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Exact distribution of a pattern in a set of random
sequences generated by a Markov source:
applications to biological data
Gregory Nuel1,2,3*, Leslie Regad4,5†, Juliette Martin4,6,7†, Anne-Claude Camproux4,5

Abstract

Background: In bioinformatics it is common to search for a pattern of interest in a potentially large set of rather

short sequences (upstream gene regions, proteins, exons, etc.). Although many methodological approaches allow

practitioners to compute the distribution of a pattern count in a random sequence generated by a Markov source,

no specific developments have taken into account the counting of occurrences in a set of independent sequences.

We aim to address this problem by deriving efficient approaches and algorithms to perform these computations

both for low and high complexity patterns in the framework of homogeneous or heterogeneous Markov models.

Results: The latest advances in the field allowed us to use a technique of optimal Markov chain embedding based

on deterministic finite automata to introduce three innovative algorithms. Algorithm 1 is the only one able to deal

with heterogeneous models. It also permits to avoid any product of convolution of the pattern distribution in

individual sequences. When working with homogeneous models, Algorithm 2 yields a dramatic reduction in the

complexity by taking advantage of previous computations to obtain moment generating functions efficiently. In

the particular case of low or moderate complexity patterns, Algorithm 3 exploits power computation and binary

decomposition to further reduce the time complexity to a logarithmic scale. All these algorithms and their relative

interest in comparison with existing ones were then tested and discussed on a toy-example and three biological

data sets: structural patterns in protein loop structures, PROSITE signatures in a bacterial proteome, and

transcription factors in upstream gene regions. On these data sets, we also compared our exact approaches to the

tempting approximation that consists in concatenating the sequences in the data set into a single sequence.

Conclusions: Our algorithms prove to be effective and able to handle real data sets with multiple sequences, as

well as biological patterns of interest, even when the latter display a high complexity (PROSITE signatures for

example). In addition, these exact algorithms allow us to avoid the edge effect observed under the single

sequence approximation, which leads to erroneous results, especially when the marginal distribution of the model

displays a slow convergence toward the stationary distribution. We end up with a discussion on our method and

on its potential improvements.

Introduction
The availability of biological sequence data prior to any

kinds of data is one of the major consequences of the

revolution brought by high throughput biology. Large-

scale DNA sequencing projects now routinely produce

huge amounts of DNA sequences, and the protein

sequences deduced from them. The number of

completely sequenced genomes stored in the Genome

Online Database [1] has already reached the impressive

number of 2, 968. Currently, there are about 99 million

DNA sequences in Genbank [2] and 8.6 million proteins

in the UniProtKB/TrEMBL database [3]. Sequence ana-

lysis has become a major field of bioinformatics, and it

is now natural to search for patterns (also called motifs)

in biological sequences. Sequence patterns in biological

sequences can have functional or structural implications

such as promoter regions or transcription factor binding

sites in DNA, or functional family signature in proteins.
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Because they are important for function or structure,

such patterns are expected to be subject to positive or

negative selection pressures during evolution, and con-

sequently they appear more or less frequently than

expected. This assumption has been used to search for

exceptional words in a particular genome [4,5]. Another

successful application of this approach is the identifica-

tion of specific functional patterns: restriction sites [6],

cross-over hotspot instigator sites [7], polyadenylation

signals [8], etc. Obviously the results of such an

approach strongly depend on the biological relevance of

the data set used. A convenient way to discover these

patterns is to build multiple sequence alignments, and

look for conserved regions. This is done, for example, in

the PROSITE database, a dictionary of functional signa-

tures in protein sequences [9]. However, it is not always

possible to produce a multiple sequence alignment.

In this paper, patterns refer to a finite family of words

(or a regular expression), which is a slightly different

notion from that of Position Specific Scoring Matrices

(PSSM) [10] or in a similar way, from Position Weighted

Matrices (PWM) or HMM profiles. Indeed, PSSM pro-

vide a scoring scheme to scan any sequence for possible

occurrence of a given signal. When one defines a pat-

tern ocurrence as a position where the PSSM score is

above a given threshold, it is possible to associate a reg-

ular expression to this particular pattern. In that sense,

PSSM may be seen as a particular case of the class of

patterns we considered in this paper. However, this

approach usually leads to huge regular expressions

whose complexity grows geometrically with the PSSM

length. For that reason, it seems far more efficient to

deal with PSSM problems with methods and techniques

that have been specifically developed for them [11,12].

Pattern statistics offer a convenient framework to treat

non-aligned sequences, as well as assessing the statistical

significance of patterns. It is also a way to discover puta-

tive functional patterns from whole genomes using sta-

tistical exceptionality. In their pioneer study, Karlin et

al. investigated 4- and 6-palindromes in DNA sequences

from a broad range of organisms, and found that these

patterns had significantly low counts in bacteriophages,

probably as a means of avoiding restriction enzyme clea-

vage by the host bacteria [6]. Then they analyzed the

statistical over- or under-representation of short DNA

patterns in herpes viruses using z-scores and Markov

models, and used them to construct an evolutionary

tree [4]. In another study, the authors analyzed the gen-

ome of Bacillus subtilis and found a large number of

words of length up to 8 nucleotides with biased repre-

sentation [5]. Another striking example of functional

patterns with unusual frequency is the Chi motif (cross-

over hot-spot instigator site) in Escherichia coli [7].

Pattern statistics have also been used to detect putative

polyadenylation signals in yeast [8].

In general, patterns with unusual frequency are

detected by comparing their observed frequency in the

biological sequence data under study to their distribu-

tion in a background model whose parameters are

derived from the data. Among a wide range of possible

models, a popular choice consists in considering only

homogeneous Markov models of fixed order. This

choice is motivated both by the fact that the statistical

properties of such models are well known, and that it is

a very natural way to take into account the sequence

bias in letters (order 0 Markov model), or words of size

h ≥ 2 (order h - 1 Markov model). However, it is well-

known that biological sequences usually display high

heterogeneity. Genome sequences, for example, are

intrinsically heterogeneous, across genomes as well as

between regions in the same genome [13]. In their study

of the Bacillus subtilis chromosome, Nicolas et al. iden-

tified different compositional classes using a hidden

Markov model [14]. These different compositional

classes showed a good correspondence with coding and

non-coding regions, horizontal gene transfer, hydropho-

bic protein coding regions and highly expressed genes.

