R. Kingston, C. Bunker, and A. Imbalzano, Repression and activation by multiprotein complexes that alter chromatin structure., Genes & Development, vol.10, issue.8, pp.905-920, 1996.
DOI : 10.1101/gad.10.8.905

A. Eberharter and P. Becker, Histone acetylation: a switch between repressive and permissive chromatin: Second in review series on chromatin dynamics, EMBO Reports, vol.3, issue.3, pp.224-229, 2002.
DOI : 10.1093/embo-reports/kvf053

M. Shahbazian and M. Grunstein, Functions of Site-Specific Histone Acetylation and Deacetylation, Annual Review of Biochemistry, vol.76, issue.1, pp.75-100, 2007.
DOI : 10.1146/annurev.biochem.76.052705.162114

C. Tse, T. Sera, A. Wolffe, and J. Hansen, Disruption of Higher-Order Folding by Core Histone Acetylation Dramatically Enhances Transcription of Nucleosomal Arrays by RNA Polymerase III, Molecular and Cellular Biology, vol.18, issue.8, pp.4629-4638, 1998.
DOI : 10.1128/MCB.18.8.4629

L. Carruthers and J. Hansen, The Core Histone N Termini Function Independently of Linker Histones during Chromatin Condensation, Journal of Biological Chemistry, vol.275, issue.47, pp.37285-37290, 2000.
DOI : 10.1074/jbc.M006801200

A. Wolffe and J. Hansen, Nuclear Visions Functional Flexibility from Structural Instability, Cell, vol.104, issue.5, pp.631-634, 2001.
DOI : 10.1016/S0092-8674(02)01453-8

W. Fischle, Y. Wang, and C. Allis, Histone and chromatin cross-talk, Current Opinion in Cell Biology, vol.15, issue.2, pp.172-183, 2003.
DOI : 10.1016/S0955-0674(03)00013-9

URL : http://hdl.handle.net/11858/00-001M-0000-0012-F138-4

M. Shogren-knaak, H. Ishii, J. Sun, M. Pazin, J. Davie et al., Histone H4-K16 Acetylation Controls Chromatin Structure and Protein Interactions, Science, vol.311, issue.5762, pp.844-847, 2006.
DOI : 10.1126/science.1124000

A. Akhtar and P. Becker, Activation of Transcription through Histone H4 Acetylation by MOF, an Acetyltransferase Essential for Dosage Compensation in Drosophila, Molecular Cell, vol.5, issue.2, pp.367-375, 2000.
DOI : 10.1016/S1097-2765(00)80431-1

W. Krajewski and P. Becker, Reconstitution of hyperacetylated, DNase I-sensitive chromatin characterized by high conformational flexibility of nucleosomal DNA, Proceedings of the National Academy of Sciences, vol.95, issue.4, pp.1540-1545, 1998.
DOI : 10.1073/pnas.95.4.1540

D. Sterner and S. Berger, Acetylation of Histones and Transcription-Related Factors, Microbiology and Molecular Biology Reviews, vol.64, issue.2, pp.435-459, 2000.
DOI : 10.1128/MMBR.64.2.435-459.2000

Z. Wang, C. Zang, K. Cui, D. Schones, A. Barski et al., Genome-wide Mapping of HATs and HDACs Reveals Distinct Functions in Active and Inactive Genes, Cell, vol.138, issue.5, pp.1019-1031, 2009.
DOI : 10.1016/j.cell.2009.06.049

Z. Wang, C. Zang, J. Rosenfeld, D. Schones, A. Barski et al., Combinatorial patterns of histone acetylations and methylations in the human genome, Nature Genetics, vol.18, issue.7, pp.897-903, 2008.
DOI : 10.1073/pnas.0400782101

V. Sapountzi, I. Logan, and C. Robson, Cellular functions of TIP60, The International Journal of Biochemistry & Cell Biology, vol.38, issue.9, pp.1496-1509, 2006.
DOI : 10.1016/j.biocel.2006.03.003

