J. Kraszeski, S. Wallach, and R. Verch, Effect of Insulin on Radiochromium Distribution in Diabetic Rats*, Endocrinology, vol.104, issue.4, pp.881-885, 1979.
DOI : 10.1210/endo-104-4-881

B. Morris, S. Macneil, C. Hardisty, S. Heller, C. Burgin et al., Chromium Homeostasis in Patients with Type II (NIDDM) Diabetes, Journal of Trace Elements in Medicine and Biology, vol.13, issue.1-2, pp.57-61, 1999.
DOI : 10.1016/S0946-672X(99)80024-8

A. Yamamoto, O. Wada, and T. Ono, Isolation of a biologically active lowmolecular-mass chromium compound from rabbit liver, Eur J Biochem, vol.65, pp.627-631, 1987.

W. Mertz, Chromium in human nutrition: a review, J Nutr, vol.123, pp.626-633, 1993.

U. Shindea, G. Sharma, Y. Xu, N. Dhalla, and R. Goyal, Insulin sensitising action of chromium picolinate in various experimental models of diabetes mellitus, Journal of Trace Elements in Medicine and Biology, vol.18, issue.1, pp.23-32, 2004.
DOI : 10.1016/j.jtemb.2004.03.002

M. Rabinowitz, H. Gonick, S. Levin, and M. Davidson, Effects of Chromium and Yeast Supplements on Carbohydrate and Lipid Metabolism in Diabetic Men, Diabetes Care, vol.6, issue.4, pp.319-327, 1983.
DOI : 10.2337/diacare.6.4.319

A. Dogukan, M. Tuzcu, V. Juturu, G. Cikim, I. Ozercan et al., Effects of Chromium Histidinate on Renal Function, Oxidative Stress, and Heat-Shock Proteins in Fat-Fed and Streptozotocin-Treated Rats, Journal of Renal Nutrition, vol.20, issue.2, pp.112-120, 2010.
DOI : 10.1053/j.jrn.2009.04.009

S. Jain, P. Patel, K. Rogier, and S. Jain, Trivalent Chromium Inhibits Protein Glycosylation and Lipid Peroxidation in High Glucose-Treated Erythrocytes, Antioxidants & Redox Signaling, vol.8, issue.1-2, pp.238-241, 2006.
DOI : 10.1089/ars.2006.8.238

F. Refaie, A. Esmat, and A. Mohamed, Aboul Nour WH: Effect of chromium supplementation on the diabetes induced-oxidative stress in liver and brain of adult rats, Biometals, 2009.

X. Yang, S. Li, F. Dong, J. Ren, and N. Sreejayan, Insulin-sensitizing and cholesterol-lowering effects of chromium (d-Phenylalanine)3, Journal of Inorganic Biochemistry, vol.100, issue.7, pp.1187-1193, 2006.
DOI : 10.1016/j.jinorgbio.2006.01.039

J. Striffler, M. Polansky, and R. Anderson, Dietary chromium decreases insulin resistance in rats fed a high-fat, mineral-imbalanced diet, Metabolism, vol.47, issue.4, pp.396-400, 1998.
DOI : 10.1016/S0026-0495(98)90049-X

F. Dong, X. Yang, N. Sreejayan, and J. Ren, Chromium (D-Phenylalanine)3 Improves Obesity-Induced Cardiac Contractile Defect in ob/ob Mice**, Obesity, vol.152, issue.11, pp.2699-2711, 2007.
DOI : 10.1038/oby.2007.322

D. Kim, T. Kim, and J. Kang, Chromium picolinate supplementation improves insulin sensitivity in Goto-Kakizaki diabetic rats, Journal of Trace Elements in Medicine and Biology, vol.17, issue.4, pp.243-247, 2004.
DOI : 10.1016/S0946-672X(04)80025-7

D. Kim, T. Kim, I. Park, J. Kang, and A. Om, Effects of chromium picolinate supplementation on insulin sensitivity, serum lipids, and body weight in dexamethasone-treated rats, Metabolism, vol.51, issue.5, pp.589-594, 2002.
DOI : 10.1053/meta.2002.31985

W. Cefalu, Z. Wang, X. Zhang, L. Baldor, and J. Russell, Oral chromium picolinate improves carbohydrate and lipid metabolism and enhances skeletal muscle Glut-4 translocation in obese, hyperinsulinemic [JCR-LA corpulent] rats, J Nutr, vol.132, pp.1107-1114, 2002.

X. Yang, S. Li, F. Dong, J. Ren, and N. Sreejayan, Insulin-sensitizing and cholesterol-lowering effects of chromium (d-Phenylalanine)3, Journal of Inorganic Biochemistry, vol.100, issue.7, pp.1187-1193, 2006.
DOI : 10.1016/j.jinorgbio.2006.01.039

M. Mozaffari, R. Abdelsayed, J. Liu, and H. Wimborne, Effects of chromium picolinate on glycemic control and kidney of the obese Zucker rat, Nutrition & Metabolism, vol.6, issue.1, p.51, 2009.
DOI : 10.1186/1743-7075-6-51

