M. Yamashita and M. Emerman, Retroviral infection of non-dividing cells: Old and new perspectives, Virology, vol.344, issue.1, pp.88-93, 2006.
DOI : 10.1016/j.virol.2005.09.012

C. Coleman and L. Wu, HIV interactions with monocytes and dendritic cells: viral latency and reservoirs, Retrovirology, vol.6, issue.1, p.51, 2009.
DOI : 10.1186/1742-4690-6-51

C. Carter and L. Ehrlich, Cell Biology of HIV-1 Infection of Macrophages, Annual Review of Microbiology, vol.62, issue.1, pp.425-443, 2008.
DOI : 10.1146/annurev.micro.62.081307.162758

A. Verani, G. Gras, and G. Pancino, Macrophages and HIV-1: dangerous liaisons, Molecular Immunology, vol.42, issue.2, pp.195-212, 2005.
DOI : 10.1016/j.molimm.2004.06.020

URL : https://hal.archives-ouvertes.fr/pasteur-00142859

A. Alexaki, Y. Liu, and B. Wigdahl, Cellular Reservoirs of HIV-1 and their Role in Viral Persistence, Current HIV Research, vol.6, issue.5, pp.388-400, 2008.
DOI : 10.2174/157016208785861195

D. Trono, When accessories turn out to be essential, Nature Medicine, vol.95, issue.12, pp.1368-1369, 1998.
DOI : 10.1073/pnas.93.2.700

T. Gramberg, N. Sunseri, and N. Landau, Accessories to the crime: Recent advances in HIV accessory protein biology, Current HIV/AIDS Reports, vol.14, issue.1, pp.36-42, 2009.
DOI : 10.1007/s11904-009-0006-z

M. Malim and M. Emerman, HIV-1 Accessory Proteins???Ensuring Viral Survival in a Hostile Environment, Cell Host & Microbe, vol.3, issue.6, pp.388-398, 2008.
DOI : 10.1016/j.chom.2008.04.008

E. Cohen, E. Terwilliger, Y. Jalinoos, J. Proulx, J. Sodroski et al., Identification of HIV-1 vpr product and function, J Acquir Immune Defic Syndr, vol.3, pp.11-18, 1990.

L. Henderson, R. Sowder, T. Copeland, R. Benveniste, and S. Oroszlan, Isolation and characterization of a novel protein (X-ORF product) from SIV and HIV-2, Science, vol.241, issue.4862, pp.199-201, 1988.
DOI : 10.1126/science.3388031

J. Kappes, C. Morrow, S. Lee, B. Jameson, S. Kent et al., Identification of a novel retroviral gene unique to human immunodeficiency virus type 2 and simian immunodeficiency virus SIVMAC, J Virol, vol.62, pp.3501-3505, 1988.

P. Sharp, E. Bailes, M. Stevenson, M. Emerman, and B. Hahn, Gene acquisition in HIV and SIV, Nature, vol.383, issue.6601, pp.586-587, 1996.
DOI : 10.1038/383586a0

M. Tristem, C. Marshall, A. Karpas, and F. Hill, Evolution of the primate lentiviruses: evidence from vpx and vpr, Embo J, vol.11, pp.3405-3412, 1992.

M. Tristem, A. Purvis, and D. Quicke, Complex Evolutionary History of Primate LentiviralvprGenes, Virology, vol.240, issue.2, pp.232-237, 1998.
DOI : 10.1006/viro.1997.8929

V. Kewalramani and M. Emerman, Vpx Association with Mature Core Structures of HIV-2, Virology, vol.218, issue.1, pp.159-168, 1996.
DOI : 10.1006/viro.1996.0176

X. Wu, J. Conway, J. Kim, and J. Kappes, Localization of the Vpx packaging signal within the C terminus of the human immunodeficiency virus type 2 Gag precursor protein, J Virol, vol.68, pp.6161-6169, 1994.

M. Accola, A. Bukovsky, M. Jones, and H. Gottlinger, A conserved dileucine-containing motif in p6(gag) governs the particle association of Vpx and Vpr of simian immunodeficiency viruses SIV(mac) and SIV(agm), J Virol, vol.73, pp.9992-9999, 1999.

F. Bachand, X. Yao, M. Hrimech, N. Rougeau, and E. Cohen, Incorporation of Vpr into Human Immunodeficiency Virus Type 1 Requires a Direct Interaction with the p6 Domain of the p55 Gag Precursor, Journal of Biological Chemistry, vol.274, issue.13, pp.9083-9091, 1999.
DOI : 10.1074/jbc.274.13.9083

E. Cohen, G. Dehni, J. Sodroski, and W. Haseltine, Human immunodeficiency virus vpr product is a virion-associated regulatory protein, J Virol, vol.64, pp.3097-3099, 1990.

E. Kondo and H. Gottlinger, A conserved LXXLF sequence is the major determinant in p6gag required for the incorporation of human immunodeficiency virus type 1 Vpr, J Virol, vol.70, pp.159-164, 1996.

W. Paxton, R. Connor, and N. Landau, Incorporation of Vpr into human immunodeficiency virus type 1 virions: requirement for the p6 region of gag and mutational analysis, J Virol, vol.67, pp.7229-7237, 1993.

