A computational framework for gene regulatory network inference that combines multiple methods and datasets.

Abstract : BACKGROUND: Reverse engineering in systems biology entails inference of gene regulatory networks from observational data. This data typically include gene expression measurements of wild type and mutant cells in response to a given stimulus. It has been shown that when more than one type of experiment is used in the network inference process the accuracy is higher. Therefore the development of generally applicable and effective methodologies that embed multiple sources of information in a single computational framework is a worthwhile objective. RESULTS: This paper presents a new method for network inference, which uses multi-objective optimisation (MOO) to integrate multiple inference methods and experiments. We illustrate the potential of the methodology by combining ODE and correlation-based network inference procedures as well as time course and gene inactivation experiments. Here we show that our methodology is effective for a wide spectrum of data sets and method integration strategies. CONCLUSIONS: The approach we present in this paper is flexible and can be used in any scenario that benefits from integration of multiple sources of information and modelling procedures in the inference process. Moreover, the application of this method to two case studies representative of bacteria and vertebrate systems has shown potential in identifying key regulators of important biological processes.
Liste complète des métadonnées

Littérature citée [2 références]  Voir  Masquer  Télécharger

http://www.hal.inserm.fr/inserm-00663853
Contributeur : Ed. Bmc <>
Soumis le : vendredi 27 janvier 2012 - 17:02:09
Dernière modification le : mercredi 29 novembre 2017 - 14:59:00
Document(s) archivé(s) le : lundi 19 novembre 2012 - 15:11:30

Fichiers

Identifiants

Collections

Citation

Rita Gupta, Anna Stincone, Philipp Antczak, Sarah Durant, Roy Bicknell, et al.. A computational framework for gene regulatory network inference that combines multiple methods and datasets.. BMC Systems Biology, BioMed Central, 2011, 5 (1), pp.52. 〈10.1186/1752-0509-5-52〉. 〈inserm-00663853〉

Partager

Métriques

Consultations de la notice

129

Téléchargements de fichiers

176