Z. Nagy, A. Riss, S. Fujiyama, A. Krebs, M. Orpinell et al., The metazoan ATAC and SAGA coactivator HAT complexes regulate different sets of inducible target genes, Cellular and Molecular Life Sciences, vol.19, issue.4, 2009.
DOI : 10.1007/s00018-009-0199-8

S. Guelman, T. Suganuma, L. Florens, S. Swanson, C. Kiesecker et al., Host Cell Factor and an Uncharacterized SANT Domain Protein Are Stable Components of ATAC, a Novel dAda2A/dGcn5-Containing Histone Acetyltransferase Complex in Drosophila, Molecular and Cellular Biology, vol.26, issue.3, pp.871-882, 2006.
DOI : 10.1128/MCB.26.3.871-882.2006

C. Brown, T. Lechner, L. Howe, and J. Workman, The many HATs of transcription coactivators, Trends in Biochemical Sciences, vol.25, issue.1, pp.15-19, 2000.
DOI : 10.1016/S0968-0004(99)01516-9

Y. Cai, J. J. Swanson, S. Cole, M. Choi, S. Florens et al., Subunit Composition and Substrate Specificity of a MOF-containing Histone Acetyltransferase Distinct from the Male-specific Lethal (MSL) Complex, Journal of Biological Chemistry, vol.285, issue.7, pp.4268-4272, 2010.
DOI : 10.1074/jbc.C109.087981

W. Xu, D. Edmondson, Y. Evrard, M. Wakamiya, R. Behringer et al., Loss of Gcn5l2 leads to increased apoptosis and mesodermal defects during mouse development, Nature Genetics, vol.93, issue.2, pp.229-232, 2000.
DOI : 10.1038/79973

L. Ding, M. Paszkowski-rogacz, A. Nitzsche, M. Slabicki, A. Heninger et al., A Genome-Scale RNAi Screen for Oct4 Modulators Defines a Role of the Paf1 Complex for Embryonic Stem Cell Identity, Cell Stem Cell, vol.4, issue.5, pp.403-415, 2009.
DOI : 10.1016/j.stem.2009.03.009

T. Fazzio, J. Huff, and B. Panning, An RNAi Screen of Chromatin Proteins Identifies Tip60-p400 as a Regulator of Embryonic Stem Cell Identity, Cell, vol.134, issue.1, pp.162-174, 2008.
DOI : 10.1016/j.cell.2008.05.031

T. Yao, S. Oh, M. Fuchs, N. Zhou, L. Ch-'ng et al., Gene Dosage???Dependent Embryonic Development and Proliferation Defects in Mice Lacking the Transcriptional Integrator p300, Cell, vol.93, issue.3, pp.361-372, 1998.
DOI : 10.1016/S0092-8674(00)81165-4

G. Hager, J. Mcnally, and T. Misteli, Transcription Dynamics, Molecular Cell, vol.35, issue.6, pp.741-753, 2009.
DOI : 10.1016/j.molcel.2009.09.005

URL : http://doi.org/10.1016/j.molcel.2009.09.005

S. Raja, I. Charapitsa, T. Conrad, J. Vaquerizas, P. Gebhardt et al., The Nonspecific Lethal Complex Is a Transcriptional Regulator in Drosophila, Molecular Cell, vol.38, issue.6, pp.827-841, 2010.
DOI : 10.1016/j.molcel.2010.05.021

M. Prestel, C. Feller, T. Straub, H. Mitlöhner, and P. Becker, The Activation Potential of MOF Is Constrained for Dosage Compensation, Molecular Cell, vol.38, issue.6, pp.815-826, 2010.
DOI : 10.1016/j.molcel.2010.05.022