P. Sharp, E. Bailes, R. Chaudhuri, C. Rodenburg, M. Santiago et al., The origins of acquired immune deficiency syndrome viruses: where and when?, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.356, issue.1410, pp.867-876, 2001.
DOI : 10.1098/rstb.2001.0863

V. Hirsch, G. Dapolito, R. Goeken, and B. Campbell, Phylogeny and natural history of the primate lentiviruses, SIV and HIV, Current Opinion in Genetics & Development, vol.5, issue.6, pp.798-806, 1995.
DOI : 10.1016/0959-437X(95)80014-V

B. Beer, B. Foley, C. Kuiken, Z. Tooze, R. Goeken et al., Characterization of Novel Simian Immunodeficiency Viruses from Red-Capped Mangabeys from Nigeria (SIVrcmNG409 and -NG411), Journal of Virology, vol.75, issue.24, pp.12014-12027, 2001.
DOI : 10.1128/JVI.75.24.12014-12027.2001

J. Hu, W. Switzer, B. Foley, D. Robertson, R. Goeken et al., Characterization and Comparison of Recombinant Simian Immunodeficiency Virus from Drill (Mandrillus leucophaeus) and Mandrill (Mandrillus sphinx) Isolates, Journal of Virology, vol.77, issue.8, pp.4867-4880, 2003.
DOI : 10.1128/JVI.77.8.4867-4880.2003

Y. Lu, P. Spearman, and L. Ratner, Human immunodeficiency virus type 1 viral protein R localization in infected cells and virions, J Virol, vol.67, pp.6542-6550, 1993.

N. Heinzinger, M. Bukinsky, S. Haggerty, A. Ragland, V. Kewalramani et al., The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells., Proceedings of the National Academy of Sciences, vol.91, issue.15, pp.7311-7315, 1994.
DOI : 10.1073/pnas.91.15.7311

M. Bukrinsky, S. Haggerty, M. Dempsey, N. Sharova, A. Adzhubel et al., A nuclear localization signal within HIV-1 matrix protein that governs infection of non-dividing cells, Nature, vol.365, issue.6447, pp.666-669, 1993.
DOI : 10.1038/365666a0

P. Gallay, S. Swingler, J. Song, F. Bushman, and D. Trono, HIV nuclear import is governed by the phosphotyrosine-mediated binding of matrix to the core domain of integrase, Cell, vol.83, issue.4, pp.569-576, 1995.
DOI : 10.1016/0092-8674(95)90097-7

P. Gallay, S. Swingler, C. Aiken, and D. Trono, HIV-1 infection of nondividing cells: C-terminal tyrosine phosphorylation of the viral matrix protein is a key regulator, Cell, vol.80, issue.3, pp.379-388, 1995.
DOI : 10.1016/0092-8674(95)90488-3

U. Von-schwedler, R. Kornbluth, and D. Trono, The nuclear localization signal of the matrix protein of human immunodeficiency virus type 1 allows the establishment of infection in macrophages and quiescent T lymphocytes., Proceedings of the National Academy of Sciences, vol.91, issue.15, pp.6992-6996, 1994.
DOI : 10.1073/pnas.91.15.6992

S. Popov, M. Rexach, G. Zybarth, N. Reiling, M. Lee et al., Viral protein R regulates nuclear import of the HIV-1 pre-integration complex, The EMBO Journal, vol.17, issue.4, pp.909-917, 1998.
DOI : 10.1093/emboj/17.4.909

M. Vodicka, D. Koepp, P. Silver, and M. Emerman, HIV-1 Vpr interacts with the nuclear transport pathway to promote macrophage??infection, Genes & Development, vol.12, issue.2, pp.175-185, 1998.
DOI : 10.1101/gad.12.2.175

J. Balliet, D. Kolson, G. Eiger, F. Kim, K. Mcgann et al., Distinct Effects in Primary Macrophages and Lymphocytes of the Human Immunodeficiency Virus Type 1 Accessory Genes vpr, vpu, and nef: Mutational Analysis of a Primary HIV-1 Isolate, Virology, vol.200, issue.2, pp.623-631, 1994.
DOI : 10.1006/viro.1994.1225

R. Connor, B. Chen, S. Choe, and N. Landau, Vpr Is Required for Efficient Replication of Human Immunodeficiency Virus Type-1 in Mononuclear Phagocytes, Virology, vol.206, issue.2, pp.935-944, 1995.
DOI : 10.1006/viro.1995.1016

J. Dvorin, P. Bell, G. Maul, M. Yamashita, M. Emerman et al., Reassessment of the Roles of Integrase and the Central DNA Flap in Human Immunodeficiency Virus Type 1 Nuclear Import, Journal of Virology, vol.76, issue.23, pp.12087-12096, 2002.
DOI : 10.1128/JVI.76.23.12087-12096.2002

R. Fouchier, B. Meyer, J. Simon, U. Fischer, and M. Malim, HIV-1 infection of non-dividing cells: evidence that the amino-terminal basic region of the viral matrix protein is important for Gag processing but not for post-entry nuclear import, The EMBO Journal, vol.16, issue.15, pp.4531-4539, 1997.
DOI : 10.1093/emboj/16.15.4531

E. Freed, G. Englund, F. Maldarelli, and M. Martin, Phosphorylation of Residue 131 of HIV-1 Matrix Is Not Required for Macrophage Infection, Cell, vol.88, issue.2, pp.171-173, 1997.
DOI : 10.1016/S0092-8674(00)81836-X

A. Limon, N. Nakajima, R. Lu, H. Ghory, and A. Engelman, Wild-Type Levels of Nuclear Localization and Human Immunodeficiency Virus Type 1 Replication in the Absence of the Central DNA Flap, Journal of Virology, vol.76, issue.23, pp.12078-12086, 2002.
DOI : 10.1128/JVI.76.23.12078-12086.2002

