Additional file 5 - Proof establishing that $\mathbf{D}_{0}=\left(\sum_{j=1}^{N} U_{j}\right)^{2} / k=\left(\sum_{j=1}^{N} W_{j}\right)^{2} / k$ ranges from 0 to $\mathbf{D}_{\max }=\sum_{j=1}^{N} W_{j}^{2}$.
(i) First, we can easily show that the sum of the W_{j} is equal to the sum of the U_{j} over time, i.e. that $\sum_{j=1}^{N} W_{j}=\sum_{j=1}^{N} U_{j}$. This amounts to show that $\sum_{j=1}^{N} \widehat{E} U_{j}=0$.
The expression of this latter quantity in the absence of ties $(N=n)$ for a proportional hazards model is the following

$$
\sum_{j=1}^{n} \widehat{E} U_{j}=\sum_{j=1}^{n}\left[\sum_{l=1}^{j} \frac{\eta_{l}}{n_{l}}\left(Z_{j}-\frac{1}{n_{l}} \sum_{r \in R\left(t_{l}\right)} Z_{r}\right)\right]
$$

The first term of this difference can be developed as

$$
\begin{aligned}
\sum_{j=1}^{n} \sum_{l=1}^{j} \frac{\eta_{l}}{n_{l}} Z_{j} & =\sum_{j=1}^{n}\left(\frac{\eta_{1}}{n_{1}} Z_{j}+\frac{\eta_{2}}{n_{2}} Z_{j}+\cdots+\frac{\eta_{j}}{n_{j}} Z_{j}\right) \\
& =Z_{1}\left(\frac{\eta_{1}}{n_{1}}\right)+Z_{2}\left(\frac{\eta_{1}}{n_{1}}+\frac{\eta_{2}}{n_{2}}\right)+\cdots+Z_{n}\left(\frac{\eta_{1}}{n_{1}}+\frac{\eta_{2}}{n_{2}}+\cdots+\frac{\eta_{n}}{n_{n}}\right)
\end{aligned}
$$

The second term can also be developed

$$
\begin{aligned}
\sum_{j=1}^{n} \sum_{l=1}^{j} \frac{\eta_{l}}{n_{l}^{2}} \sum_{r=l}^{n} Z_{r} & =\sum_{j=1}^{n} \sum_{l=1}^{j} \frac{\eta_{l}}{n_{l}^{2}}\left(Z_{l}+\cdots+Z_{n}\right) \\
& =\sum_{j=1}^{n}\left[\frac{\eta_{1}}{n_{1}^{2}}\left(Z_{1}+\cdots+Z_{n}\right)+\frac{\eta_{2}}{n_{2}^{2}}\left(Z_{2}+\cdots+Z_{n}\right)+\cdots+\frac{\eta_{j}}{n_{j}^{2}}\left(Z_{j}+\cdots+Z_{n}\right)\right] \\
& =n_{1} \times \frac{\eta_{1}}{n_{1}^{2}}\left(Z_{1}+\cdots+Z_{n}\right)+n_{2} \times \frac{\eta_{2}}{n_{2}^{2}}\left(Z_{2}+\cdots+Z_{n}\right)+\cdots+n_{n} \times \frac{\eta_{n}}{n_{n}^{2}} Z_{n} \\
& =\frac{\eta_{1}}{n_{1}}\left(Z_{1}+\cdots+Z_{n}\right)+\frac{\eta_{2}}{n_{2}}\left(Z_{2}+\cdots+Z_{n}\right)+\cdots+\frac{\eta_{n}}{n_{n}} Z_{n} \\
& =Z_{1}\left(\frac{\eta_{1}}{n_{1}}\right)+Z_{2}\left(\frac{\eta_{1}}{n_{1}}+\frac{\eta_{2}}{n_{2}}\right)+\cdots+Z_{n}\left(\frac{\eta_{1}}{n_{1}}+\frac{\eta_{2}}{n_{2}}+\cdots+\frac{\eta_{n}}{n_{n}}\right)
\end{aligned}
$$

We can see that

$$
\sum_{j=1}^{n} \sum_{l=1}^{j} \frac{\eta_{l}}{n_{l}^{2}} \sum_{r \in R\left(t_{l}\right)} Z_{r}=\sum_{j=1}^{n} \sum_{l=1}^{j} \frac{\eta_{l}}{n_{l}} Z_{j}
$$

Thus $\sum_{j=1}^{n} \widehat{E} U_{j}=0$, which implies that $\sum_{j=1}^{n} W_{j}=\sum_{j=1}^{n} U_{j}$.
In the presence of tied observations, the proof can be obtained in the same but more burdensome way.
The property given above implies that $\left(\sum_{j=1}^{N} W_{j}\right)^{2}=\left(\sum_{j=1}^{N} U_{j}\right)^{2}$. The sum of the W_{j}, as well as the sum of the U_{j} is thus composed of k terms (where k is the number of failure times).
(ii) Second, as a consequence of (i), the sum $\sum_{j=1}^{N}\left(W_{j}-\sum_{l=1}^{N} \frac{W_{l}}{k}\right)$ is composed of k terms. This allows to
write the following equalities:

$$
\begin{aligned}
\sum_{j=1}^{N}\left(W_{j}-\sum_{l=1}^{N} \frac{W_{l}}{k}\right)^{2} & =\sum_{j=1}^{N} W_{j}^{2}-2 \sum_{j=1}^{N} W_{j} \sum_{l=1}^{N} \frac{W_{l}}{k}+\sum_{j=1}^{N}\left(\sum_{l=1}^{N} \frac{W_{l}}{k}\right)^{2} \\
& =\sum_{j=1}^{N} W_{j}^{2}-2 \frac{\left(\sum_{j=1}^{N} W_{j}\right)^{2}}{k}+\frac{\left(\sum_{j=1}^{N} W_{j}\right)^{2}}{k} \\
& =\sum_{j=1}^{N} W_{j}^{2}-\left(\sum_{j=1}^{N} W_{j}\right)^{2} / k
\end{aligned}
$$

As the sum of squares $\sum_{j=1}^{N}\left(W_{j}-\sum_{l=1}^{N} \frac{W_{l}}{k}\right)^{2}$ is positive, we have $\sum_{j=1}^{N} W_{j}^{2} \geq\left(\sum_{j=1}^{N} W_{j}\right)^{2} / k$. It is now straightforward to see that $\left(\sum_{j=1}^{N} W_{j}\right)^{2} / k$ is comprised between 0 and $\mathbf{D}_{\max }=\sum_{j=1}^{N} W_{j}^{2}$.