DNA heterogeneity is indeed used for gene prediction

[15] and horizontal transfer detection [16]. Protein

sequences also display sequence heterogeneity. For

example, the amino-acid composition differs according

to the secondary structure (alpha-helix, beta-strand and

loop), and this property has also been used to predict

the secondary structure from the amino-acid sequence

using hidden Markov models [17]. In order to take into

account this natural heterogeneity of biological data, it

is common to assume either that the data are piecewise

homogeneous (that is typically what is done with hidden

Markov models [18]), or simply that the model changes

continuously from one position to another (e. g., walk-

ing Markov models [19]). One should note that such

fully heterogeneous models may also appear naturally as

the consequences of a previous modeling attempt

[20,21].

A biological pattern study usually first consists in

gathering a data set of sequences sharing similar fea-

tures (ribosome binding sites, related protein domains,

donor or acceptor sites in eucaryotic DNA, secondary or

tertiary structures of proteins, etc.). The resulting data

set typically contains a large number of rather short

sequences (ex: 5,000 sequences of lengths ranging

between 20 and 300). Then one searches this data set

for patterns that occur much more (or less) than

expected under the null model. The goal of this paper is

to provide efficient algorithms to assess the statistical

significance of patterns both for low and high
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complexity patterns in sets of multiple sequences gener-

ated by homogeneous or heterogeneous Markov sources.

From the statistical point of view, studying the distri-

bution of the random count of a simple or complex pat-

tern in a multi-state homogeneous or heterogenous

Markov chain is a difficult task. A lot of effort has gone

into tackling this problem in the last fifty years with

many concurrent approaches and here we give only a

few references; see [22-25] for a more comprehensive

review. Exact methods are based on a wide range of

techniques like Markov chain embedding, moment gen-

erating functions, combinatorial methods, or exponential

families [26-33]. There is also a wide range of asympto-

tic approximations, the most popular of which are Gaus-

sian approximations [34-37], Poisson approximations

[38-42] and Large Deviation approximations [43-45].

Recently several authors [46-49] have pointed out the

connexion between the distribution of random pattern

counts in Markov chains and the pattern matching the-

ory. Thanks to these approaches, it is now possible to

obtain an optimal Markov chain embedding of any pat-

tern problem through minimal Deterministic Finite

Automata (DFA).

In this paper, we first recall the technique of optimal

Markov chain embedding for pattern problems and how

it allows obtaining the distribution of a pattern count in

the particular case when a single sequence is considered.

We then extend this result to a set of several sequences

and provide three efficient algorithms to cover the prac-

tical computation of the corresponding distribution,

either for heterogeneous or homogeneous models, and

patterns of various complexity. In the second part of the

paper, we apply our methods to a simple but illustrative

toy-example, and then consider three real-life biological

applications: structural patterns in protein loop struc-

tures, PROSITE signatures in a bacteria proteome, and

transcription factors in upstream gene regions. Finally,

the results, methods and possible improvements are

discussed.

Methods
Model and notations

Let (Xi)1≤i≤ℓ be an order d ≥ 0 Markov chain over the

finite alphabet  (with cardinal | | ≥ 2). For all 1 ≤ i

≤ j ≤ ℓ, we denote by X X Xj
i

i j
def

 the subsequence

between positions i and j. For all a a ad
d

d
1 1 

def
  , b

Î  , and 1 ≤ i ≤ ℓ - d, let us denote by

( ) ( )a X ad d d
1 1 1 

def
 the starting distribution and by

 i d
d

i d i
i d da b X b X a 
   ( , ) ( | )1

1
1

def
 the transition

probability towards Xi+d.

Let  be a finite set of words (for simplification pur-

pose, we assume that  contains no word of length

less than d - in the general case, one may have to count

the pattern occurrences already seen in X d
1 , which

results in a more complex starting distribution for our

embedding Markov chain) over  . We consider the

random number Nℓ of matching positions of  in X1


defined by:

N
X

i

i 



 



def


{ ( ) }  1

1

(1)

where ( )X i
1 is the set of all the suffixes of X i

1 and

where  A is the indicator function of event A.

Overview of the Markov chain embedding

As suggested in [46-49], we perform an optimal Markov

chain embedding of our pattern problem through a

DFA. We use here the notations of [49]. Let ( ,  , s,

ℱ, δ) be a minimal DFA that recognizes the language

 * of all texts over  ending with an occurrence

of  where  * denotes the set of all - possibly empty

- texts over  .  is a finite state space, s Î  is the

starting state, ℱ ⊂  is the subset of final states and

 :    is the transition function. We recur-

sively extend the definition of δ over  ×  * thanks

to the relation   ( , ) ( ( , ), )p aw p a w
def

for all p Î  , a

Î  , w Î  *. We additionally suppose that this auto-

maton is non d-ambiguous (a DFA having this property

is also called a d-th order DFA in [48]), which means

that for all q Î  , the set       d d d dq a p p a q( ) { , , ( , ) }
def

1 1 

of sequences of length d that can lead to q is either a

singleton or the empty set. A DFA is hence said to be

non d-ambiguous if the past of order d is uniquely

defined for all states. When the notation is not ambigu-

ous, the set δ-d(q) may also denote its unique element

(singleton case).

Theorem 1. We consider the random sequence over

 defined by X0 
def  and   X X X i ii i i 

def ( , ) ,1 1  . Then
( )X i i d is a heterogeneous order 1 Markov chain over

   
def  ( , *)d such that, for all p, q Î  ’ and 1 ≤ i ≤ ℓ -

d the starting distribution m d dp X p( ) ( ) 
def

  and the transi-

tion matrix Ti d i d i dp q X q X p     ( , ) ( | )
def

  
1 are given by:

m d

d d

p
p p

( )
( ( )) ( )

;  





   if 

otherwise0
(2)
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Ti d
i d

d

p q
p b b p b q





   




( , )

( ( ), ) , ( , )
.

  if 

otherwise


0

(3)

And for all i ≥ d we have:

   ( ) .X Xi
i1     (4)

Proof. The result is immediate considering the proper-

ties of the DFA. See [48] or [49] for more details. □

From now on, we will denote the cardinality of the set

 ’ by L and call this the pattern complexity (even if

technically, L depends both on the considered pattern

and the Markov model order). A typical low complexity

pattern corresponds to L ≤ 50, moderate complexity to

50 <L < 100, and high complexity to L ≥ 100.