T. Kuryl, Z. Krejpcio, R. Wojciak, M. Lipko, B. Debski et al., Chromium(III) Propionate and Dietary Fructans Supplementation Stimulate Erythrocyte Glucose Uptake and Beta-Oxidation in Lymphocytes of Rats, Biological Trace Element Research, vol.114, issue.1-3, pp.237-248, 2006.
DOI : 10.1385/BTER:114:1:237

J. Martin, Z. Wang, X. Zhang, D. Wachtel, J. Volaufova et al., Chromium Picolinate Supplementation Attenuates Body Weight Gain and Increases Insulin Sensitivity in Subjects With Type 2 Diabetes, Diabetes Care, vol.29, issue.8, pp.1826-1832, 2006.
DOI : 10.2337/dc06-0254

G. Singer and J. Geohas, The Effect of Chromium Picolinate and Biotin Supplementation on Glycemic Control in Poorly Controlled Patients with Type 2 Diabetes Mellitus: A Placebo-Controlled, Double-Blinded, Randomized Trial, Diabetes Technology & Therapeutics, vol.8, issue.6, pp.636-643, 2006.
DOI : 10.1089/dia.2006.8.636

M. Lai, Antioxidant Effects and Insulin Resistance Improvement of Chromium Combined with Vitamin C and E Supplementation for Type 2 Diabetes Mellitus, Journal of Clinical Biochemistry and Nutrition, vol.43, issue.3, pp.191-198, 2008.
DOI : 10.3164/jcbn.2008064

M. Althuis, N. Jordan, E. Ludington, and J. Wittes, Glucose and insulin responses to dietary chromium supplements: a meta-analysis, Am J Clin Nutr, vol.76, pp.148-155, 2002.

E. Balk, A. Tatsioni, A. Lichtenstein, J. Lau, and A. Pittas, Effect of Chromium Supplementation on Glucose Metabolism and Lipids: A systematic review of randomized controlled trials, Diabetes Care, vol.30, issue.8, pp.2154-163, 2007.
DOI : 10.2337/dc06-0996

C. Broadhurst and D. P. , Clinical Studies on Chromium Picolinate Supplementation in Diabetes Mellitus???A Review, Diabetes Technology & Therapeutics, vol.8, issue.6, pp.677-687, 2006.
DOI : 10.1089/dia.2006.8.677

Z. Wang, J. Qin, J. Martin, X. Zhang, O. Sereda et al., Phenotype of subjects with type 2 diabetes mellitus may determine clinical response to chromium supplementation, Metabolism, vol.56, issue.12, pp.1652-1655, 2007.
DOI : 10.1016/j.metabol.2007.07.007

Z. Wang and W. Cefalu, Current Concepts About Chromium Supplementation in Type 2 Diabetes and Insulin Resistance, Current Diabetes Reports, vol.334, issue.Suppl B, pp.145-151, 2010.
DOI : 10.1007/s11892-010-0097-3

S. Vladeva, D. Terzieva, and D. Arabadjiiska, Effect of chromium on the insulin resistance in patients with type II diabetes mellitus, Folia Med, vol.47, pp.59-62, 2005.

M. Lydic, M. Mcnurlan, S. Bembo, L. Mitchell, E. Komaroff et al., Chromium picolinate improves insulin sensitivity in obese subjects with polycystic ovary syndrome, Fertility and Sterility, vol.86, issue.1, pp.243-246, 2005.
DOI : 10.1016/j.fertnstert.2005.11.069

N. Iqbal, S. Cardillo, S. Volger, L. Bloedon, R. Anderson et al., Chromium Picolinate Does Not Improve Key Features of Metabolic Syndrome in Obese Nondiabetic Adults, Metabolic Syndrome and Related Disorders, vol.7, issue.2, pp.143-150, 2009.
DOI : 10.1089/met.2008.0048

H. Haase, S. Overbeck, and L. Rink, Zinc supplementation for the treatment or prevention of disease: Current status and future perspectives, Experimental Gerontology, vol.43, issue.5, pp.394-408, 2008.
DOI : 10.1016/j.exger.2007.12.002

P. Faure, J. Lafond, C. Coudray, E. Rossini, S. Halimi et al., Zinc prevents the structural and functional properties of free radical treated-insulin, Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology, vol.1209, issue.2, pp.260-264, 1994.
DOI : 10.1016/0167-4838(94)90194-5

R. Saper and R. Rash, Zinc: an essential micronutrient, Am Fam Physician, vol.79, pp.768-772, 2009.

C. Walsh, H. Sandstead, A. Prasad, P. Newberne, and P. Fraker, Zinc: health effects and research priorities for the 1990s, Environmental Health Perspectives, vol.102, issue.Suppl 2, pp.5-46, 1994.
DOI : 10.1289/ehp.941025

W. Maret and H. Sandstead, Zinc requirements and the risks and benefits of zinc supplementation, Journal of Trace Elements in Medicine and Biology, vol.20, issue.1, pp.3-18, 2006.
DOI : 10.1016/j.jtemb.2006.01.006

N. Lowe, K. Fekete, and T. Decsi, Methods of assessment of zinc status in humans: a systematic review, American Journal of Clinical Nutrition, vol.89, issue.6, pp.2040-2051, 2009.
DOI : 10.3945/ajcn.2009.27230G

I. Sekler, S. Sensi, M. Hershfinkel, and W. Silverman, Mechanism and regulation of cellular zinc transport, Mol Med, vol.13, pp.337-343, 2007.