C. Petit, O. Schwartz, and F. Mammano, The Karyophilic Properties of Human Immunodeficiency Virus Type 1 Integrase Are Not Required for Nuclear Import of Proviral DNA, Journal of Virology, vol.74, issue.15, pp.7119-7126, 2000.
DOI : 10.1128/JVI.74.15.7119-7126.2000

M. Yamashita and M. Emerman, The Cell Cycle Independence of HIV Infections Is Not Determined by Known Karyophilic Viral Elements, PLoS Pathogens, vol.69, issue.3, p.18, 2005.
DOI : 10.1371/journal.ppat.0010018.sg001

R. Zufferey, D. Nagy, R. Mandel, L. Naldini, and D. Trono, Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo, Nature Biotechnology, vol.88, issue.9, pp.871-875, 1997.
DOI : 10.1038/nbt0997-871

V. Baekelandt, A. Claeys, K. Eggermont, E. Lauwers, D. Strooper et al., Characterization of Lentiviral Vector-Mediated Gene Transfer in Adult Mouse Brain, Human Gene Therapy, vol.13, issue.7, pp.841-853, 2002.
DOI : 10.1089/10430340252899019

V. Zennou, C. Serguera, C. Sarkis, C. P. Perret, E. Mallet et al., The HIV-1 DNA flap stimulates HIV vector-mediated cell transduction in the brain, Nature Biotechnology, vol.111, issue.5, pp.446-450, 2001.
DOI : 10.1089/10430349950019057

D. Eckstein, M. Sherman, M. Penn, P. Chin, D. Noronha et al., T Cells, The Journal of Experimental Medicine, vol.63, issue.10, pp.1407-1419, 2001.
DOI : 10.1038/77481

B. Muller, U. Tessmer, U. Schubert, and H. Krausslich, Human Immunodeficiency Virus Type 1 Vpr Protein Is Incorporated into the Virion in Significantly Smaller Amounts than Gag and Is Phosphorylated in Infected Cells, Journal of Virology, vol.74, issue.20, pp.9727-9731, 2000.
DOI : 10.1128/JVI.74.20.9727-9731.2000

M. Kawamura, T. Ishizaki, A. Ishimoto, T. Shioda, T. Kitamura et al., Growth ability of human immunodeficiency virus type 1 auxiliary gene mutants in primary blood macrophage cultures, Journal of General Virology, vol.75, issue.9, pp.752427-2431, 1994.
DOI : 10.1099/0022-1317-75-9-2427

A. Varin, A. Decrion, E. Sabbah, V. Quivy, J. Sire et al., Synthetic Vpr Protein Activates Activator Protein-1, c-Jun N-terminal Kinase, and NF-??B and Stimulates HIV-1 Transcription in Promonocytic Cells and Primary Macrophages, Journal of Biological Chemistry, vol.280, issue.52, pp.42557-42567, 2005.
DOI : 10.1074/jbc.M502211200

G. Jacquot, L. Rouzic, E. David, A. Mazzolini, J. Bouchet et al., Localization of HIV-1 Vpr to the nuclear envelope: Impact on Vpr functions and virus replication in macrophages, Retrovirology, vol.4, issue.1, p.84, 2007.
DOI : 10.1186/1742-4690-4-84

P. Gallay, T. Hope, D. Chin, and D. Trono, HIV-1 infection of nondividing cells through the recognition of integrase by the importin/karyopherin pathway, Proceedings of the National Academy of Sciences, vol.94, issue.18, pp.9825-9830, 1997.
DOI : 10.1073/pnas.94.18.9825

R. Chen, L. Rouzic, E. Kearney, J. Mansky, L. Benichou et al., Vpr-mediated Incorporation of UNG2 into HIV-1 Particles Is Required to Modulate the Virus Mutation Rate and for Replication in Macrophages, Journal of Biological Chemistry, vol.279, issue.27, pp.28419-28425, 2004.
DOI : 10.1074/jbc.M403875200

Y. Nitahara-kasahara, M. Kamata, T. Yamamoto, X. Zhang, Y. Miyamoto et al., Novel Nuclear Import of Vpr Promoted by Importin ?? Is Crucial for Human Immunodeficiency Virus Type 1 Replication in Macrophages, Journal of Virology, vol.81, issue.10, pp.5284-5293, 2007.
DOI : 10.1128/JVI.01928-06

M. Sherman, C. De-noronha, L. Eckstein, J. Hataye, P. Mundt et al., Nuclear Export of Vpr Is Required for Efficient Replication of Human Immunodeficiency Virus Type 1 in Tissue Macrophages, Journal of Virology, vol.77, issue.13, pp.7582-7589, 2003.
DOI : 10.1128/JVI.77.13.7582-7589.2003

A. Bergamaschi, D. Ayinde, A. David, L. Rouzic, E. Morel et al., The Human Immunodeficiency Virus Type 2 Vpx Protein Usurps the CUL4A-DDB1DCAF1 Ubiquitin Ligase To Overcome a Postentry Block in Macrophage Infection, Journal of Virology, vol.83, issue.10, pp.4854-4860, 2009.
DOI : 10.1128/JVI.00187-09

T. Fletcher, B. Brichacek, N. Sharova, M. Newman, G. Stivahtis et al., Nuclear import and cell cycle arrest functions of the HIV-1 Vpr protein are encoded by two separate genes in HIV-2/SIV(SM), Embo J, vol.15, pp.6155-6165, 1996.