Proposition 2. The moment generating function
GN  (y) of Nℓ is given by:

G y N n y yN
n

d

n

i d i d

i

d

 



( ) ( ) ( )   
















 




 
def

 m P Q 1T

0 1

(5)

where 1 is a row vector of ones, and 1T denotes the

transpose vector, and, for all 1 ≤ i ≤ ℓ - d, Ti+d = Pi+d +

Qi+d with P Ti d q i dp q p q  ( , ) ( , )
def

  and

Q Ti d q i dp q p q  ( , ) ( , )
def

  for all p, q Î  ’.

Proof. Since Qi+d contains all the counting transitions,

we keep track of the number of occurrences by associat-

ing a dummy variable y to these transitions. Therefore,

we just have to compute the marginal distribution at the

end of the sequence and sum up the contribution of

each state. See [46-49] for more details. □

Corollary 3. In the particular case where (Xi)1≤i≤ℓ is a

homogeneous Markov chain, we can drop the indices in

Pi+d and Qi+d and Equation (5) is simplified into

G y yN d
d



( ) ( ) .  m P Q 1T (6)

Corollary 3 can be found explicitly in [48] or [50] and

its generalisation to a heterogeneous model (Proposition

2) is given in [51].

Extension to a set of sequences

Let us now assume that we consider a set of r

sequences. For any particular sequence j (with 1 ≤ j ≤ r)

we denote by ℓj its length, by N
j its number of pat-

tern occurrences, and by m d
j , Pi d

j
 , and Q i d

j
 its corre-

sponding Markov chain embedding parameters.

Proposition 4. If we denote by

G y N N n yN
n

n

r
( ) ( )   






def

  
1

0

(7)

the moment generating function of N N N
r

  
def

 
1

, we

have:

G y y

G

N

N y

d i d i d
i

d

( ) ( )

( )

 












 





m P Q 1T1 1 1

1

1

1





  









  












 





m P Q 1T
d
r

i d
r

i d
r

i

d

y

G

r

N
r
y

( )

( )

1  

.

(8)

Corollary 5. In the homogeneous case we get:

G y y yN

N y

d
d

G

d
r d

G

r( ) ( ) ( )

( )

     
m P Q 1 m P Q 1T T1 1

1

 



  


NN
r
y



  
( )

.
(9)

Single sequence approximation

Instead of computing the exact distribution of N = N1 +

... + Nr, which requires specific developments, one may

study the number N’ of pattern occurrences in a single

sequence of length ℓ = ℓ1 + ... + ℓr resulting from the

concatenation of our r sequences. The main advantage

of this method is that we can rely on a wide range of

classical techniques to compute the exact or approxi-

mated distribution of N’ (Poisson approximation or

large deviations for example).

The drawback of this approach is that N and N’ are

clearly two different random variables and that deriving the

P-value of an observed event for N using the distribution of

N’ may produce erroneous results due to edge effects.

These effects may be caused by two distinct phenom-

ena: forbidden positions and stationary assumption. For-

bidden positions simply come from the fact that the

artificial concatenated sequence may have pattern occur-

rences at positions that overlap two individual

sequences. If we consider a pattern of length h, it is

clear that there are h - 1 positions that overlap two

sequences. It is hence natural to correct this effect by

introducing an offset for each sequence, typically set to

h - 1 for a pattern of length h. The length of our conca-

tenated sequence has then to be adjusted to ℓ’ = (ℓ1 -

offset) + ... + (ℓr - 1- offset) + ℓr = ℓ - (r - 1) × offset.

One should note that there is no canonical choice of

offset for patterns of variable lengths.

Even if we take into account the forbidden overlap-

ping positions with a proper choice of offset, there is a

second phenomenon that may affect the quality of the

single sequence approximation, and it is connected to

the model itself. When one works with a single

sequence, it is common to assume that the underlying

model is stationary. This assumption is usually consid-

ered to be harmless since the marginal distribution of

any non-stationary model converges very quickly

towards its stationary distribution. As long as the time

to convergence is negligible in comparison with the

total length of the sequence, this approximation has a

very small impact on the distribution. In the case where
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we consider a data set composed of a large number of

relatively short sequences, this edge effect might how-

ever have huge consequences. This obviously depends

both on the difference between the starting distribution

of the sequences, and on the convergence rate toward

the stationary distribution. This phenomenon is studied

in detail in our applications.

Algorithms

Let n be the observed number of occurrences of our pattern

of interest. Our main objective is to compute both ℙ(N ≤ n)

and ℙ(N ≥ n). We provide here various algorithms to per-

form these computations both for low or high complexity

patterns, and for homogeneous or heterogenous models.

Heterogeneous case

Algorithm 1: Compute n NG y1( ( )) (see Equation (10)

for a proper definition of n1 ) in the case of a hetero-

geneous model. The workspace complexity is O(n × L)

and since all matrix vector products exploit the sparse

structure of the matrices, the time complexity is O(ℓ × n

× | | × L) where | | × L corresponds to the maxi-

mum number of non-zero terms in Ti+d = Pi+d + Qi+d.

Require: The starting distributions m d
j the matrices

Q i d
j
 , Q i d

j
 , for all 1 ≤ j ≤ r, 1 ≤ i ≤ ℓj - d, a O(n × L)

workspace to keep the current values of E(y), and a

dimension L polynomial row-vector of degree n + 1.

