Additional file 5

Table of content

Table S1: Genes found to be differentially expressed between V1 and V14 CNS.

Table S2: Phenotype data related to the candidate genes involved in neurite outgrowth and/or synaptic transmission.

Table S3: Phenotype data related to the candidate genes involved in growth and autophagy.

Table S4: Phenotype data related to the candidate genes involved in sensory organ development and most particularly in olfaction (in bold).

Table S1: Genes found to be differentially expressed between V1 and V14 CNS.

Name	Biological or Cellular Function	Name	Biological or Cellular Function	Name	Biological or Cellular Function
c/E st1	Hydrolase activity	Antp	transcription factor activity	CG5037	Integral membrane protein
Ash2	Transcription regulator activity	Arp11	Protein binding	CG5080	
Art3	Protein amino acid methylation	Atu	-	CG5850	
CG6388	tRNA processing	Bap55	Structural constituant of cytoskeleton	CG6296	Phopholipase A1 activity
CG7878	Nucleic acid binding	blot	Neurotransmitter transport	CG6311	
CG31731	transport	caps	Axon guidance	CG7357	Nucleic acid binding
CG8155	Small GTPase regulator	Cdk4	Cell cycle	CG7971	RNA splicing
CG31961	Protein binding	cenB1A	Regulation of GTPase	CG8129	Protein binding
CG31637	Sulfotransferase activity	CG10184	Amino acide metabolism	CG8444	Asymmetric protein localisation
CG3021	tRNA processing	CG10681	Protein binding	CG9972	
CG10632	Protein binding	CG12009	Chitin binding	Cyp310a1	Oxidoreductase activity
CG10671	unknown	CG14230	Nucleic acid binding	Сурба13	Oxidoreductase activity
DPAL1	Protein modification process	CG1515	Vesicul mediated transport	dlg1	
Ftz-F1	Ligand-dependant nuclear receptor	CG15835	Cell communication	dyl	Srucrtural constituant of cuticule
FK506-bp1	Protein folding	CG1607	transport	elav	
Hb	Transcription activator activity	CG17068	Protein binding	fz	Asymmetric protein localisation
Iap2	Protein binding	CG17806	Protein binding	GM130	Golgi organisation and biogenesis
Inx3	Gap junction channel activity	CG1868		grk	Cell fate commitment
Keren	MAPKKK cascade	CG18769		Hrs	Neurotransmitter secretion
Mbo	Protein nucleus import	CG31301	Nucleic acid binding	Int6	Translation initiation factor
Nak	Serine/threonine kinase	CG3238		JhI-26	Nucleic acid binding
Nej	Transcription coactivator	CG3271		Klc	Microtubule motor activity
Notch	Protein binding,	CG3344	Proteolysis and peptidolysis	l(2)44DEa	Fatty acid metabolism
pelo	unknown	CG4168	Transmission of nerve impulse	Lac	Cell adhesion
psq	Transcrition factor activity	CG4500	-	mdy	Regulation of nurse cells apoptosis
Rac1	Dendrite morphogenesis	CG4527	Serine/threonine kinase	mei-S332	Cell cycle
tollo	Serine/threonine kinase	CG4707	transcription regulator activity	spin	Programmed cell death
TfIIs	Transcription factor activity	CG3704	ATP binding	Tor	Insulin pathway/ growth
		CG4973	Protein ubiquitination	unk	Larval development fate commitment

We found 86 genes that are highly correlated (coeff> 0,9). Among the 86 genes, 28 were also found to be overexpressed in the VI AMC (column on the left, gene names are indicated in bold) and contain the common putative *pros* DNA motif in their promoter. The 58 genes present in the two columns on the right are specifically overexpressed in VI CNS as compared to VI4 CNS.