J. Liuzzi and R. Cousins, MAMMALIAN ZINC TRANSPORTERS, Annual Review of Nutrition, vol.24, issue.1, pp.151-172, 2004.
DOI : 10.1146/annurev.nutr.24.012003.132402

L. Lichten and R. Cousins, Mammalian Zinc Transporters: Nutritional and Physiologic Regulation, Annual Review of Nutrition, vol.29, issue.1, pp.153-176, 2009.
DOI : 10.1146/annurev-nutr-033009-083312

C. Devirgiliis, P. Zalewski, G. Perozzi, and C. Murgia, Zinc fluxes and zinc transporter genes in chronic diseases, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, vol.622, issue.1-2, pp.84-93, 2007.
DOI : 10.1016/j.mrfmmm.2007.01.013

J. Rungby, Zinc, zinc transporters and diabetes, Diabetologia, vol.150, issue.8, pp.1549-51, 2010.
DOI : 10.1007/s00125-010-1793-x

N. Wijesekara, F. Chimienti, and M. Wheeler, Zinc, a regulator of islet function and glucose homeostasis, Diabetes, Obesity and Metabolism, vol.421, pp.202-214, 2009.
DOI : 10.1111/j.1463-1326.2009.01110.x

A. Prasad, Clinical, immunological, anti-inflammatory and antioxidant roles of zinc, Experimental Gerontology, vol.43, issue.5, pp.370-377, 2008.
DOI : 10.1016/j.exger.2007.10.013

N. Wiernsperger, Oxidative stress as a therapeutic target in diabetes: revisiting the controversy, Diabetes & Metabolism, vol.29, issue.6, pp.579-585, 2003.
DOI : 10.1016/S1262-3636(07)70072-1

H. Afridi, T. Kazi, N. Kazi, J. Baig, M. Jamali et al., Status of essential trace metals in biological samples of diabetic mother and their neonates, Archives of Gynecology and Obstetrics, vol.75, issue.suppl, pp.415-423, 2009.
DOI : 10.1007/s00404-009-0955-x

R. Singh, M. Niaz, S. Rastogi, S. Bajaj, Z. Gaoli et al., Current Zinc Intake and Risk of Diabetes and Coronary Artery Disease and Factors Associated with Insulin Resistance in Rural and Urban Populations of North India, Journal of the American College of Nutrition, vol.35, issue.6, pp.564-570, 1998.
DOI : 10.1080/07315724.1998.10718804

A. Viktorinova, E. Toserova, M. Krizko, and Z. Durackova, Altered metabolism of copper, zinc, and magnesium is associated with increased levels of glycated hemoglobin in patients with diabetes mellitus, Metabolism, vol.58, issue.10, pp.1477-1482, 2009.
DOI : 10.1016/j.metabol.2009.04.035

M. Serdar, F. Bakir, A. Hasimi, T. Celik, O. Akin et al., Trace and toxic element patterns in nonsmoker patients with noninsulin-dependent diabetes mellitus, impaired glucose tolerance, and fasting glucose, International Journal of Diabetes in Developing Countries, vol.29, issue.1, pp.35-40, 2009.
DOI : 10.4103/0973-3930.50713

A. Zargar, N. Shah, S. Masoodi, B. Laway, F. Dar et al., Copper, zinc, and magnesium levels in non-insulin dependent diabetes mellitus., Postgraduate Medical Journal, vol.74, issue.877, pp.665-668, 1998.
DOI : 10.1136/pgmj.74.877.665

J. Suliburska, P. Bogdanski, D. Pupek-musialik, and Z. Krejpcio, Dietary Intake and Serum and Hair Concentrations of Minerals and their Relationship with Serum Lipids and Glucose Levels in Hypertensive and Obese Patients with Insulin Resistance, Biological Trace Element Research, vol.124, issue.7 Suppl
DOI : 10.1007/s12011-010-8650-0

O. Obeid, M. Elfakhani, S. Hlais, M. Iskandar, M. Batal et al., Plasma Copper, Zinc, and Selenium Levels and Correlates with Metabolic Syndrome Components of Lebanese Adults, Biological Trace Element Research, vol.15, issue.1, pp.58-65, 2008.
DOI : 10.1007/s12011-008-8112-0

M. Aguilar, P. Saavedra, F. Arrieta, C. Mateos, M. Gonzalez et al., Plasma Mineral Content in Type-2 Diabetic Patients and Their Association with the Metabolic Syndrome, Annals of Nutrition and Metabolism, vol.51, issue.5, pp.402-406, 2007.
DOI : 10.1159/000108108

M. Soinio, J. Marniemi, M. Laakso, K. Pyorala, S. Lehto et al., Serum Zinc Level and Coronary Heart Disease Events in Patients With Type 2 Diabetes, Diabetes Care, vol.30, issue.3, pp.523-528, 2007.
DOI : 10.2337/dc06-1682

R. Ilouz, O. Kaidanovich, D. Gurwitz, and H. Eldar-finkelman, Inhibition of glycogen synthase kinase-3?? by bivalent zinc ions: insight into the insulin-mimetic action of zinc, Biochemical and Biophysical Research Communications, vol.295, issue.1, pp.102-106, 2002.
DOI : 10.1016/S0006-291X(02)00636-8