// Initialization

E(y) ¬ 1

// Loop on sequences

for j = 1, ..., r do

E(y) ¬ (E(y)1T) × m d
j

// Loop on positions within the sequence

for i = 1, ... ℓj-d do

E E P Q( ) ( ) ( )y y yn i d
j

i d
j      1

Output: return n1 (GN (y)) = E(y)1T

When working with heterogeneous models, there is

very little room for optimization in the computation of

Equation (8). Indeed, since all terms Pi d
j
 and Q i d

j


may differ for each combination of position i and

sequence j, there is no choice but to compute the indivi-

dual contribution of each of these combinations. This

may be done recursively by taking advantage of the

sparsity of matrices Pi d
j
 and Q i d

j
 . Note that, so as to

speed up the computation, it is not necessary to keep

track of the polynomial terms of degrees greater than n

+ 1. This may be done by using the polynomial trunca-

tion function n1 defined by

n k
k

k

k
k

k

n

k

k n

np y p y p y
 

  













 











1

0 0

1



def

. (10)

This function also applies to vector or matrix polyno-

mials. This approach results in Algorithm 1 whose time

complexity is O(ℓ × n × | | × L). In particular, one

observes that the time complexity remains linear with n,

which is a unique feature of this algorithm, while an

individual computation of each GN
j
(y) would

obviously result in a final O(r × n2) complexity to per-

form the polynomial product
G y G y G yN N N

r
( ) ( ) ( )  

 


1
. It is also interesting to

point out that the number r of considered sequences

does not appear explicitly in the complexity of Algo-

rithm 1 but only through the total length      
def

1 r
.

Homogeneous case

Algorithm 2: Compute the n1 (GN(y)) in the case of a

homogeneous model. The workspace complexity is O(n

× L) and since all matrix vector products exploit the

sparse structure of the matrices, the time complexity to

compute all n1 ( GN
j
(y)) is O(ℓr × n × | | × L)

where | | × L corresponds to the maximum number of

non-zero terms in T = P + Q. The product updates of U

(y) result in a additional time complexity of O(r × n2).

Require: The matrices P and Q, for all 1 ≤ j ≤ r, the

starting distributions m d
j , the length ℓj (assuming

   0 1
def

d r   ), a O(n × L) workspace to keep

the current values of E(y) (a dimension L polynomial

row-vector of degree n + 1) and U(y) (a polynomial of

degree n + 1).

// Initialization

U(y) ¬ 1 and E(y) ¬ 1

// Loop on sequences

for j = 1, ..., r do

for i = 1, ..., ℓj - ℓj-1 do

E(y)T¬ n1 ((P + yQ)E(y)T)

optionally return n N d
jG y y

j
 1( ( )) ( )


m E T

U y U y yn d
j( ) ( ) ( )   1 m E T

Output: return n1 (GN (y)) = U (y)

If we now consider a homogeneous model, we can

dramatically speed up the computation of Equation (9)

by recycling intermediate results in order to compute

efficiently all GN
j
(y). Without loss of generality, we

assume that the sequences are ordered by increasing

lengths: ℓ1≤ ...≤ ℓr. If one stores the value of

( )P Q 1T y d1 in some polynomial vector E(y)T, it is

clear that ( ) ( ) ( )P Q 1 P Q ET T    y y yd  2 2 1 . By

repeating this trick for all ℓj, it is then possible to adapt

Algorithm 1 to compute all GN
j
with a complexity O

(ℓr × n × | | × L) (ℓr being the length of the longest

sequence), which is a dramatic improvement. Unfortu-

nately, it is then necessary to compute the product
G y G y G yN N N

r
( ) ( ) ( )  

 


1
, which results in a com-

plexity O(r × n2) to get all polynomial terms of degree

smaller that n + 1 in GN(y). This additional complexity

therefore limits the interest of this algorithm in compar-

ison to Algorithm 1, especially when one observes a

large number n of pattern occurrences. However, it is
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clear that Algorithm 2 remains the best option when

considering a huge data set where we typically have ℓr

<< ℓ = ℓ1 + ... + ℓr.

Long sequences and low complexity pattern

Algorithm 3: Compute the n1 (GN(y)) in the case of a

homogeneous model using power computations. The

workspace complexity is O(n × K × L2) with K = log2
(max{ℓ1- d, ℓ2 - ℓ1, ..., ℓr- ℓr-1}). The precomputation

time complexity is O(n2 × K × L3). All n1 (GN
j
(y))

are computed with a total time complexity O(r × n2 × K

× L3). The product updates of U(y) result in an addi-

tional time complexity of O(r × n2).

Require: The matrices P and Q, for all 1 ≤ j ≤ r, the

starting distributions m d
j , the length ℓj (assuming

   0 1
def

d r   ), a O(n × L) workspace to keep

the current values of E(y) (a dimension L polynomial

row-vector of degree n + 1) and U(y) (a polynomial of

degree n + 1), and a O(n × K × L2) workspace to store

the values of M
2k (y) with 0 ≤ k ≤ K = log2(max{ℓ1 - d,

ℓ2 - ℓ1, ..., ℓr - ℓr-1}).

// Precompute all M
2k (y)

M
20 (y) ¬ P + yQ

for k = 1, ..., K do
M M M

2 1 2 21 1k k ky y yn( ) ( ( ) ( ))   
// Initialization

U(y) ¬ 1 and E(y) ¬ 1

// Loop on sequences

for j = 1, ..., r do

compute M  j j 1
(y) using a binary decomposi-

tion and set E(y) ¬ n1 ( M  j j 1
(y)E(y)T)

optionally return n N d
jG y y

j
 1( ( )) ( )


m E T

U(y) ¬ n1 (U(y) × m d
j E(y)T)

Output: return n1 (GN (y)) = U (y)

We now consider the case where ℓr is large (ex: ℓr = 100,

000 or 1, 000, 000 or more). With Algorithm 2, the time

complexity is linear with ℓrand may then result in an unac-

ceptable running time. It is however possible to turn this

into a logarithmic complexity by computing directly the

powers of (P + yQ). This particular idea is not new in itself

and has already been used in the context of pattern pro-

blems by several authors [50,51]. The novelty here is to

apply this approach to a data set of multiple sequences.