M. Bibel, J. Richter, E. Lacroix, and Y. Barde, Generation of a defined and uniform population of CNS progenitors and neurons from mouse embryonic stem cells, Nature Protocols, vol.4, issue.5, pp.1034-1043, 2007.
DOI : 10.1038/nprot.2007.147

M. Brand, K. Yamamoto, A. Staub, and L. Tora, Identification of TATA-binding Protein-free TAFII-containing Complex Subunits Suggests a Role in Nucleosome Acetylation and Signal Transduction, Journal of Biological Chemistry, vol.274, issue.26, pp.18285-18289, 1999.
DOI : 10.1074/jbc.274.26.18285

S. Guelman, K. Kozuka, Y. Mao, V. Pham, M. Solloway et al., The Double-Histone-Acetyltransferase Complex ATAC Is Essential for Mammalian Development, Molecular and Cellular Biology, vol.29, issue.5, pp.1176-1188, 2009.
DOI : 10.1128/MCB.01599-08

Y. Wang, F. Faiola, M. Xu, S. Pan, and E. Martinez, Human ATAC Is a GCN5/PCAF-containing Acetylase Complex with a Novel NC2-like Histone Fold Module That Interacts with the TATA-binding Protein, Journal of Biological Chemistry, vol.283, issue.49, pp.33808-33815, 2008.
DOI : 10.1074/jbc.M806936200

M. Altaf, A. Auger, J. Monnet-saksouk, J. Brodeur, S. Piquet et al., NuA4-dependent Acetylation of Nucleosomal Histones H4 and H2A Directly Stimulates Incorporation of H2A.Z by the SWR1 Complex, Journal of Biological Chemistry, vol.285, issue.21, pp.15966-15977, 2010.
DOI : 10.1074/jbc.M110.117069

T. Ikura, V. Ogryzko, M. Grigoriev, R. Groisman, J. Wang et al., Involvement of the TIP60 Histone Acetylase Complex in DNA Repair and Apoptosis, Cell, vol.102, issue.4, pp.463-473, 2000.
DOI : 10.1016/S0092-8674(00)00051-9

S. Allard, R. Utley, J. Savard, A. Clarke, P. Grant et al., NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing Esa1p and the ATM-related cofactor Tra1p, The EMBO Journal, vol.18, issue.18, pp.5108-5119, 1999.
DOI : 10.1093/emboj/18.18.5108

T. Yamamoto and M. Horikoshi, Novel Substrate Specificity of the Histone Acetyltransferase Activity of HIV-1-Tat Interactive Protein Tip60, Journal of Biological Chemistry, vol.272, issue.49, pp.30595-30598, 1997.
DOI : 10.1074/jbc.272.49.30595

R. Schiltz, C. Mizzen, A. Vassilev, R. Cook, C. Allis et al., Overlapping but Distinct Patterns of Histone Acetylation by the Human Coactivators p300 and PCAF within Nucleosomal Substrates, Journal of Biological Chemistry, vol.274, issue.3, pp.1189-1192, 1999.
DOI : 10.1074/jbc.274.3.1189

T. Thomas, M. Dixon, A. Kueh, and A. Voss, Mof (MYST1 or KAT8) Is Essential for Progression of Embryonic Development Past the Blastocyst Stage and Required for Normal Chromatin Architecture, Molecular and Cellular Biology, vol.28, issue.16, pp.5093-5105, 2008.
DOI : 10.1128/MCB.02202-07

Y. Hu, J. Fisher, S. Koprowski, D. Mcallister, M. Kim et al., gene causes early embryonic lethality, Developmental Dynamics, vol.175, issue.11, pp.2912-2921, 2009.
DOI : 10.1002/dvdy.22110

. Anamika, Lessons from genome-wide studies: an integrated definition of the coactivator function of histone acetyl transferases, Epigenetics & Chromatin, vol.3, issue.1, p.18, 2010.
DOI : 10.1186/1756-8935-3-18

URL : https://hal.archives-ouvertes.fr/inserm-00663877