J. Jansen, W. Karges, and L. Rink, Zinc and diabetes ??? clinical links and molecular mechanisms, The Journal of Nutritional Biochemistry, vol.20, issue.6, pp.399-417, 2009.
DOI : 10.1016/j.jnutbio.2009.01.009

A. Prasad, B. Bao, F. Beck, O. Kucuk, and F. Sarkar, Antioxidant effect of zinc in humans, Free Radical Biology and Medicine, vol.37, issue.8, pp.1182-1190, 2004.
DOI : 10.1016/j.freeradbiomed.2004.07.007

E. Mocchegiani, R. Giacconi, and M. Malavolta, Zinc signalling and subcellular distribution: emerging targets in type 2 diabetes, Trends in Molecular Medicine, vol.14, issue.10, pp.419-428, 2008.
DOI : 10.1016/j.molmed.2008.08.002

W. Bettger, Zinc and selenium, site-specific versus general antioxidation, Canadian Journal of Physiology and Pharmacology, vol.71, issue.9, pp.721-724, 1993.
DOI : 10.1139/y93-108

M. Foster and S. Samman, Zinc and Redox Signaling: Perturbations Associated with Cardiovascular Disease and Diabetes Mellitus, Antioxidants & Redox Signaling, vol.13, issue.10, pp.1549-1573, 2010.
DOI : 10.1089/ars.2010.3111

W. Maret, The function of zinc metallothionein: a link between cellular zinc and redox state, J Nutr, vol.130, pp.1455-1463, 2000.

R. Tupe, S. Tupe, K. Tarwadi, and V. Agte, Effect of different dietary zinc levels on hepatic antioxidant and micronutrients indices under oxidative stress conditions, Metabolism, vol.59, issue.11, pp.1603-1611, 2010.
DOI : 10.1016/j.metabol.2010.02.020

H. Matsui, T. Oyama, Y. Okano, E. Hashimoto, T. Kawanai et al., Low micromolar zinc exerts cytotoxic action under H[2]O[2]-induced oxidative stress: Excessive increase in intracellular Zn, pp.27-32, 2010.

S. Steinhubl, Why Have Antioxidants Failed in Clinical Trials?, The American Journal of Cardiology, vol.101, issue.10, pp.14-19, 2008.
DOI : 10.1016/j.amjcard.2008.02.003

N. Wiernsperger, Oxidative stress: The special case of diabetes, BioFactors, vol.56, issue.3, pp.11-18, 2003.
DOI : 10.1002/biof.5520190103

I. Padmavathi, Y. Kishore, L. Venu, M. Ganeshan, N. Harishankar et al., Prenatal and perinatal zinc restriction: effects on body composition, glucose tolerance and insulin response in rat offspring, Experimental Physiology, vol.11, issue.6, pp.761-769, 2009.
DOI : 10.1113/expphysiol.2008.045856

S. Simon and C. Taylor, Dietary zinc supplementation attenuates hyperglycemia in db/db mice, Exp Biol Med, vol.226, pp.43-51, 2001.

Y. Tang, Q. Yang, J. Lu, X. Zhang, D. Suen et al., Zinc supplementation partially prevents renal pathological changes in diabetic rats???, The Journal of Nutritional Biochemistry, vol.21, issue.3, pp.237-246, 2010.
DOI : 10.1016/j.jnutbio.2008.12.010

R. Bruno, Y. Song, S. Leonard, D. Mustacich, A. Taylor et al., Dietary zinc restriction in rats alters antioxidant status and increases plasma F2 isoprostanes, The Journal of Nutritional Biochemistry, vol.18, issue.8, pp.509-518, 2007.
DOI : 10.1016/j.jnutbio.2006.09.001

S. Taneja, R. Mandal, and S. Girhotra, Long term excessive Zn-supplementation promotes metabolic syndrome-X in Wistar rats fed sucrose and fat rich semisynthetic diet, Indian J Exp Biol, vol.44, pp.705-718, 2006.

Q. Sun, R. Van-dam, W. Willett, and F. Hu, Prospective Study of Zinc Intake and Risk of Type 2 Diabetes in Women, Diabetes Care, vol.32, issue.4, pp.629-634, 2009.
DOI : 10.2337/dc08-1913

I. Raz, D. Karsai, and M. Katz, The influence of zinc supplementation on glucose homeostasis in NIDDM, Diabetes Res, vol.11, pp.73-79, 1989.

E. Heidarian, M. Amini, M. Parham, and A. Aminorroaya, Effect of Zinc Supplementation on Serum Homocysteine in Type 2 Diabetic Patients with Microalbuminuria, The Review of Diabetic Studies, vol.6, issue.1, pp.64-70, 2009.
DOI : 10.1900/RDS.2009.6.64

D. Marreiro, B. Geloneze, M. Tambascia, A. Lerario, A. Halpern et al., Effect of Zinc Supplementation on Serum Leptin Levels and Insulin Resistance of Obese Women, Biological Trace Element Research, vol.112, issue.2, pp.109-118, 2006.
DOI : 10.1385/BTER:112:2:109

V. Beletate, E. Dib, R. Atallah, and A. , Zinc supplementation for the prevention of type 2 diabetes mellitus, Cochrane Database Syst Rev, p.5525, 2007.