If we denote by M P Qi n
iy y( ) (( ) ) 

def
 1 , it is clear that

all M
2k (y) can be computed (and stored) for 0 ≤ k ≤ K

with a space complexity O(n × K × L2) and a time com-

plexity O(n2 × K × L3). It is therefore possible to com-

pute all GN
j
(y) using the same approach as in

Algorithm 2 except that all recursive updates of E(y) are

replaced by direct power computations. This results in

Algorithm 3 whose total complexities are O(n × K × L3)

in space and O(r × n2 × K × L3) in time with K = log2
(max{ℓ1 - d, ℓ2 - ℓ1, ..., ℓr - ℓr-1}). The key feature of this

algorithm is that we have replaced ℓr by the quantity K,

which is typically dramatically smaller when we consider

large ℓr. The drawback of this approach is that the space

complexity is now quadratic with the pattern complexity

L, and that the time complexity is cubic with L. As a

consequence, it is not suitable to use Algorithm 3 for a

pattern of high complexity.

Long sequences and high complexity pattern

If we now consider a moderate or high complexity pat-

tern, we cannot accept either a cubic complexity with

L or even a quadratic complexity. Hence only Algo-

rithms 1 or 2 are appropriate. However, if we assume

that our data set contains at least one long sequence,

it may be difficult to perform the computations. This

is why we introduce an approach that allows comput-

ing GN (y) = md(P + yQ)ℓ-d1T for large ℓ and L. The

technique is directly inspired from the partial recursion

introduced in [51] to compute g(y) = md(P + Q +

yQ)ℓ-d1T.

In this particular section, we assume that P is an irre-

ducible and aperiodic matrix. We denote by l the lar-

gest magnitude of the eigenvalues of P, and by ν the

second largest magnitude of the eigenvalues of P/l. For

all i ≥ 0 we consider the polynomial vector

F P Q 1T
i

i
y y( )   def   , where P P

def
/  and Q Q

def
/  ,

and hence we have GN (y) = lℓ-dmdFℓ-d(y).

Like in [51], the idea is then to recursively compute

finite differences of Fi(y) up to the point where these

differences asymptotically converge at a rate related to

ν
i. We then derive an approximated expression for Fℓ-d
(y) using only terms such as i ≤ a. Unfortunately, this

approach through partial recursion suffers the same

numerical instabilities as in [51] when computations are

performed in floating point arithmetic. For this reason,

we chose here not to go further in that direction until a

more extensive study has been conducted.

Results and discussion
Comparison with known algorithms

To the best of our knowledge, there is no record of any

method that allows computing the distribution of a ran-

dom pattern count in a set of heterogeneous Markov

sequences. However, a great number of concurrent

approaches exists to perform the computations for a

single sequence, where the result for a set of sequences

is obtained by convolutions.

For the heterogeneous case for a single sequence of

length ℓ, any kind of Markov chain embedding techni-

ques [48,52] may be used to get the expression of one
GN  (y) up to degree n + 1 with complexity O(ℓ × n ×

| | × L). In this respect, there is little novelty in Algo-

rithm 1, except that it allows avoiding the O(r × n2)

additional cost of the convolution product, which could

be a great advantage. In the homogeneous case, the

main interest of our approach is its ability to exploit the

repeated nature of the data (a set of sequences) to save
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computational time. This is typically what it is done in

Algorithm 2.

From now on, we will only consider the problem of

computing the exact distribution of the pattern count

Nℓ in a single (long) sequence of length ℓ generated by a

homogeneous Markov source, and compare the novel

approaches introduced in this paper to the most effi-

cient methods available.

One of the most popular of these methods consists in

considering the bivariate moment generating function

G y z N n y zn

n d

( , ) ( )

,

 
def


 




0

(11)

where y and z are dummy variables. Thanks to Equa-

tion (6) it is easy to show that

G y z z z yd
d( , ) ( ( ))    m Id P Q 1T1 (12)

It is thus possible to extract the coefficients from G(y,

z) using fast Taylor expansions. This interesting

approach has been suggested by several authors includ-

ing [46] or [48] and is often referred to as the “golden”

approach for pattern problems. However, in order to

apply this method, one should first use a Computer

Algebra System (CAS) to perform the bivariate polyno-

mial resolution of the linear system (Id - z(P + yQ)) xT

= 1T. This may result in a complexity in O(L3) which is

not suitable for high complexity patterns. Alternatively,

one may rely on efficient linear algebra methods to

solve sparse systems like the sparse LU decomposition.

But the availability of such sophisticated approaches,

especially when working with bivariate polynomials, is

likely to be an issue.

Once the bivariate rational expression of G(y,z) is

obtained, performing the Taylor expansions still requires

a great deal of effort. This usually consists in first per-

forming an expansion in z in order to get the moment

generating function GN  (y) of Nℓ for a particular length

ℓ. The usual complexity for such task is O( Dz
3 × log ℓ)

where Dz is the denominator degree (in z) in G(y, z). In

this case however, there is an additional cost due to the

fact that these expansions have to be performed with

polynomial (in y) coefficients. Finally, a second expan-

sion (in y) is necessary to compute the desired distribu-

tion. Fortunately, this second expansion is done with

constant coefficients. It nevertheless results in a com-

plexity O( Dy
3 × log n) where Dy is the degree of the

denominator in GN  (y) and n the observed number of

occurrences.

In comparison, the direct computation of GN  (y) =

md(P + yQ)1T by binary decomposition (Algorithm 2) is

much simpler to implement (relying only on floating

point arithmetics) and is likely to be much more effec-

tive in practice.

Recently, [50] suggested to compute the full bulk of

the exact distribution of Nℓ through Equation (6) using

a power method like in Algorithm 3, with the noticeable

difference that all polynomial products are performed

using Fast Fourier Transforms (FFT). Using this

approach, and a very careful implementation, one can

compute the full distribution with a complexity O(L3 ×

log2 ℓ × nmax log2 nmax) where nmax is the maximum

number of pattern occurrences in the sequence, which

is better than Algorithm 3. There is however a critical

drawback to using FFT polynomial products: the result-

ing coefficients are only known with an absolute preci-

sion equal to the largest one times the relative precision

of floating point computations. As a consequence, the

distribution is accurately computed in its center region,

but not in its tails. Unfortunately, this is precisely the

part of the distribution that matters for significant P-

values, which are obviously the number one interest in

pattern study. Finally, let us remark that the approach

introduced by [50] is only suitable for low or moderate

complexity patterns.