I. Park and J. Sodroski, Functional Analysis of the vpx, vpr, and nef Genes of Simian Immunodeficiency Virus, Journal of Acquired Immune Deficiency Syndromes & Human Retrovirology, vol.8, issue.4, pp.335-344, 1995.
DOI : 10.1097/00042560-199504000-00003

F. Ueno, H. Shiota, M. Miyaura, A. Yoshida, A. Sakurai et al., Vpx and Vpr proteins of HIV-2 up-regulate the viral infectivity by a distinct mechanism in lymphocytic cells, Microbes and Infection, vol.5, issue.5, pp.387-395, 2003.
DOI : 10.1016/S1286-4579(03)00042-X

B. Campbell and V. Hirsch, Vpr of simian immunodeficiency virus of African green monkeys is required for replication in macaque macrophages and lymphocytes, J Virol, vol.71, pp.5593-5602, 1997.

B. Liu, A. Woltman, H. Janssen, and A. Boonstra, Modulation of dendritic cell function by persistent viruses, Journal of Leukocyte Biology, vol.85, issue.2, pp.205-214, 2009.
DOI : 10.1189/jlb.0408241

B. Doehle, F. Hladik, J. Mcnevin, M. Mcelrath, M. Gale et al., Human Immunodeficiency Virus Type 1 Mediates Global Disruption of Innate Antiviral Signaling and Immune Defenses within Infected Cells, Journal of Virology, vol.83, issue.20, pp.10395-10405, 2009.
DOI : 10.1128/JVI.00849-09

A. Okumura, T. Alce, B. Lubyova, H. Ezelle, K. Strebel et al., HIV-1 accessory proteins VPR and Vif modulate antiviral response by targeting IRF-3 for degradation, Virology, vol.373, issue.1, pp.85-97, 2008.
DOI : 10.1016/j.virol.2007.10.042

K. Muthumani, S. Kudchodkar, E. Papasavvas, L. Montaner, D. Weiner et al., HIV-1 Vpr regulates expression of beta chemokines in human primary lymphocytes and macrophages, J Leukoc Biol, vol.68, pp.366-372, 2000.

V. Ayyavoo, K. Muthumani, S. Kudchodkar, D. Zhang, P. Ramanathan et al., HIV-1 viral protein R compromises cellular immune function in vivo, International Immunology, vol.14, issue.1, pp.13-22, 2002.
DOI : 10.1093/intimm/14.1.13

K. Muthumani, D. Hwang, A. Choo, S. Mayilvahanan, N. Dayes et al., HIV-1 Vpr inhibits the maturation and activation of macrophages and dendritic cells in vitro, International Immunology, vol.17, issue.2, pp.103-116, 2005.
DOI : 10.1093/intimm/dxh190

B. Majumder, M. Janket, E. Schafer, K. Schaubert, X. Huang et al., Human Immunodeficiency Virus Type 1 Vpr Impairs Dendritic Cell Maturation and T-Cell Activation: Implications for Viral Immune Escape, Journal of Virology, vol.79, issue.13, pp.7990-8003, 2005.
DOI : 10.1128/JVI.79.13.7990-8003.2005

B. Majumder, N. Venkatachari, E. Schafer, M. Janket, and V. Ayyavoo, Dendritic Cells Infected with vpr-Positive Human Immunodeficiency Virus Type 1 Induce CD8+ T-Cell Apoptosis via Upregulation of Tumor Necrosis Factor Alpha, Journal of Virology, vol.81, issue.14, pp.7388-7399, 2007.
DOI : 10.1128/JVI.00893-06

N. Venkatachari, B. Majumder, and V. Ayyavoo, Human immunodeficiency virus (HIV) type 1 Vpr induces differential regulation of T cell costimulatory molecules: Direct effect of Vpr on T cell activation and immune function, Virology, vol.358, issue.2, pp.347-356, 2007.
DOI : 10.1016/j.virol.2006.08.030

B. Majumder, N. Venkatachari, O. Leary, S. Ayyavoo, and V. , Infection with Vpr-Positive Human Immunodeficiency Virus Type 1 Impairs NK Cell Function Indirectly through Cytokine Dysregulation of Infected Target Cells, Journal of Virology, vol.82, issue.14, pp.7189-7200, 2008.
DOI : 10.1128/JVI.01979-07

H. Hong, N. Bhatnagar, M. Ballmaier, U. Schubert, P. Henklein et al., Exogenous HIV-1 Vpr disrupts IFN-?? response by plasmacytoid dendritic cells (pDCs) and subsequent pDC/NK interplay, Immunology Letters, vol.125, issue.2, pp.100-104, 2009.
DOI : 10.1016/j.imlet.2009.06.008

B. Majumder, N. Venkatachari, A. Srinivasan, and V. Ayyavoo, HIV-1 Mediated Immune Pathogenesis: Spotlight on the Role of Viral Protein R (VPR), Current HIV Research, vol.7, issue.2
DOI : 10.2174/157016209787581445

J. Ward, Z. Davis, J. Dehart, E. Zimmerman, A. Bosque et al., HIV-1 Vpr Triggers Natural Killer Cell???Mediated Lysis of Infected Cells through Activation of the ATR-Mediated DNA Damage Response, PLoS Pathogens, vol.102, issue.10, p.1000613, 2009.
DOI : 10.1371/journal.ppat.1000613.s009