E. Mariani, F. Mangialasche, F. Feliziani, R. Cecchetti, M. Malavolta et al., Effects of zinc supplementation on antioxidant enzyme activities in healthy old subjects, Experimental Gerontology, vol.43, issue.5, pp.445-451, 2008.
DOI : 10.1016/j.exger.2007.10.012

URL : https://hal.archives-ouvertes.fr/hal-00499033

S. Russell and M. Tisdale, Mice, Endocrinology, vol.151, issue.3, pp.948-957, 2010.
DOI : 10.1210/en.2009-0827

D. Selva, A. Lecube, C. Hernandez, J. Baena, J. Fort et al., Lower Zinc-??2-Glycoprotein Production by Adipose Tissue and Liver in Obese Patients Unrelated to Insulin Resistance, The Journal of Clinical Endocrinology & Metabolism, vol.94, issue.11, pp.4499-4507, 2009.
DOI : 10.1210/jc.2009-0758

Y. Adachi, J. Yoshida, Y. Kodera, T. Kiss, T. Jakusch et al., Oral administration of a zinc complex improves type 2 diabetes and metabolic syndromes, Biochemical and Biophysical Research Communications, vol.351, issue.1, pp.165-170, 2006.
DOI : 10.1016/j.bbrc.2006.10.014

Y. Yoshikawa, Y. Adachi, and H. Sakurai, A new type of orally active anti-diabetic Zn(II)-dithiocarbamate complex, Life Sciences, vol.80, issue.8, pp.759-766, 2007.
DOI : 10.1016/j.lfs.2006.11.003

M. Navarro-alarcon and C. Cabrera-vique, Selenium in food and the human body: A review, Science of The Total Environment, vol.400, issue.1-3, pp.115-141, 2008.
DOI : 10.1016/j.scitotenv.2008.06.024

H. Steinbrenner and H. Sies, Protection against reactive oxygen species by selenoproteins, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1790, issue.11, pp.1478-85, 2009.
DOI : 10.1016/j.bbagen.2009.02.014

J. Lu and A. Holmgren, Selenoproteins, Journal of Biological Chemistry, vol.284, issue.2, pp.723-727, 2009.
DOI : 10.1074/jbc.R800045200

R. Burk, K. Hill, and A. Motley, Selenoprotein metabolism and function: evidence for more than one function for selenoprotein P, J Nutr, vol.133, issue.5, pp.1517-1537, 2003.

D. Holben and A. Smith, The Diverse Role of Selenium within Selenoproteins, Journal of the American Dietetic Association, vol.99, issue.7, pp.836-843, 1999.
DOI : 10.1016/S0002-8223(99)00198-4

M. Ozkaya, M. Sahin, E. Cakal, K. Gisi, F. Bilge et al., Selenium Levels in First-Degree Relatives of Diabetic Patients, Biological Trace Element Research, vol.121, issue.1, pp.144-151, 2009.
DOI : 10.1007/s12011-008-8263-z

Z. Yang, Y. Xie, J. Chen, D. Zhang, C. Yang et al., High selenium may be a risk factor of adolescent idiopathic scoliosis, Medical Hypotheses, vol.75, issue.1, pp.126-127, 2010.
DOI : 10.1016/j.mehy.2010.02.006

M. Vinceti, T. Maraldi, M. Bergomi, and C. Malagoli, Risk of Chronic Low-Dose Selenium Overexposure in Humans: Insights From Epidemiology and Biochemistry, Reviews on Environmental Health, vol.24, issue.3, pp.231-248, 2009.
DOI : 10.1515/REVEH.2009.24.3.231

J. Neve, Selenium as a ???nutraceutical???: how to conciliate physiological and supra-nutritional effects for an essential trace element, Current Opinion in Clinical Nutrition and Metabolic Care, vol.5, issue.6, pp.659-663, 2002.
DOI : 10.1097/00075197-200211000-00008

E. Battin and J. Brumaghim, Antioxidant Activity of Sulfur and Selenium: A Review of Reactive Oxygen Species Scavenging, Glutathione Peroxidase, and Metal-Binding Antioxidant Mechanisms, Cell Biochemistry and Biophysics, vol.88, issue.1, pp.1-23, 2009.
DOI : 10.1007/s12013-009-9054-7

H. Tapiero, D. Townsend, and K. Tew, The antioxidant role of selenium and seleno-compounds, Biomedicine & Pharmacotherapy, vol.57, issue.3-4, pp.134-144, 2003.
DOI : 10.1016/S0753-3322(03)00035-0

H. Zheng, L. Zhou, C. Huang, X. Hua, R. Jian et al., Selenium Inhibits High Glucose- and High Insulin-induced Adhesion Molecule Expression in Vascular Endothelial Cells, Archives of Medical Research, vol.39, issue.4, pp.373-379, 2008.
DOI : 10.1016/j.arcmed.2007.12.007

L. Duntas, Selenium and Inflammation: Underlying Anti-inflammatory Mechanisms, Hormone and Metabolic Research, vol.41, issue.06, pp.443-447, 2009.
DOI : 10.1055/s-0029-1220724