Genes	Tissue/organ/development stages	Phenotypes
∂ Est1	Microarray data on adult and embryo	Putative target of pumillo that involved in morphogenesis of larval peripheral sensory neurons.
Ash?	Third instar larval brain	Ash2 mutant present fasciculation defects in the ventral ganglion.
115112	Larval motoneurons	Ash2 activation generates a reduced synapses and pathfinding defects.
Bnl	Larval and adult Dorsal Cluster Neurons (DCNs).	Axon retraction.
CaMKI	Various tissue for larvae , pupae and adult	A Ca2+ sensor for a broad diversity of retinal proteins, some of which are implicated in synaptic transmission.
CG6388	larval Neuromuscular Junction	Overexpression of CG6388 suppresses the NMJ overgrowth and restaure the normal morphology
DPAL1	Embryos, larvae and adult.	Associated with specific peptidergic neurons. Involved in neuropeptide biosynthesis.
	Larva/pupal/adult ocellar sensory neuron.	Expression of a dominant negative form of EGFR resulted in stalling of axon extension in ocellar sensory
EGFR		neurons.
		Axon sorting and extension
Gwl	Larval neuromuscular system (ISN)	GOF phenotype: ISNb (intersegmental neurons) pathfinding defects, including ectopic synaptic branches.
0	Larval brain	Larval brain neuroblasts are mitotic progression defective
I	Adult antennal lobe	Increase in Limk leads to petit synapses and to ectopic glomeruli
LIMKI	Larval Neuromuscular jonction	Inhibit axons growth
loco	Embryos	defects in ensheathment of longitudinal axon tracts
Noi	I	The presynaptic overexpression of CREB impaired neurotransmitter release
INEJ	La var neuromuscular synapses	Overexpression of Nej can act to inhibit presynaptic functional development
	L 2/numel/A dult brain DC neurons	Overexpression results in inhibition of axonal branching, a complete failure of innervation of the medulla and
	Lo/pupal/Adult oralli DC neurons.	defects in the arborisation pattern.
Notch	Adult.	Overexpression produces an improvement in olfactory long-term memory

mediated identities

Odorant receptor expression and the axonal targeting of ORNs were specified according to their Notch-

Constitutive expression of $\text{pros}\beta2$ induce an increase of excitatory junctional current (EJC) amplitudes.

Inhibition of the proteasome causes a rapid strengthening of neurotransmission.

Neuronal remodelling: involved in axon pruning (microarray data),

Neuronal remodelling: involved in axon pruning (microarray data),

33 35

40

30

38

30

Table S2: Phenotype data related to the candidate genes involved in neurite outgrowth and/or synaptic transmission.

Larval/adult olfactory receptor neurons (ORNs).

Tird instar larva Mushroom body gamma neurons

Tird instar larva NMJ

Third instar larval (NMJ)

Pros 07

Pros \beta 2

Table S2 continued

Pros of	Tind instan Jamia NMI	Inhibition of the proteasome causes a rapid strengthening of neurotransmission.	40
Pros c o		Neuronal remodelling: involved in axon pruning (microarray data),	30
Pros 026	Tind instan James NMI	Inhibition of the proteasome causes a rapid strengthening of neurotransmission.	40
	The instal falva Nivij	Neuronal remodelling: involved in axon pruning (microarray data),	30
Pvr	CNS embryos	Required in midline glia (MG) during axon guidance and ultimately enabling axonal enwrapment. Required for	44
		axonal commissures to separate normally.	
		Removing the function of Pvr, or disrupting Rac1 function, inhibits VNC condensation	51
		Pvr mutants have defects in axon scaffold formation in the CNS	52
	larval Dorsal Cluster Neurons (DCNs).	Activation of Rac1 inhibits axon extension and induces a decreased number of DCN axons crossing the optic	6
		chiasm.	
Rac1	Larval Neuromuscular jonction	Rac/Cdc42, (via effector kinases Rok or Pak), activate LIM kinase to inhibit axon growth	26
	Larval PNS (da neurons)	Elevated Rac1 causes increases in dentritic branching and filopodia formation in all da neurons	45
	Larvae « da » neurons	Overexpression of Rac1 promoted dendritic branching of "da" neurons	46
RPN1	Tird instar larva Mushroom body gamma neurons	Neuronal remodelling: involved in axon pruning (microarray data),	30
RPN2	Tird instar larva Mushroom body gamma neurons	Neuronal remodelling: involved in axon pruning (microarray data),	30
RPN5	Tird instar larva Mushroom body gamma neurons	Neuronal remodelling: involved in axon pruning (microarray data),	30
Tollo	Embryos/Larval	Heterochronic misexpression of Toll affects synaptogenesis and motoneuron growth cones	48