M. Mirani, I. Elenkov, S. Volpi, N. Hiroi, G. Chrousos et al., HIV-1 Protein Vpr Suppresses IL-12 Production from Human Monocytes by Enhancing Glucocorticoid Action: Potential Implications of Vpr Coactivator Activity for the Innate and Cellular Immunity Deficits Observed in HIV-1 Infection, The Journal of Immunology, vol.169, issue.11, pp.6361-6368, 2002.
DOI : 10.4049/jimmunol.169.11.6361

P. Roux, C. Alfieri, M. Hrimech, E. Cohen, and J. Tanner, Activation of Transcription Factors NF-kappa B and NF-IL-6 by Human Immunodeficiency Virus Type 1 Protein R (Vpr) Induces Interleukin-8 Expression, Journal of Virology, vol.74, issue.10, pp.4658-4665, 2000.
DOI : 10.1128/JVI.74.10.4658-4665.2000

J. He, S. Choe, R. Walker, D. Marzio, P. Morgan et al., Human immunodeficiency virus type 1 viral protein R (Vpr) arrests cells in the G2 phase of the cell cycle by inhibiting p34cdc2 activity, J Virol, vol.69, pp.6705-6711, 1995.

J. Jowett, V. Planelles, B. Poon, N. Shah, M. Chen et al., The human immunodeficiency virus type 1 vpr gene arrests infected T cells in the G2 + M phase of the cell cycle, J Virol, vol.69, pp.6304-6313, 1995.

V. Planelles, F. Bachelerie, J. Jowett, A. Haislip, Y. Xie et al., Fate of the human immunodeficiency virus type 1 provirus in infected cells: a role for vpr, J Virol, vol.69, pp.5883-5889, 1995.

F. Re, D. Braaten, E. Franke, and J. Luban, Human immunodeficiency virus type 1 Vpr arrests the cell cycle in G2 by inhibiting the activation of p34cdc2-cyclin B, J Virol, vol.69, pp.6859-6864, 1995.

M. Rogel, L. Wu, and M. Emerman, The human immunodeficiency virus type 1 vpr gene prevents cell proliferation during chronic infection, J Virol, vol.69, pp.882-888, 1995.

J. Belzile, G. Duisit, N. Rougeau, J. Mercier, A. Finzi et al., HIV-1 Vpr-Mediated G2 Arrest Involves the DDB1-CUL4AVPRBP E3 Ubiquitin Ligase, PLoS Pathogens, vol.76, issue.7, p.85, 2007.
DOI : 1098-5514(2002)076[4125:HIVTVP]2.0.CO;2

J. Dehart, E. Zimmerman, O. Ardon, C. Monteiro-filho, E. Arganaraz et al., HIV-1 Vpr activates the G2 checkpoint through manipulation of the ubiquitin proteasome system, Virology Journal, vol.4, issue.1, p.57, 2007.
DOI : 10.1186/1743-422X-4-57

K. Hrecka, M. Gierszewska, S. Srivastava, L. Kozaczkiewicz, S. Swanson et al., Lentiviral Vpr usurps Cul4-DDB1[VprBP] E3 ubiquitin ligase to modulate cell cycle, Proceedings of the National Academy of Sciences, vol.104, issue.28, pp.11778-11783, 2007.
DOI : 10.1073/pnas.0702102104

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1906728

L. Rouzic, E. Belaidouni, N. Estrabaud, E. Morel, M. Rain et al., HIV1 Vpr Arrests the Cell Cycle by Recruiting DCAF1/VprBP, a Receptor of the Cul4-DDB1 Ubiquitin Ligase, Cell Cycle, vol.6, issue.2, pp.182-188, 2007.
DOI : 10.4161/cc.6.2.3732

B. Schrofelbauer, Y. Hakata, and N. Landau, HIV-1 Vpr function is mediated by interaction with the damage-specific DNA-binding protein DDB1, Proceedings of the National Academy of Sciences, vol.104, issue.10, pp.4130-4135, 2007.
DOI : 10.1073/pnas.0610167104

L. Tan, E. Ehrlich, and X. Yu, DDB1 and Cul4A Are Required for Human Immunodeficiency Virus Type 1 Vpr-Induced G2 Arrest, Journal of Virology, vol.81, issue.19, pp.10822-10830, 2007.
DOI : 10.1128/JVI.01380-07

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2045451

X. Wen, K. Duus, T. Friedrich, and C. De-noronha, The HIV1 Protein Vpr Acts to Promote G2 Cell Cycle Arrest by Engaging a DDB1 and Cullin4A-containing Ubiquitin Ligase Complex Using VprBP/DCAF1 as an Adaptor, Journal of Biological Chemistry, vol.282, issue.37, pp.27046-27057, 2007.
DOI : 10.1074/jbc.M703955200

L. Zhao, S. Mukherjee, and O. Narayan, Biochemical mechanism of HIV-I Vpr function. Specific interaction with a cellular protein, J Biol Chem, vol.269, pp.15577-15582, 1994.