B. Can, N. Ulusu, K. Kilinc, L. Acan, N. Saran et al., Selenium Treatment Protects Diabetes-Induced Biochemical and Ultrastructural Alterations in Liver Tissue, Biological Trace Element Research, vol.105, issue.1-3, pp.135-150, 2005.
DOI : 10.1385/BTER:105:1-3:135

Z. Erbayraktar, O. Yilmaz, A. Artmann, R. Cehreli, and C. Coker, Effects of Selenium Supplementation on Antioxidant Defense and Glucose Homeostasis in Experimental Diabetes Mellitus, Biological Trace Element Research, vol.59, issue.23, pp.217-226, 2007.
DOI : 10.1007/s12011-007-0037-5

G. Schrauzer, Nutritional Selenium Supplements: Product Types, Quality, and Safety, Journal of the American College of Nutrition, vol.3, issue.1, pp.1-4, 2001.
DOI : 10.1080/07315724.2001.10719007

A. Mueller and J. Pallauf, Compendium of the antidiabetic effects of supranutritional selenate doses. In vivo and in vitro investigations with type II diabetic db/db mice, The Journal of Nutritional Biochemistry, vol.17, issue.8, pp.548-560, 2006.
DOI : 10.1016/j.jnutbio.2005.10.006

M. Zulet, B. Puchau, H. Hermsdorff, C. Navarro, and J. Martinez, Dietary selenium intake is negatively associated with serum sialic acid and metabolic syndrome features in healthy young adults, Nutrition Research, vol.29, issue.1, pp.41-48, 2009.
DOI : 10.1016/j.nutres.2008.11.003

B. Puchau, M. Zulet, A. Gonzalez-de-echavarri, I. Navarro-blasco, and J. Martinez, Selenium intake reduces serum C3, an early marker of metabolic Wiernsperger and Rapin Diabetology & Metabolic Syndrome http://www.dmsjournal.com/content/2/1/70 syndrome manifestations, in healthy young adults, Eur J Clin Nutr, vol.2, issue.63, pp.70858-864, 2009.

S. Stranges, J. Marshall, R. Natarajan, R. Donahue, M. Trevisan et al., Effects of Long-Term Selenium Supplementation on the Incidence of Type 2 Diabetes, Annals of Internal Medicine, vol.147, issue.4, pp.217-223, 2007.
DOI : 10.7326/0003-4819-147-4-200708210-00175

J. Bleys, A. Navas-acien, and E. Guallar, Serum selenium and diabetes in U.S. adults. Diabetes Care, pp.829-834, 2007.

M. Laclaustra, A. Navas-acien, S. Stranges, J. Ordovas, and E. Guallar, Serum Selenium Concentrations and Hypertension in the US Population, Circulation: Cardiovascular Quality and Outcomes, vol.2, issue.4, pp.369-376, 2009.
DOI : 10.1161/CIRCOUTCOMES.108.831552

R. Muecke, L. Schomburg, J. Buentzel, K. Kisters, and O. Micke, Selenium or No Selenium- That Is the Question in Tumor Patients: A New Controversy, Integrative Cancer Therapies, vol.3, issue.4, pp.136-141, 2010.
DOI : 10.1177/1534735410367648

K. Thompson and C. Orvig, Vanadium in diabetes: 100 years from Phase 0 to Phase I, Journal of Inorganic Biochemistry, vol.100, issue.12, pp.1925-1935, 2006.
DOI : 10.1016/j.jinorgbio.2006.08.016

A. Srivastava, Anti-diabetic and toxic effects of vanadium compounds, Molecular and Cellular Biochemistry, vol.206, issue.1/2, pp.177-182, 2000.
DOI : 10.1023/A:1007075204494

J. Domingo, Vanadium and Tungsten Derivatives as Antidiabetic Agents, Biological Trace Element Research, vol.88, issue.2, pp.97-112, 2002.
DOI : 10.1385/BTER:88:2:097

Y. Zhao, L. Ye, H. Liu, Q. Xia, Y. Zhang et al., Vanadium compounds induced mitochondria permeability transition pore (PTP) opening related to oxidative stress, Journal of Inorganic Biochemistry, vol.104, issue.4, pp.371-378, 2010.
DOI : 10.1016/j.jinorgbio.2009.11.007

F. Assem and L. Levy, A Review of Current Toxicological Concerns on Vanadium Pentoxide and Other Vanadium Compounds: Gaps in Knowledge and Directions for Future Research, Journal of Toxicology and Environmental Health, Part B, vol.22, issue.4, pp.289-306, 2009.
DOI : 10.1038/ng721

M. Mehdi, S. Pandey, J. Theberge, and A. Srivastava, Insulin Signal Mimicry as a Mechanism for the Insulin-Like Effects of Vanadium, Cell Biochemistry and Biophysics, vol.44, issue.1, pp.73-81, 2006.
DOI : 10.1385/CBB:44:1:073

G. Vardatsikos, M. Mehdi, and A. Srivastava, Bis[maltolato]-oxovanadium [IV]induced phosphorylation of PKB, GSK-3 and FOXO1 contributes to its glucoregulatory responses, Int J Mol Med, vol.24, pp.303-309, 2009.