The criteria used for the description of the phenotypes were as follows: (1) if many larval phenotypes were available for a gene, we selected only those observed in the nervous system and preferentially in the peripheral nervous system (PNS). (2) If no larval phenotype was available for a gene, we selected those observed in the embryonic and/or adult PNS. (3) If available, the effect of the upregulation or downregulation of these genes is mentioned respectively for those that are overexpressed or underexpressed in VI AMC. (4) All studies mentioned were done in *Drosophila melanogaster*.

Table S3: Phenotype data related to the candidate genes involved in growth and autophagy.

Genes	Tissue/organ/development stages	Phenotyes	Ref
	Drogonhila S2 galla	Resulted in an increased mean cell diameter when silenced	4
Ash2	Drosophila 52 cells	Increase of <i>ash2</i> protein was observed in mTOR knockdown cells.	
	Third instar larvae	Genetic mosaics, homozygous mutant cells show effects on both cell differentiation and cell size.	2
CC10702	Microarray data	Insulin-like growth factor receptor activity: up-regulated by increases in EGFR and downregulated by loss of EGFR.	9
CG10/02	Larval salivary gland	Autophagy	10
Dok	Embryo/adult	Insulin receptor binding, regulation of cell shape	12
EGFR	Embryos/Larval fat body	Impeding EGF signaling decreases cell size; Spi/EGFR activity promotes cell survival and growth but acts at a level that limits both processes.	15
	Microarray data	Involved in autophagy in larval fat body (via keren ligand); insulin/TOR pathway regulates Neurogenesis and EGFR	16, 42
FK506-	Fat body of feeding/wandering flies	Effect on autophagy, potentially through modulation of the transcription factor Foxo.	16
bp1	Microarray data ; eye imaginal disc	Overexpression inhibits cell growth, developmental and starvation-induced autophagy.	
Et. E1	Salivary gland during	Premature expression of <i>FTZ-F1</i> in larvae causes defects in the molting process.	19
Ftz-F1	developpement	Mutations in the steroid-regulated gene FTZ-F1 prevents authophagic programmed cell death in salivary gland.	
Iap2	larval salivary gland	Involved in autophagic cell death (identified by SAGE approach)	23
Keren	Larval fat body (microarray data)	Upregulated during developmental autophagy in larval fat body	16
	Larvae	Overexpression of Lk6 results in growth inhibition in an eIF4E-dependent manner.	28
LK6		Regulation of growth	27
	Adult	Lk6, involve in the TOR/FOXO nutrient sensing pathway.	53
Nej	Larval salivary gland	Autophagy (identified by micrroarray ananlysis)	10
Notch	Embryo (ovaries)	Interact with LK6 which involve in the TOR/FOXO pathway (growth and autophagy)	20
Noich	Third instar larvae	Notch coordinates in wing primordia tissue growth	49
PhKy	Larvae	Glucose catabolic process	36
Pros $\beta 2$	larval salivary gland	Autophagy (identified by micrroarray ananlysis)	10
Pros 07	larval salivary gland	Autophagy (identified by microarray ananlysis)	10
Pros of	larval salivary gland	Autophagy (identified by micrroarray ananlysis)	10
Pros26	larval salivary gland	Autophagy (identified by microarray ananlysis)	10
Pros26.4	larval salivary gland	Autophagy (identified by microarray ananlysis)	10
RPN1	larval salivary gland	Autophagy (identified by microarray ananlysis)	10
RPN2	larval salivary gland	Autophagy (identified by micrroarray ananlysis)	10
RPN5	larval salivary gland	Autophagy (identified by micrroarray ananlysis)	10

The criteria used for the description of the phenotypes were the same as those for Table S2.