S. Angers, T. Li, X. Yi, M. Maccoss, R. Moon et al., Molecular architecture and assembly of the DDB1???CUL4A ubiquitin ligase machinery, Nature, vol.77, pp.590-593, 2006.
DOI : 10.1038/nature05175

Y. He, C. Mccall, J. Hu, Y. Zeng, and Y. Xiong, DDB1 functions as a linker to recruit receptor WD40 proteins to CUL4-ROC1 ubiquitin ligases, Genes & Development, vol.20, issue.21, pp.2949-2954, 2006.
DOI : 10.1101/gad.1483206

L. Higa and H. Zhang, Stealing the spotlight: CUL4-DDB1 ubiquitin ligase docks WD40-repeat proteins to destroy, Cell Division, vol.2, issue.1, p.5, 2007.
DOI : 10.1186/1747-1028-2-5

J. Jin, E. Arias, J. Chen, J. Harper, and J. Walter, A Family of Diverse Cul4-Ddb1-Interacting Proteins Includes Cdt2, which Is Required for S Phase Destruction of the Replication Factor Cdt1, Molecular Cell, vol.23, issue.5, pp.709-721, 2006.
DOI : 10.1016/j.molcel.2006.08.010

B. Schrofelbauer, Q. Yu, S. Zeitlin, and N. Landau, Human Immunodeficiency Virus Type 1 Vpr Induces the Degradation of the UNG and SMUG Uracil-DNA Glycosylases, Journal of Virology, vol.79, issue.17, pp.10978-10987, 2005.
DOI : 10.1128/JVI.79.17.10978-10987.2005

L. Rouzic, E. Morel, M. Ayinde, D. Belaidouni, N. Letienne et al., Assembly with the Cul4A-DDB1DCAF1 Ubiquitin Ligase Protects HIV-1 Vpr from Proteasomal Degradation, Journal of Biological Chemistry, vol.283, issue.31, pp.21686-21692, 2008.
DOI : 10.1074/jbc.M710298200

J. Binette, M. Dube, J. Mercier, D. Halawani, M. Latterich et al., Requirements for the selective degradation of CD4 receptor molecules by the human immunodeficiency virus type 1 Vpu protein in the endoplasmic reticulum, Retrovirology, vol.4, issue.1, p.75, 2007.
DOI : 10.1186/1742-4690-4-75

F. Margottin, S. Bour, H. Durand, L. Selig, S. Benichou et al., A Novel Human WD Protein, h-??TrCP, that Interacts with HIV-1 Vpu Connects CD4 to the ER Degradation Pathway through an F-Box Motif, Molecular Cell, vol.1, issue.4, pp.565-574, 1998.
DOI : 10.1016/S1097-2765(00)80056-8

J. Douglas, K. Viswanathan, M. Mccarroll, J. Gustin, K. Fruh et al., Vpu Directs the Degradation of the Human Immunodeficiency Virus Restriction Factor BST-2/Tetherin via a ??TrCP-Dependent Mechanism, Journal of Virology, vol.83, issue.16, pp.7931-7947, 2009.
DOI : 10.1128/JVI.00242-09

B. Mangeat, G. Gers-huber, M. Lehmann, M. Zufferey, J. Luban et al., HIV-1 Vpu Neutralizes the Antiviral Factor Tetherin/BST-2 by Binding It and Directing Its Beta-TrCP2-Dependent Degradation, PLoS Pathogens, vol.213, issue.9, p.1000574, 2009.
DOI : 10.1371/journal.ppat.1000574.g009

X. Yu, Y. Yu, B. Liu, K. Luo, W. Kong et al., Induction of APOBEC3G Ubiquitination and Degradation by an HIV-1 Vif-Cul5-SCF Complex, Science, vol.302, issue.5647, pp.1056-1060, 2003.
DOI : 10.1126/science.1089591

A. Mehle, B. Strack, P. Ancuta, C. Zhang, M. Mcpike et al., Vif Overcomes the Innate Antiviral Activity of APOBEC3G by Promoting Its Degradation in the Ubiquitin-Proteasome Pathway, Journal of Biological Chemistry, vol.279, issue.9, pp.7792-7798, 2004.
DOI : 10.1074/jbc.M313093200

H. Wiegand, B. Doehle, H. Bogerd, and B. Cullen, A second human antiretroviral factor, APOBEC3F, is suppressed by the HIV-1 and HIV

Y. Yu, Z. Xiao, E. Ehrlich, X. Yu, and X. Yu, Selective assembly of HIV-1 Vif-Cul5-ElonginB-ElonginC E3 ubiquitin ligase complex through a novel SOCS box and upstream cysteines, Genes & Development, vol.18, issue.23, pp.2867-2872, 2004.
DOI : 10.1101/gad.1250204

A. Brasey, M. Lopez-lastra, T. Ohlmann, N. Beerens, B. Berkhout et al., The Leader of Human Immunodeficiency Virus Type 1 Genomic RNA Harbors an Internal Ribosome Entry Segment That Is Active during the G2/M Phase of the Cell Cycle, Journal of Virology, vol.77, issue.7, pp.3939-3949, 2003.
DOI : 10.1128/JVI.77.7.3939-3949.2003

W. Goh, M. Rogel, C. Kinsey, S. Michael, P. Fultz et al., HIV-1 Vpr increases viral expression by manipulation of the cell cycle: A mechanism for selection of Vpr in vivo, Nature Medicine, vol.268, issue.1, pp.65-71, 1998.
DOI : 10.1074/jbc.272.14.9166

V. Kewalramani, C. Park, P. Gallombardo, and M. Emerman, Protein Stability Influences Human Immunodeficiency Virus Type 2 Vpr Virion Incorporation and Cell Cycle Effect, Virology, vol.218, issue.2, pp.326-334, 1996.
DOI : 10.1006/viro.1996.0201

V. Planelles, J. Jowett, Q. Li, Y. Xie, B. Hahn et al., Vpr-induced cell cycle arrest is conserved among primate lentiviruses, J Virol, vol.70, pp.2516-2524, 1996.