J. Gil, M. Miralpeix, J. Carreras, and R. Bartrons, Insulin-like effects of vanadate on glucokinase activity and fructose 2,6-bisphosphate levels in the liver of diabetic rats, J Biol Chem, vol.263, pp.1868-1871, 1988.

E. Shafrir, S. Spielman, I. Nachliel, M. Khamaisi, H. Bar-on et al., Treatment of diabetes with vanadium salts: general overview and amelioration of nutritionally induced diabetes in thePsammomys obesus gerbil, Diabetes/Metabolism Research and Reviews, vol.31, issue.1, pp.55-66, 2001.
DOI : 10.1002/1520-7560(2000)9999:9999<::AID-DMRR165>3.0.CO;2-J

M. Halberstam, N. Cohen, P. Shlimovich, L. Rossetti, and H. Shamoon, Oral Vanadyl Sulfate Improves Insulin Sensitivity in NIDDM but Not in Obese Nondiabetic Subjects, Diabetes, vol.45, issue.5, pp.659-666, 1996.
DOI : 10.2337/diab.45.5.659

O. Jacques-camarena, M. Gonzalez-ortiz, E. Martinez-abundis, J. Lopez-madrueno, and R. Medina-santillan, Effect of Vanadium on Insulin Sensitivity in Patients with Impaired Glucose Tolerance, Annals of Nutrition and Metabolism, vol.53, issue.3-4, pp.195-198, 2008.
DOI : 10.1159/000175844

P. Poucheret, S. Verma, M. Grynpas, and J. Mcneill, Vanadium and diabetes, Mol Cell Biochem, vol.188, pp.73-80, 1998.
DOI : 10.1007/978-1-4615-5763-0_9

S. Garcia-vicente, F. Yraola, L. Marti, E. Gonzalez-munoz, M. Garcia-barrado et al., Oral Insulin-Mimetic Compounds That Act Independently of Insulin, Diabetes, vol.56, issue.2, pp.486-493, 2007.
DOI : 10.2337/db06-0269

A. Zorzano, M. Palacin, L. Marti, and S. Garcia-vicente, Arylalkylamine vanadium salts as new anti-diabetic compounds, Journal of Inorganic Biochemistry, vol.103, issue.4, pp.559-566, 2009.
DOI : 10.1016/j.jinorgbio.2009.01.015

D. Smith, R. Pickering, and G. Lewith, A systematic review of vanadium oral supplements for glycaemic control in type 2 diabetes mellitus, QJM, vol.101, issue.5, pp.351-358, 2008.
DOI : 10.1093/qjmed/hcn003

G. Boden, X. Chen, J. Ruiz, G. Van-rossum, and S. Turco, Effects of vanadyl sulfate on carbohydrate and lipid metabolism in patients with non???insulin-dependent diabetes mellitus, Metabolism, vol.45, issue.9, pp.1130-1135, 1996.
DOI : 10.1016/S0026-0495(96)90013-X

N. Cohen, M. Halberstam, P. Shlimovich, C. Chang, H. Shamoon et al., Oral vanadyl sulfate improves hepatic and peripheral insulin sensitivity in patients with non-insulin-dependent diabetes mellitus., Journal of Clinical Investigation, vol.95, issue.6, pp.2501-2509, 1995.
DOI : 10.1172/JCI117951

A. Goldfine, M. Patti, L. Zuberi, B. Goldstein, R. Leblanc et al., Metabolic effects of vanadyl sulfate in humans with non-insulindependent diabetes mellitus: in vivo and in vitro studies, pp.400-410, 2000.

K. Cusi, S. Cukier, R. Defronzo, M. Torres, F. Puchulu et al., Vanadyl Sulfate Improves Hepatic and Muscle Insulin Sensitivity in Type 2 Diabetes, Journal of Clinical Endocrinology & Metabolism, vol.86, issue.3, pp.1410-1417, 2001.
DOI : 10.1210/jc.86.3.1410

K. Thompson, J. Lichter, C. Lebel, M. Scaife, J. Mcneill et al., Vanadium treatment of type 2 diabetes: A view to the future, Journal of Inorganic Biochemistry, vol.103, issue.4, pp.554-558, 2009.
DOI : 10.1016/j.jinorgbio.2008.12.003

M. Freeman and S. Freeman, Lithium: Clinical Considerations in Internal Medicine, The American Journal of Medicine, vol.119, issue.6, pp.478-481, 2006.
DOI : 10.1016/j.amjmed.2005.11.003

C. Livingstone and H. Rampes, Lithium: a review of its metabolic adverse effects, Journal of Psychopharmacology, vol.261, issue.21, pp.347-355, 2006.
DOI : 10.1177/0269881105057515

R. Jope, Lithium and GSK-3: one inhibitor, two inhibitory actions, multiple outcomes, Trends in Pharmacological Sciences, vol.24, issue.9, pp.441-443, 2003.
DOI : 10.1016/S0165-6147(03)00206-2

O. Brien, W. Klein, and P. , target of lithium action: Table 1, Biochemical Society Transactions, vol.37, issue.5, pp.1133-1138, 2009.
DOI : 10.1042/BST0371133

E. Henriksen, T. Kinnick, M. Teachey, O. Keefe, M. Ring et al., Modulation of muscle insulin resistance by selective inhibition of GSK-3 in Zucker diabetic fatty rats, American Journal of Physiology - Endocrinology And Metabolism, vol.284, issue.5, pp.892-900, 2003.
DOI : 10.1152/ajpendo.00346.2002

O. Kaidanovich and H. Eldar-finkelman, The role of glycogen synthase kinase-3 in insulin resistance and type 2 diabetes, Expert Opin Ther Targets, vol.6, pp.555-561, 2002.