Table S4: Phenotype data related to the candida	ate genes involved in s	ensory organ development	and most particularly in ol	faction (in bold).
---	-------------------------	--------------------------	-----------------------------	--------------------

Genes	Tissue/organ/development stages	phenotypes	Ref
Ash2	Wing imaginal disc	Preserve proper sensory organ organization. loss of <i>ash2</i> can yield ectopic sensory organs	5
CaMK1		Synaptic transmission	8
ckII α	Adult eye	Compromising CK2 elicits surpernumerary R8 photoreceptor, rough eye and defects in the interommatidial bristles.	37
Dok	Adult	Loss of bristles in the midline region of the thorax, unilateral or bilateral loss of anterior orbital bristles in the head region and irregularly placed bristles in the eyes.	12
EGFR	Larva/pupae/adult ocellar sensory neuron	Ocellar sensory neurons	14, 56
	Pupae	Regulates cell number in the third segment of the antennae	25
Ftz-F1	Adult abdominal and sternopleural	Loss of bristles	54
		Mutants show an abnormal olfactory avoidance response.	41
Hb	embryos	Labial segment formation including sense organ	22
Iap2	Third instar larvae (wing disc)/adult	IAP2 overexpression results in additional macrochaetes	24
	notum	Transcript level increases in GOF EGFR mutant	9
Keren	Adult eye	Participate in EGFR signalling in the eye, where it acts redundantly with Spitz to control R8 spacing, cell clustering and survival	56
Lim V1	Adult antennal lobe	Increase in Limk leads to petit synapses	50
LIMKI		presynaptic increase in Limk function leads to ectopic glomeruli	
Mcr	Adult	P insertion in this gene induce olfactory avoidance behavior	17
Nak	Embryos chordotonal organ lineage	Overexpression of Nak causes both daughters of a normally asymmetric cell division to adopt the same cell fate and induces fate transformation from neuron to sheath cell.	18
Nej	P element insertion (3 kb up) effects on abdominal and sternopleural bristles	Gain of bristles	54
	Pupae/adult antennae	Olfactory sense-organs : High Notch signaling and the exclusion of seven up, pros and elav markers identifies PIIa; this	34
Notch		cell gives rise to the shaft and socket. See also Table 5	_
	Second instar larvae (imaginal disc)	Growth promoted by Notch promotes growth in eye-antenna	7
pelo	Adult eye	bristles.	55
Pros β 2	Early pupal stage mechanosensory bristles	Decreased proteasome activity resulted inshaft-to-socket cell fate transformations and enhance Notch signaling activity in the sense organ lineage.	39

Table S4 continued

	Embryon/Larvae/ adult	Identification of psq mutant that shows an olfactory avoidance response	41
psq	P element insertions effects on	Loss of bristles	54
	abdominal and sternopleural bristles		
Pvr	Embryo/Larvae/adult	Macrochaete formation	43
Rac1	Embryos/larvae	Rac1 gain-of-function and loss-of-function mutants had both disruption of glial cell development and secondary effects on	47
		sensory axon fasciculation	
tollo	Adult (P element insertions 5 kb up)	Gain of bristles	54
	Indirect evidence	CD36 a co-factor of Tollo is expressed in a population of olfactory implicated in pheromone dedection	57

The criteria used for the description of the phenotypes were the same as those for Table S2.