G. Stivahtis, M. Soares, M. Vodicka, B. Hahn, and M. Emerman, Conservation and host specificity of Vpr-mediated cell cycle arrest suggest a fundamental role in primate lentivirus evolution and biology, J Virol, vol.71, pp.4331-4338, 1997.

M. Matsuda, A. Arai, Y. Nakamura, R. Fujisawa, and M. Masuda, Host cell-specific effects of lentiviral accessory proteins on the eukaryotic cell cycle progression, Microbes and Infection, vol.11, issue.6-7, pp.646-653, 2009.
DOI : 10.1016/j.micinf.2009.03.006

M. Belshan, L. Mahnke, and L. Ratner, Conserved amino acids of the human immunodeficiency virus type 2 Vpx nuclear localization signal are critical for nuclear targeting of the viral preintegration complex in non-dividing cells, Virology, vol.346, issue.1, pp.118-126, 2006.
DOI : 10.1016/j.virol.2005.10.036

X. Cheng, M. Belshan, and L. Ratner, Hsp40 Facilitates Nuclear Import of the Human Immunodeficiency Virus Type 2 Vpx-Mediated Preintegration Complex, Journal of Virology, vol.82, issue.3, pp.1229-1237, 2008.
DOI : 10.1128/JVI.00540-07

M. Belshan and L. Ratner, Identification of the nuclear localization signal of human immunodeficiency virus type 2 Vpx, Virology, vol.311, issue.1, pp.7-15, 2003.
DOI : 10.1016/S0042-6822(03)00093-X

C. Depienne, P. Roques, C. Creminon, L. Fritsch, R. Casseron et al., Cellular Distribution and Karyophilic Properties of Matrix, Integrase, and Vpr Proteins from the Human and Simian Immunodeficiency Viruses, Experimental Cell Research, vol.260, issue.2, pp.387-395, 2000.
DOI : 10.1006/excr.2000.5016

S. Mahalingam, B. Van-tine, M. Santiago, F. Gao, G. Shaw et al., Functional Analysis of the Simian Immunodeficiency Virus Vpx Protein: Identification of Packaging Determinants and a Novel Nuclear Targeting Domain, Journal of Virology, vol.75, issue.1, pp.362-374, 2001.
DOI : 10.1128/JVI.75.1.362-374.2001

H. Pancio, N. Heyden, . Vander, and L. Ratner, The C-Terminal Proline-Rich Tail of Human Immunodeficiency Virus Type 2 Vpx Is Necessary for Nuclear Localization of the Viral Preintegration Complex in Nondividing Cells, Journal of Virology, vol.74, issue.13, pp.6162-6167, 2000.
DOI : 10.1128/JVI.74.13.6162-6167.2000

H. Akari, J. Sakuragi, Y. Takebe, K. Tomonaga, M. Kawamura et al., Biological characterization of human immunodeficiency virus type 1 and type 2 mutants in human peripheral blood mononuclear cells, Archives of Virology, vol.62, issue.1-2, pp.157-167, 1992.
DOI : 10.1007/BF01317146

J. Gibbs, D. Regier, and R. Desrosiers, Mutants with Deletions in "Nonessential" Genes, AIDS Research and Human Retroviruses, vol.10, issue.5, pp.607-616, 1994.
DOI : 10.1089/aid.1994.10.607

M. Guyader, M. Emerman, L. Montagnier, and K. Peden, VPX mutants of HIV-2 are infectious in established cell lines but display a severe defect in peripheral blood lymphocytes, Embo J, vol.8, pp.1169-1175, 1989.

J. Kappes, J. Conway, S. Lee, G. Shaw, and B. Hahn, Human immunodeficiency virus type 2 vpx protein augments viral infectivity, Virology, vol.184, issue.1, pp.197-209, 1991.
DOI : 10.1016/0042-6822(91)90836-Z

M. Kawamura, H. Sakai, and A. Adachi, Human Immunodeficiency Virus Vpx Is Required for the Early Phase of Replication in Peripheral Blood Mononuclear Cells, Microbiology and Immunology, vol.335, issue.11, pp.871-878, 1994.
DOI : 10.1111/j.1348-0421.1994.tb02140.x

J. Kappes, J. Parkin, J. Conway, J. Kim, C. Brouillette et al., Intracellular Transport and Virion Incorporation of vpx Requires Interaction with Other Virus Type-Specific Components, Virology, vol.193, issue.1, pp.222-233, 1993.
DOI : 10.1006/viro.1993.1118

X. Yu, Q. Yu, M. Essex, and T. Lee, The vpx gene of simian immunodeficiency virus facilitates efficient viral replication in fresh lymphocytes and macrophage, J Virol, vol.65, pp.5088-5091, 1991.

C. Goujon, V. Arfi, T. Pertel, J. Luban, J. Lienard et al., Characterization of Simian Immunodeficiency Virus SIVSM/Human Immunodeficiency Virus Type 2 Vpx Function in Human Myeloid Cells, Journal of Virology, vol.82, issue.24, pp.12335-12345, 2008.
DOI : 10.1128/JVI.01181-08

P. Mangeot, K. Duperrier, D. Negre, B. Boson, D. Rigal et al., High Levels of Transduction of Human Dendritic Cells with Optimized SIV Vectors, Molecular Therapy, vol.5, issue.3, pp.283-290, 2002.
DOI : 10.1006/mthe.2002.0541

N. Wolfrum, M. Muhlebach, S. Schule, J. Kaiser, B. Kloke et al., Impact of viral accessory proteins of SIVsmmPBj on early steps of infection of quiescent cells, Virology, vol.364, issue.2, pp.330-341, 2007.
DOI : 10.1016/j.virol.2007.03.008

J. Gibbs, A. Lackner, S. Lang, M. Simon, P. Sehgal et al., Progression to AIDS in the absence of a gene for vpr or vpx, J Virol, vol.69, pp.2378-2383, 1995.