The new algorithms we introduce in this paper have

the unique feature to be able to deal with a set of het-

erogeneous sequences. These algorithms, compared to

the ones found in the literature, also display similar or

better complexities. Last but not least, the approaches

we introduce here only rely on simple linear algebra and

are hence far easier to implement than their classical

alternatives.

Illustrative examples

In this part we consider several examples. We start with

a simple toy-example for the purpose of illustrating the

techniques, and we then consider three real biological

applications.

A toy-example

In this part we give a simple example to illustrate the

techniques and algorithms presented above. We con-

sider the pattern  = {abab, abaab, abbab} over the
binary alphabet  = {a, b}. The minimal DFA that

recognizes the language L =  * (which is the set of

all texts over  ending with occurrence of  ) is then

given in Figure 1.

Let us now consider the following set of r = 3

sequences:

x x x1
1

2
2

3
39 6 8     abaabbaba bababb and abbaabab ( ), ( ) ( ).  

We process these sequences to the DFA of Figure 1

(starting each sequence in the initial state 0) to get the

observed state sequences x1 , x 2 and x3 :
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pos

a b a a b b a b a

pos

b a b a

.

,

.









1 2 3 4 5 6 7 8 9

0 1 2 3 5 4 5 3

1 2 3 4 5 6

1

1

2

x

x

x

 6 6

bb b  and 

pos

a b b a a b a b

 x

x

x2

3

30 0 1 2 3 4

1 2 3 4 5 6 7 8

0 1 2 4 5 1 2 36 6

.

.





Therefore, Sequence x1 contains n1 = 2 occurrences of the

pattern (ending in positions 5 and 8), Sequence x2 contains

n2 = 1 occurrence (ending in position 5) and Sequence x3

contains n3 = 1 occurrence (ending in position 8).

Let us now consider X1, X2 and X3, three homoge-

neous order d = 1 Markov chains of respective lengths

ℓ1, ℓ2 and ℓ3 such that X1 and X3 start with a, and X2

starts with b, and the transition matrix of which is given

by:

 










0 7 0 3

0 4 0 6

. .

. .
.

The corresponding state sequences X1 , X 2 and X 3

are hence order 1 homogeneous Markov chains defined

over  ’ = {0, 1,2, 3, 4, 5, 6} with the starting distribu-

tions m1
1 = m1

3 = (0 1 0 0 0 0 0), m1
2 = (1 0 0 0 0 0

0) (since starting from 0 in the DFA of Figure 1, a leads

to state 1 and b to state 0) and with the following tran-

sition matrix (please note that transitions belonging to

Q are marked with a ‘*’. The others ones belong to P):

T 

    
    
    
    

    

0 6 0 4

0 7 0 3

0 4 0 6

0 3 0 7

0 6 0 4

. .

. .

. .

. . *

. .

    
    





























0 7 0 3

0 4 0 6

. . *

. .

A direct application of Corollary 3 therefore gives
GN1

(y) = 0.743104 + 0.208944y + 0.0450490y2 +

0.0029030y3 for the moment generating function of N1

(the number of pattern occurrences in X1);
GN2

(y) = 0.94816 + 0.05184y for the moment gener-

ating function of N2 (the number of pattern occurrences

in X2); and GN3
(y) = 0.7761376 + 0.1880064y +

0.0353376y2 + 0.0005184y3 for the moment generating

function of N3 (the number of pattern occurrences in

X3). One should note that occurrences of  are

strongly disfavored in Sequence X2 since it starts with b.
We then derive from these expressions the value of the

moment generating function GN (y) of N = N1 + N2 +

N3:

G y G y G y G y y yN N N N( ) ( ) ( ) ( ) . . .     
1 2 3

0 5468522 0 3161270 0 1109456 22 3

4 5 6

0 0227431

0 0030882 0 0002358 0 0000080 7 801 1



    

.

. . . .

y

y y y 00 8 7 y
(13)

Since we observe a total of n = n1 + n2 + n3 = 4

occurrences of Pattern  , the P-value of over-repre-

sentation is given by

     ( ) ( ) ( ) ( ) ( )

. . .

N N N N N4 4 5 6 7

0 0030882 0 0002358 0 0

       

   0000080 7 801 10

3 33 10

8

3

 

 





.

.

(14)

Let us finally compare the exact distribution of N’, the

number of pattern occurrences over X = X1... Xℓ with ℓ

= ℓ1 + ℓ2 + ℓ3 - 2 × offset, and a homogeneous order 1

Markov chain with transition matrix π:

offset

a

0 1 2 3 4 5 6

10 4 2 252 1 647 1 158 0 743 0 447 0 242
1   ( | ) . . . . . .N X 99 0 043

10 4 1 561 1 088 0 706 0 417 0 223 0 064 0 0022
1

.

( | ) . . . . . . .   N X b

As  contains both words of lengths 4 and 5, offset

should be set either to 3 or 4. However, for both these

values, 102 × ℙ(N’ ≥ 4) (either when X1 = a or when X1

= b) differs from the reference exact P-value 102 × ℙ(N

≥ 4) = 0.333.

Figure 1 Minimal DFA that recognizes the language L = {a, b}* with  = {abab, abaab, abbab}.
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Structural motifs in protein loops

Protein structures are classically described in terms of

secondary structures: a-helices, b-strands and loops.

Structural alphabets are an innovative tool that allows

describing any three-dimensional (3D) structure by a

succession of prototype structural fragments. We here

use HMM-27, an alphabet composed of 27 structural

letters (it consists in a set of average protein fragments

of four residues, called structural letters, which is used

to approximate the local backbone of protein structures

through a HMM): 4 correspond to the alpha-helices, 5

to the beta-strands and the 18 remaining ones to the

loops (see Figure 2) [53]. Each 3D structure of ℓ resi-

dues is encoded into a linear sequence of HMM-27

structural letters and results in a sequence of ℓ - 3

structural letters since each overlapping fragment of

four consecutive residues corresponds to one structural

letter.