REFERENCES

- 1. Gerber AP, Luschnig S, Krasnow MA, Brown PO, Herschlag D. Genome-wide identification of mRNAs associated with the translational regulator PUMILIO in Drosophila melanogaster. Proc Natl Acad Sci U S A 2006;103(12):4487-92.
- 2. Beltran S, Blanco E, Serras F, Perez-Villamil B, Guigo R, Artavanis-Tsakonas S, Corominas M. Transcriptional network controlled by the trithorax-group gene ash2 in Drosophila melanogaster. Proc Natl Acad Sci U S A 2003;100(6):3293-8.
- 3. Kraut R, Menon K, Zinn K. A gain-of-function screen for genes controlling motor axon guidance and synaptogenesis in Drosophila. Curr Biol 2001;11(6):417-30.
- 4. Guertin DA, Guntur KV, Bell GW, Thoreen CC, Sabatini DM. Functional genomics identifies TOR-regulated genes that control growth and division. Curr Biol 2006;16(10):958-70.
- 5. Adamson AL, Shearn A. Molecular genetic analysis of Drosophila ash2, a member of the trithorax group required for imaginal disc pattern formation. Genetics 1996;144(2):621-33.
- 6. Srahna M, Leyssen M, Choi CM, Fradkin LG, Noordermeer JN, Hassan BA. A signaling network for patterning of neuronal connectivity in the Drosophila brain. PLoS Biol 2006;4(11):e348.
- 7. Kenyon KL, Ranade SS, Curtiss J, Mlodzik M, Pignoni F. Coordinating proliferation and tissue specification to promote regional identity in the Drosophila head. Dev. Cell 2003;5(3):403-14.
- 8. Xu XZ, Wes PD, Chen H, Li HS, Yu M, Morgan S, Liu Y, Montell C. Retinal targets for calmodulin include proteins implicated in synaptic transmission. J Biol Chem 1998;273(47):31297-307.
- 9. Jordan KC, Hatfield SD, Tworoger M, Ward EJ, Fischer KA, Bowers S, Ruohola-Bake rH. Genome wide analysis of transcript levels after perturbation of the EGFR pathway in the Drosophila ovary. Dev. Dyn. 2005;232(3):709-24.
- 10. Martin DN, Balgley B, Dutta S, Chen J, Rudnick P, Cranford J, Kantartzis S, DeVoe DL, Lee C, Baehrecke EH. Proteomic analysis of steroid-triggered autophagic programmed cell death during Drosophila development. Cell Death Differ. 2007;14(5):916-23.
- 11. Laviolette MJ, Nunes P, Peyre JB, Aigaki T, Stewart BA. A genetic screen for suppressors of Drosophila NSF2 neuromuscular junction overgrowth. Genetics 2005;170(2):779-92.
- 12. Biswas R, Stein D, Stanley ER. Drosophila Dok is required for embryonic dorsal closure. Development 2006;133(2):217-27.
- 13. Han M, Park D, Vanderzalm PJ, Mains RE, Eipper BA, Taghert PH. Drosophila uses two distinct neuropeptide amidating enzymes, dPAL1 and dPAL2. J Neurochem 2004;90(1):129-41.
- 14. Garcia-Alonso L, Romani S, Jimenez F. The EGF and FGF receptors mediate neuroglian function to control growth cone decisions during sensory axon guidance in Drosophila. Neuron 2000;28(3):741-52.
- 15. Parker J. Control of compartment size by an EGF ligand from neighboring cells. Curr Biol 2006;16(20):2058-65.
- 16. Juhasz G, Puskas LG, Komonyi O, Erdi B, Maroy P, Neufeld TP, Sass M. Gene expression profiling identifies FKBP39 as an inhibitor of autophagy in larval Drosophila fat body. Cell Death Differ 2007;14(6):1181-90.
- 17. Anholt RR, Mackay TF. The genetic architecture of odor-guided behavior in Drosophila melanogaster. Behav Genet 2001;31(1):17-27.

