540-6548, 2006.
DOI : 10.1093/nar/gkl901

F. Pazos, A. Rausell, and A. Valencia, Phylogeny-independent detection of functional residues, Bioinformatics, vol.22, issue.12, pp.1440-1448, 2006.
DOI : 10.1093/bioinformatics/btl104

I. Wallace and D. Higgins, Supervised multivariate analysis of sequence groups to identify specificity determining residues, BMC Bioinformatics, vol.8, issue.1, p.135, 2007.
DOI : 10.1186/1471-2105-8-135

K. Ye, A. Feenstra, J. Heringa, A. Ijzerman, and E. Marchiori, Multi-RELIEF: a method to recognize specificity determining residues from multiple sequence alignments using a Machine-Learning approach for feature weighting, Bioinformatics, vol.24, issue.1, pp.18-25, 2008.
DOI : 10.1093/bioinformatics/btm537

J. Thompson, T. Gibson, F. Plewniak, F. Jeanmougin, and D. Higgins, The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools, Nucleic Acids Research, vol.25, issue.24, pp.4876-4882, 1997.
DOI : 10.1093/nar/25.24.4876

S. Henikoff and J. Henikoff, Amino acid substitution matrices from protein blocks., Proceedings of the National Academy of Sciences, vol.89, issue.22, pp.10915-10919, 1992.
DOI : 10.1073/pnas.89.22.10915

C. Smith, I. Shindyalov, S. Veretnik, M. Gribskov, S. Taylor et al., The protein kinase resource, Trends in Biochemical Sciences, vol.22, issue.11, pp.444-446, 1997.
DOI : 10.1016/S0968-0004(97)01131-6

H. Wilks, K. Hart, R. Feeney, C. Dunn, H. Muirhead et al., A specific, highly active malate dehydrogenase by redesign of a lactate dehydrogenase framework, Science, vol.242, issue.4885, pp.1541-1544, 1988.
DOI : 10.1126/science.3201242

S. Haydock, J. Aparicio, I. Molnár, T. Schwecke, L. Khaw et al., Divergent sequence motifs correlated with the substrate specificity of (methyl)malonyl-CoA:acyl carrier protein transacylase domains in modular polyketide synthases, FEBS Letters, vol.267, issue.2, pp.246-248, 1995.
DOI : 10.1016/0014-5793(95)01119-Y

C. Reeves, S. Murli, G. Ashley, M. Piagentini, C. Hutchinson et al., Alteration of the substrate specificity of a modular polyketide synthase acyltransferase domain through sitespecific mutations, Biochemistry, issue.51, pp.4015464-15470, 2001.

D. Vecchio, F. Petkovic, H. Kendrew, S. Low, L. Wilkinson et al., Active-site residue, domain and module swaps in modular polyketide synthases, Journal of Industrial Microbiology and Biotechnology, vol.30, issue.8
DOI : 10.1007/s10295-003-0062-0

L. Serre, E. Verbree, Z. Dauter, A. Stuitje, and Z. Derewenda, Malonyl-CoA:Acyl Carrier Protein Transacylase at 1.5-?? Resolution., Journal of Biological Chemistry, vol.270, issue.22, pp.12961-12964, 1995.
DOI : 10.1074/jbc.270.22.12961

R. Castonguay, W. He, A. Chen, C. Khosla, and D. Cane, Stereospecificity of Ketoreductase Domains of the 6-Deoxyerythronolide B Synthase, Journal of the American Chemical Society, vol.129, issue.44, pp.13758-13769, 2007.
DOI : 10.1021/ja0753290

E. Waters and G. Lee, Evolution, structure and function of the small heat shock proteins in plants, Journal of Experimental Botany, vol.47, issue.3, pp.325-338, 1996.
DOI : 10.1093/jxb/47.3.325

R. Van-montfort, E. Basha, K. Friedrich, C. Slingsby, and E. Vierling, Crystal structure and assembly of a eukaryotic small heat shock protein, Nature Structural Biology, vol.8, issue.12, pp.1025-1030, 2001.
DOI : 10.1038/nsb722

K. Kim, R. Kim, and S. Kim, Crystal structure of a small heat-shock protein, Nature, vol.394, issue.6693, pp.595-599, 1998.
DOI : 10.1038/29106

A. Starcevic, M. Jaspars, J. Cullum, D. Hranueli, and P. Long, Predicting the Nature and Timing of Epimerisation on a Modular Polyketide Synthase, ChemBioChem, vol.71, issue.1, pp.28-31, 2007.
DOI : 10.1002/cbic.200600399

A. Keatinge-clay, A Tylosin Ketoreductase Reveals How Chirality Is Determined in Polyketides, Chemistry & Biology, vol.14, issue.8, pp.898-908, 2007.
DOI : 10.1016/j.chembiol.2007.07.009

S. Veerassamy, A. Smith, and E. Tillier, A Transition Probability Model for Amino Acid Substitutions from Blocks, Journal of Computational Biology, vol.10, issue.6, pp.997-1010, 2003.
DOI : 10.1089/106652703322756195

D. Jones, W. Taylor, and J. Thornton, The rapid generation of mutation data matrices from protein sequences, Bioinformatics, vol.8, issue.3, pp.275-282, 1992.
DOI : 10.1093/bioinformatics/8.3.275

. Expasy-proteomics and . Server, NRPS_PKS: A knowledge based resource for analysis of Non-ribosomal Peptide Synthetases and Polyketide Synthases

M. Ansari, G. Yadav, R. Gokhale, and D. Mohanty, NRPS-PKS: a knowledge-based resource for analysis of NRPS/PKS megasyn- thases, Nucleic Acids Res, pp.32-405, 2004.

H. Tae, K. Jae, and K. Park, Development of an analysis program of Type I polyketide synthase gene clusters using homology search and profile hidden Markov model, J Microbiol Biotechnol, vol.19, pp.140-146, 2009.

J. Felsenstein, PHYLIP -Phylogeny Inference Package (Version 3.2), Cladistics, vol.5, pp.164-166, 1989.

M. Dayhoff, R. Schwartz, and B. Orcutt, A model of evolutionary change in proteins, Atlas of Protein Sequence and Structure, vol.5, pp.345-352, 1978.

J. Felsenstein, Inferring Phylogenies, 2004.

S. Henikoff and J. Henikoff, Position-based sequence weights, Journal of Molecular Biology, vol.243, issue.4, pp.574-578, 1994.
DOI : 10.1016/0022-2836(94)90032-9

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.106.3439

N. Ueda and R. Nakano, Deterministic annealing EM algorithm, Neural Networks, vol.11, issue.2, pp.271-282, 1998.
DOI : 10.1016/S0893-6080(97)00133-0