We consider a set of 3D structures of proteins pre-

senting less than 80% identity and convert them into

sequences of structural letters. Like in [54], we then

make the choice to focus only on the loop structures

which are known to be the most variable ones, and

hence the more challenging to study. The resulting loop

structure data set is made of 78,799 sequences with

length ranging from 4 to 127 structural letters.

In order to study the interest of the single sequence

approximation described in the “Single sequence

approximation” section, we first perform a simple

experiment. We fit an order 1 homogeneous Markov

model on the original data set, and then simulate a ran-

dom data set with the same characteristics (loop lengths

and starting structural letters). We then compute the z-

score - these quantities are far easier to compute than

the exact P-values and they are known to perform well

for pattern problems as long as we consider events in

the center of the distribution, and such events are pre-

cisely the ones expected to occur with a simulated data

set - of the 77, 068 structural words of size 4 that we

observe in the data, using simulated data sets under the

single sequence approximation. We observe that high z-

scores are strongly over-represented in the simulated

data set: for example, we observed 264 z-scores of mag-

nitude greater than 4, which is much larger than the

expected number of 4.88 under H0. This observation

clearly demonstrates that the single sequence approxi-

mation completely fails to capture the distribution of

structural motifs in this data set. Indeed this experiment

initially motivated the present work by putting emphasis

on the need for taking into account fragmented struc-

ture of the data set.

We further investigate the edge effects in the data set

by comparing the exact P-values obtained under the sin-

gle sequence approximation. Table 1 gives the results

for a selected set of 14 motifs whose occurrences range

from 4 to 282. We can see that the single sequence

approximation with an offset of 0 clearly differs from

the exact value: e. g., Pattern ODZR has an exact P-value

of 5.78 × 10-5 and an approximate one of 2.81 × 10-4;

Pattern BZOU has an exact P-value of 2.56 × 10-11 and

an approximate one of 4.49 × 10-5.

As explained in the Methods section, these differences

may be caused by the overlapping positions in the artifi-

cial single sequence where the pattern cannot occur in

the fragmented data set. Since we consider patterns of

size 4, a canonical choice of offset is 4 - 1 = 3. We can

Figure 2 Geometry of the 27 structural letters of the HMM-27 structural alphabet.
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see in Table 1 the effects of this correction. For most

patterns, this approach improves the reliability of the

approximations, even if we still see noticeable differ-

ences. For instance we get an approximated P-value lar-

ger than the exact one for Pattern BZOU, and an

approximated P-value smaller than the exact one for

Pattern UOEI. For other patterns, this correction is inef-

fective and gives even worse results than with an offset

of 0. For example, Pattern DRPI has an exact P-value of

7.26 × 10-167 and an approximate P-value with an offset

of 3 equal to 3.56 × 10-222, while the approximation

with no offset gives a P-value of 9.08 × 10-174.

Hence it is clear that the forbidden overlapping posi-

tions alone cannot explain the differences between the

exact results and the single sequence approximation.

Indeed, there is another source of edge effects which is

connected to the background model. Since each

sequence of the data set starts with a particular letter,

the marginal distribution differs from the stationary one

for a number of positions that depends on the spectral

properties of the transition matrix. It is well known that

the magnitude μ of the second eigenvalue of the transi-

tion matrix plays here a key role since the absolute dif-

ference between the marginal distribution at position i

and the stationary distribution is O(μi). In our example,

μ = 0.33, which is very large, leads to a slow conver-

gence toward the stationary distribution: we need at

least 30 positions to observe a difference below machine

precision between the two distributions. Such an effect

is usually negligible for long sequences where 30 << ℓ,

but is critical when considering a data set of multiple

short sequences.

However, this effect might be attenuated on the aver-

age if the distribution of the first letter in the data set is

close to the stationary distribution. Figure 3 compares

these two distributions. Unfortunately in the case of

structural letters, there is a drastic difference between

these distributions.

The example of structural motifs in protein loop

structures illustrates the importance of explicitly taking

into account the exact characteristics of the data set

(number and lengths of sequences) when the single

sequence approximation appears to be completely unre-

liable. As explained above, this may be due both to the

great differences between the starting and the stationary

distributions, as well as to a slow convergence and to

the problem of forbidden positions.

PROSITE signatures in protein sequences

We consider the release 20.44 of PROSITE (03-Mar-

2009) which encompasses 1, 313 different patterns

described by regular expressions of various complexity

[9]. PROSITE currently contains patterns and specific

profiles for more than a thousand protein families or

domains. Each of these signatures comes with documen-

tation providing background information on the struc-

ture and function of these proteins. The shortest regular

expression is for pattern PS00016: RGD, i. e., an exact

succession of arginine, glycine and aspartate residues.

This pattern is involved in cell adhesion. The longest

regular expression, on the opposite, is for pattern

PS00041:

[KRQ][LIVMA].(2)[GSTALIV]FYWPGDN.(2)
[LIVMSA].(4, 9)[LIVMF].{PLH}[LIVMSTA]
[GSTACIL]GPKF.[GANQRF][LIVMFY].(4, 5)
[LFY].(3)[FYIVA]{FYWHCM}{PGVI}.(2)[GSA-
DENQKR].[NSTAPKL][PARL] (note that X means

“any aminoacid”, brackets denote a set of possible let-

ters, braces a set of forbidden letters, and parentheses

repetitions -fixed number of times or on a given range).

This is the signature of the DNA-binding domain of the

araC family of bacterial regulatory proteins.

This data set is useful to explore one of the key points

of our optimal Markov chain embedding method using

Table 1 P-values for structural patterns in protein loop structures using exact computations or the single sequence

approximation (SSA) with offset or not.