- 18. Chien CT, Wang S, Rothenberg M, Jan LY, Jan YN. Numb-associated kinase interacts with the phosphotyrosine binding domain of Numb and antagonizes the function of Numb in vivo. Mol Cell Biol 1998;18(1):598-607.
- 19. Yamada M, Murata T, Hirose S, Lavorgna G, Suzuki E, Ueda H. Temporally restricted expression of transcription factor betaFTZ-F1: significance for embryogenesis, molting and metamorphosis in Drosophila melanogaster. Development 2000;127(23):5083-92.
- 20. Yan N, Macdonald PM. Genetic interactions of Drosophila melanogaster arrest reveal roles for translational repressor Bruno in accumulation of Gurken and activity of Delta. Genetics 2004;168(3):1433-42.
- 21. Yu J, Fleming SL, Williams B, Williams EV, Li Z, Somma P, Rieder CL, Goldberg ML. Greatwall kinase: a nuclear protein required for proper chromosome condensation and mitotic progression in Drosophila. J Cell Biol. 2004;164(4):487-92.
- 22. Wu X, Vasisht V, Kosman D, Reinitz J, Small S. Thoracic patterning by the Drosophila gap gene hunchback. Dev. Biol. 2001;7(1):79-92.
- 23. Gorski SM, Chittaranjan S, Pleasance ED, Freeman JD, Anderson CL, Varhol RJ, Coughlin SM, Zuyderduyn SD, Jones SJ, Marra MA. A SAGE approach to discovery of genes involved in autophagic cell death. Curr Biol 2003;13(4):358-63.
- 24. Kanuka H, Kuranaga E, Takemoto K, Hiratou T, Okano H, Miura M. Drosophila caspase transduces Shaggy/GSK-3beta kinase activity in neural precursor development. EMBO J. 2005;24(21):3793-806.
- 25. Sen A, Shetty C, Jhaveri D, Rodrigues V. Distinct types of glial cells populate the Drosophila antenna. BMC Dev Biol 2005;5:25.
- 26. Ng J, Luo L. Rho GTPases regulate axon growth through convergent and divergent signaling pathways. Neuron 2004;44(5):779-93.
- 27. Arquier N, Bourouis M, Colombani J, Léopold P. Drosophila Lk6 kinase controls phosphorylation of eukaryotic translation initiation factor 4E and promotes normal growth and development. Curr. Biol. 2005;15(1):19-23.
- 28. Reiling JH, Doepfner KT, Hafen E, Stocker H. Diet-dependent effects of the Drosophila Mnk1/Mnk2 homolog Lk6 on growth via eIF4E. Curr Biol 2005;15(1):24-30.
- 29. Granderath S, Klambt C. Identification and functional analysis of the Drosophila gene loco. Methods Enzymol 2004;389:350-63.
- 30. Martin DN, Balgley B, Dutta S, Chen J, Rudnick P, Cranford J, Kantartzis S, DeVoe DL, Lee C, Baehrecke EH. Proteomic analysis of steroid-triggered autophagic programmed cell death during Drosophila development. Cell Death Differ. 2007;14(5):916-23.
- 31. Marek KW, Ng N, Fetter R, Smolik S, Goodman CS, Davis GW. A genetic analysis of synaptic development: pre- and postsynaptic dCBP control transmitter release at the Drosophila NMJ. Neuron 2000;25(3):537-47.
- 32. Hassan BA, Bermingham NA, He Y, Sun Y, Jan YN, Zoghbi HY, Bellen HJ. atonal regulates neurite arborization but does not act as a proneural gene in the Drosophila brain. Neuron 2000;25(3):549-61.
- 33. Ge X, Hannan F, Xie Z, Feng C, Tully T, Zhou H, Xie Z, Zhong Y. Notch signaling in Drosophila long-term memory formation. Proc Natl Acad Sci U S A. 2004;101(27):10172-6.
- 34. Sen A, Reddy GV, Rodrigues V. Combinatorial expression of Prospero, Seven-up, and Elav identifies progenitor cell types during sense-organ differentiation in the Drosophila antenna. Dev Biol 2003;254(1):79-92.
- 35. Endo K, Aoki T, Yoda Y, Kimura K, Hama C. Notch signal organizes the Drosophila olfactory circuitry by diversifying the sensory neuronal lineages. Nat Neurosci 2007;10(2):153-60.