V. Hirsch, M. Sharkey, C. Brown, B. Brichacek, S. Goldstein et al., Vpx is required for dissemination and pathogenesis of SIVSM PBj: Evidence of macrophage-dependent viral amplification, Nature Medicine, vol.14, issue.12, pp.1401-1408, 1998.
DOI : 10.1038/345636a0

M. Fujita, M. Otsuka, M. Miyoshi, B. Khamsri, M. Nomaguchi et al., Vpx Is Critical for Reverse Transcription of the Human Immunodeficiency Virus Type 2 Genome in Macrophages, Journal of Virology, vol.82, issue.15, pp.7752-7756, 2008.
DOI : 10.1128/JVI.01003-07

R. Kaushik, X. Zhu, R. Stranska, Y. Wu, and M. Stevenson, A Cellular Restriction Dictates the Permissivity of Nondividing Monocytes/Macrophages to Lentivirus and Gammaretrovirus Infection, Cell Host & Microbe, vol.6, issue.1, pp.68-80, 2009.
DOI : 10.1016/j.chom.2009.05.022

S. Srivastava, S. Swanson, N. Manel, L. Florens, M. Washburn et al., Lentiviral Vpx Accessory Factor Targets VprBP/DCAF1 Substrate Adaptor for Cullin 4 E3 Ubiquitin Ligase to Enable Macrophage Infection, PLoS Pathogens, vol.79, issue.5, p.1000059, 2008.
DOI : 10.1371/journal.ppat.1000059.s004

N. Sharova, Y. Wu, X. Zhu, R. Stranska, R. Kaushik et al., Primate Lentiviral Vpx Commandeers DDB1 to Counteract a Macrophage Restriction, PLoS Pathogens, vol.4, issue.5, p.1000057, 2008.
DOI : 10.1371/journal.ppat.1000057.s003

N. Madani and D. Kabat, An endogenous inhibitor of human immunodeficiency virus in human lymphocytes is overcome by the viral Vif protein, J Virol, vol.72, pp.10251-10255, 1998.

J. Simon, N. Gaddis, R. Fouchier, and M. Malim, Evidence for a newly discovered cellular anti-HIV-1 phenotype, Nature Medicine, vol.239, issue.12, pp.1397-1400, 1998.
DOI : 10.1038/382826a0

Z. Keckesova, L. Ylinen, and G. Towers, The human and African green monkey TRIM5?? genes encode Ref1 and Lv1 retroviral restriction factor activities, Proceedings of the National Academy of Sciences, vol.101, issue.29, pp.10780-10785, 2004.
DOI : 10.1073/pnas.0402474101

S. Nisole, C. Lynch, J. Stoye, and M. Yap, A Trim5-cyclophilin A fusion protein found in owl monkey kidney cells can restrict HIV-1, Proceedings of the National Academy of Sciences, vol.101, issue.36, pp.13324-13328, 2004.
DOI : 10.1073/pnas.0404640101

D. Sayah, E. Sokolskaja, L. Berthoux, and J. Luban, Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1, Nature, vol.260, issue.6999, pp.569-573, 2004.
DOI : 10.1016/S1074-7613(03)00268-1

M. Stremlau, C. Owens, M. Perron, M. Kiessling, P. Autissier et al., The cytoplasmic body component TRIM5?? restricts HIV-1 infection in Old World monkeys, Nature, vol.427, issue.6977, pp.848-853, 2004.
DOI : 10.1038/nature02343

M. Yap, S. Nisole, C. Lynch, and J. Stoye, Trim5?? protein restricts both HIV-1 and murine leukemia virus, Proceedings of the National Academy of Sciences, vol.101, issue.29, pp.10786-10791, 2004.
DOI : 10.1073/pnas.0402876101

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC490012

S. Schule, B. Kloke, J. Kaiser, S. Heidmeier, S. Panitz et al., Restriction of HIV-1 Replication in Monocytes Is Abolished by Vpx of SIVsmmPBj, PLoS ONE, vol.93, issue.9, p.7098, 2009.
DOI : 10.1371/journal.pone.0007098.s001

G. Berger, C. Goujon, J. Darlix, and A. Cimarelli, SIVMAC Vpx improves the transduction of dendritic cells with nonintegrative HIV-1-derived vectors, Gene Therapy, vol.96, issue.1, pp.159-163, 2009.
DOI : 10.1371/journal.ppat.1000059

C. Goujon, L. Jarrosson-wuilleme, J. Bernaud, D. Rigal, J. Darlix et al., With a little help from a friend: increasing HIV transduction of monocyte-derived dendritic cells with virion-like particles of SIVMAC, Gene Therapy, vol.77, issue.12
DOI : 10.1038/sj.gt.3302753

. Ayinde, Cite this article as Limelight on two HIV/SIV accessory proteins in macrophage infection: Is Vpx overshadowing Vpr? Retrovirology, p.35, 2010.