H. Hers, The Control of Glycogen Metabolism in the Liver, Annual Review of Biochemistry, vol.45, issue.1, pp.167-189, 1976.
DOI : 10.1146/annurev.bi.45.070176.001123

T. Gould, C. Zarate, and H. Manji, Glycogen Synthase Kinase-3, The Journal of Clinical Psychiatry, vol.65, issue.1, pp.10-21, 2004.
DOI : 10.4088/JCP.v65n0103

J. Fiedorowicz, N. Palagummi, V. Forman-hoffman, D. Miller, and W. Haynes, Elevated Prevalence of Obesity, Metabolic Syndrome, and Cardiovascular Risk Factors in Bipolar Disorder, Annals of Clinical Psychiatry, vol.20, issue.3, pp.131-137, 2008.
DOI : 10.1080/10401230802177722

A. Sicras, J. Rejas, R. Navarro, J. Serrat, and M. Blanca, Metabolic syndrome in bipolar disorder: a cross-sectional assessment of a Health Management Organization database, Bipolar Disorders, vol.206, issue.Suppl. 14, pp.607-616, 2008.
DOI : 10.1111/j.1399-5618.2008.00599.x

O. Okosieme, A. Campbell, K. Patton, and M. Evans, Transient Diabetes Associated With Withdrawal of Lithium Therapy, Diabetes Care, vol.29, issue.5, p.1181, 2006.
DOI : 10.2337/dc06-0291

A. Macko, A. Beneze, M. Teachey, and E. Henriksen, Roles of insulin signalling and p38 MAPK in the activation by lithium of glucose transport in insulin-resistant rat skeletal muscle, Archives of Physiology and Biochemistry, vol.67, issue.7, pp.331-339, 2008.
DOI : 10.1007/s001250051457

N. Harrell, M. Teachey, N. Gifford, and E. Henriksen, Essential role of p38 MAPK for activation of skeletal muscle glucose transport by lithium, Archives of Physiology and Biochemistry, vol.67, issue.7, pp.221-227, 2007.
DOI : 10.1007/s001250051457

O. Hermida, T. Fontela, M. Ghiglione, and L. Uttenthal, Effect of lithium on plasma glucose, insulin and glucagon in normal and streptozotocin-diabetic rats: role of glucagon in the hyperglycaemic response, British Journal of Pharmacology, vol.49, issue.3, pp.861-865, 1994.
DOI : 10.1111/j.1476-5381.1994.tb14817.x

J. Rodriguez-gil, J. Fernandez-novell, A. Barbera, and J. Guinovart, Lithium's Effects on Rat Liver Glucose Metabolism in Vivo, Archives of Biochemistry and Biophysics, vol.375, issue.2, pp.377-384, 2000.
DOI : 10.1006/abbi.1999.1679

H. Bartlett and F. Eperjesi, Nutritional supplementation for type 2 diabetes: a systematic review, Ophthalmic and Physiological Optics, vol.107, issue.6, pp.503-523, 2008.
DOI : 10.1111/j.1475-1313.2008.00595.x

Y. Chang, G. Zhang, S. Piao, S. Gao, D. Zheng et al., Protective effects of combined micronutrients on islet ??-cells of streptozotocin-induced diabetic mice, International Journal for Vitamin and Nutrition Research, vol.79, issue.2, pp.104-116, 2009.
DOI : 10.1024/0300-9831.79.2.104

P. Faure, D. Barclay, M. Joyeux-faure, and S. Halimi, Comparison of the effects of zinc alone and zinc associated with selenium and vitamin E on insulin sensitivity and oxidative stress in high-fructose-fed rats, Journal of Trace Elements in Medicine and Biology, vol.21, issue.2, pp.113-119, 2007.
DOI : 10.1016/j.jtemb.2006.12.005

I. Padmavathi, K. Rao, L. Venu, M. Ganeshan, K. Kumar et al., Chronic Maternal Dietary Chromium Restriction Modulates Visceral Adiposity: Probable Underlying Mechanisms, Diabetes, vol.59, issue.1, pp.98-104, 2010.
DOI : 10.2337/db09-0779

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2797950

I. Padmavathi, K. Rao, L. Venu, A. Ismail, and M. Raghunath, Maternal dietary chromium restriction programs muscle development and function in the rat offspring, Experimental Biology and Medicine, vol.101, issue.3, pp.349-355, 2010.
DOI : 10.1258/ebm.2009.009199

L. Venu, N. Harishankar, T. Krishna, and M. Raghunath, Does maternal dietary mineral restriction per se predispose the offspring to insulin resistance?, European Journal of Endocrinology, vol.151, issue.2, pp.287-294, 2004.
DOI : 10.1530/eje.0.1510287