- 36. Bahri SM, Yang X, Chia W. The Drosophila bifocal gene encodes a novel protein which colocalizes with actin and is necessary for photoreceptor morphogenesis. Mol Cell Biol 1997;17(9):5521-9.
- 37. Bose A, Kahali B, Zhang S, Lin JM, Allada R, Karandikar U, Bidwai AP. Drosophila CK2 regulates lateral-inhibition during eye and bristle development. Mech Dev 2006;123(9):649-64.
- 38. Haas KF, Miller SL, Friedman DB, Broadie K. The ubiquitin-proteasome system postsynaptically regulates glutamatergic synaptic function. Mol Cell Neurosci. 2007;35(1):64-75.
- 39. Schweisguth F, Posakony JW. Antagonistic activities of Suppressor of Hairless and Hairless control alternative cell fates in the Drosophila adult epidermis. Development 1994;120(6):1433-41.
- 40. Speese SD, Trotta N, Rodesch CK, Aravamudan B, Broadie K. The ubiquitin proteasome system acutely regulates presynaptic protein turnover and synaptic efficacy. Curr Biol 2003;13(11):899-910.
- 41. Sambandan D, Yamamoto A, Fanara JJ, Mackay TF, Anholt RR. Dynamic genetic interactions determine odor-guided behavior in Drosophila melanogaster. Genetics 2006;174(3):1349-63.
- 42. McNeill H, Craig GM, Bateman JM. Regulation of neurogenesis and epidermal growth factor receptor signaling by the insulin receptor/target of rapamycin pathway in Drosophila. genetics 2008;179(2):843-53.
- 43. Ishimaru S, Ueda R, Hinohara Y, Ohtani M, Hanafusa H. PVR plays a critical role via JNK activation in thorax closure during Drosophila metamorphosis. EMBO J. 2004;23(20):3984-3994.
- 44. Learte AR, Forero MG, Hidalgo A. Gliatrophic and gliatropic roles of PVF/PVR signaling during axon guidance. Glia 2008;56(2):164-76.
- 45. Andersen R, Li Y, Resseguie M, Brenman JE. Calcium/calmodulin-dependent protein kinase II alters structural plasticity and cytoskeletal dynamics in Drosophila. J Neurosci 2005;25(39):8878-88.
- 46. Lee A, Li W, Xu K, Bogert BA, Su K, Gao FB. Control of dendritic development by the Drosophila fragile X-related gene involves the small GTPase Rac1. Development 2003;130(22):5543-52.
- 47. Sepp KJ, Auld VJ. RhoA and Rac1 GTPases mediate the dynamic rearrangement of actin in peripheral glia. Development 2003;130(9):1825-35.
- 48. Rose D, Zhu X, Kose H, Hoang B, Cho J, Chiba A. Toll, a muscle cell surface molecule, locally inhibits synaptic initiation of the RP3 motoneuron growth cone in Drosophila. Development 1997;124(8):1561-71.
- 49. Rafel N, Milán M. Notch signalling coordinates tissue growth and wing fate specification in Drosophila. Development. 2008;135(24):3995-4001.
- 50. Ang LH, Chen W, Yao Y, Ozawa R, Tao E, Yonekura J, Uemura T, Keshishian H, Hing H. Lim kinase regulates the development of olfactory and neuromuscular synapses. Dev Biol 2006;293:178-90.
- 51. Olofsson B, Page DT. Condensation of the central nervous system in embryonic Drosophila is inhibited by blocking hemocyte migration or neural activity. Dev Biol 2005;279(1):233-43.
- 52. Sears HC, Kennedy CJ, Garrity PA. Macrophage-mediated corpse engulfment is required for normal Drosophila CNS morphogenesis. Development 2003;130(15):3557-65.

- 53. Teleman AA, Hietakangas V, Sayadian AC, Cohen SM. Nutritional control of protein biosynthetic capacity by insulin via Myc in Drosophila. Cell Metab 2008;7(1):21-32.
- 54. Norga KK, Gurganus MC, Dilda CL, Yamamoto A, Lyman RF, Patel PH, Rubin GM, Hoskins RA, Mackay TF, Bellen HJ. Quantitative analysis of bristle number in Drosophila mutants identifies genes involved in neural development. Curr Biol 2003;13(16):1388-96.
- 55. Eberhart CG, Wasserman SA. The pelota locus encodes a protein required for meiotic cell division: an analysis of G2/M arrest in Drosophila spermatogenesis. Development 1995;121(10):3477-86.
- 56. Brown KE, Freeman M. Egfr signalling defines a protective function for ommatidial orientation in the Drosophila eye. Development 2003;130(22):5401-12.
- 57. Benton R, Vannice KS, Vosshall LB. An essential role for a CD36-related receptor in pheromone detection in Drosophila. Nature 2007;450(7167):289-93.