Structural pattern n Exact SSA (no offset) SSA (offset = 3)

KYNH 16 1.62 × 10-2 5.95 × 10-1 8.43 × 10-2

PNKK 7 2.20 × 10-2 6.68 × 10-2 9.19 × 10-3

JLPQ 25 1.37 × 10-3 4.89 × 10-1 2.19 × 10-2

QYHB 110 1.71 × 10-3 9.46 × 10-1 2.59 × 10-3

ODZR 4 5.78 × 10-5 2.81 × 10-4 5.49 × 10-5

CPBQ 27 5.69 × 10-6 3.07 × 10-3 3.81 × 10-6

ZGBZ 50 3.45 × 10-7 4.84 × 10-2 9.71 × 10-6

BZOU 40 2.56 × 10-11 4.49 × 10-5 1.22 × 10-9

UOEI 52 5.74 × 10-16 1.96 × 10-10 2.30 × 10-17

EGZD 58 3.19 × 10-32 1.91 × 10-23 1.26 × 10-32

GIYC 149 1.05 × 10-41 1.06 × 10-30 3.85 × 10-51

DRPI 282 7.26 × 10-167 9.08 × 10-174 3.56 × 10-222
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DFAs: the impact of the pattern complexity L. For this

purpose, we first build 1-unambiguous (since we want

to work with an order 1 Markov model) associated

DFAs for 1,276 PROSITE patterns (37 patterns requir-

ing a prohibiting computation time and/or memory

were not computed). The repartition of the resulting

pattern complexities is shown in Figure 4. There is a

peak in the distribution at 2, meaning that many DFAs

have ≃ 100 states. The smallest DFA is obtained for the

RGD pattern (22 states), and the largest is for APPLE

(PS00495) which is represented by the regular expres-

sion C.(3)[LIVMFY].(5)[LIVMFY].(3)[DENQ]
[LIVMFY].(10)C.(3)CT.(4)C.[LIVMFY]F.
[FY].(13, 14)C.[LIVMFY][RK].[ST].(14, 15)
SG.[ST][LIVMFY].(2)C which has 837, 507 states.

The mean computing time of the DFA is 3 minutes, but

50% of the DFA could be computed in less than 0.01s,

and 95% in less than 9s.

In Table 2, we can see that if short regular expressions

usually lead to low complexity patterns, it is difficult to

predict the result for longer regular expressions. For

instance, the PROSITE signatures PUR_PYR_PR_-

TRANSFER and ADH_ZINC have the same size, but

the former has a complexity of L = 102 while the latter

has a complexity of L = 478. Indeed, we know from the

theory of language and automata [55] that the minimal

DFA corresponding to a regular expression of size R has

a size L verifying L ≤ 2R. Fortunately, in practice, L is

usually dramatically smaller than this upper bound.

We now consider the complete proteome of the bac-

teria Escherichia coli (File NC_000913.faa, retrieved at

ftp://ftp.ncbi.nih.gov/genomes/Bacteria/

Escherichia_coli_K_12_substr__MG1655/). This data set

encompasses a total of 4, 131 protein sequences with

lengths ranging from 14 to 2, 358 aminoacids. We fit on

this data set a homogeneous order 1 Markov model

which is used to derive over-representation P-values of

patterns.

Like for structural letters, we compare the exact P-

values to the ones obtained using the single sequence

approximation, see Table 3. Unlike in Table 1, we see

here that the single sequence approximation performs

already well with no offset, but that the use of the

appropriate offset further improves this approximation.

This result is surprising, since, in this case, the start-

ing distribution of the model strongly differs from the

stationary distribution. Indeed, it is a biological fact that

all protein sequences start with a methionine (M). As a

consequence, it is hence clear that the starting distribu-

tion and the stationary distribution of the model

strongly differ. This observation obviously does not

favor the single sequence approximation. But in this

example, this effect is corrected by the rapid conver-

gence of the marginal distribution toward the stationary

distribution ensured by a very low second magnitude

eigenvalue of the matrix: μ = 0.049. We expect the same

kind of behavior for the high complexity patterns of

Table 4 but because of the numerical instabilities in the

partial recursion approach suggested in the “Long

sequences and high complexity pattern” section, unfor-

tunately it was impossible to perform the computations

for the single sequence approximation for such pattern

in a reasonable time. However, it is possible to perform

Figure 3 Starting and stationary distributions of the 27 structural letters in the loop structure data set.
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Figure 4 Histogram of the log10(L) for 1, 276 PROSITE patterns in the framework of an order 1 Markov model. Note that the 0.1%

patterns with the largest complexities have been removed from the graph in order to improve readability.

Table 2 Size of the regular expression (regex) and pattern complexity (L) for a selected subset of PROSITE signatures.

PROSITE signature Accession number pattern size L

RGD PS00016 3 22

ER_TARGET PS00014 3 28

PPASE PS00387 7 41

ALDEHYDE_DEHYDR_GLU PS00687 8 44

PROKAR_NTER_METHYL PS00409 21 46

GLY_RADICAL_1 PS00850 9 77

PEP_ENZYMES_PHOS_SITE PS00370 12 96

PUR_PYR_PR_TRANSFER PS00103 13 102

PILI_CHAPERONE PS00635 18 226

SIGMA54_INTERACT_2 PS00676 16 313

EFACTOR_GTP PS00301 16 320

ALDEHYDE_DEHYDR_CYS PS00070 12 331

ADH_ZINC PS00059 13 478

THIOLASE_1 PS00098 19 637

SUGAR_TRANSPORT_1 PS00216 15 to 17 796

FGGY_KINASES_2 PS00445 21 to 22 2668

PTS_EIIA_TYPE_2_HIS PS00372 16 2758

MOLYBDOPTERIN_PROK_3 PS00551 27 to 28 3907

SUGAR_TRANSPORT_2 PS00217 26 6889

Nuel et al. Algorithms for Molecular Biology 2010, 5:15

http://www.almob.org/content/5/1/15

Page 12 of 18



the exact computation for these high complexity pat-

terns using Algorithm 2.

Considering the multi-testing problem of this study

(we consider a total of 1, 276 PROSITE signatures), we

can set a significance threshold of 7.84 × 10-7 at level

0.1% using a Bonferonni correction. Even at this strin-

gent level, it is clear that many of the considered PRO-

SITE signatures (2 out of 8 in Table 3, and 9 out of 11

in Table 4) are over-represented compared to our

homogeneous order 1 Markov background model. How-

ever, this result is not a surprise since these patterns

actually correspond to very precise functional signatures

which are therefore expected to be strongly maintained

through evolution in order keep their functional

activities.

DNA motifs in gene upstream regions

Transcription factors regulate the expression of genes by

activating or repressing the RNA polymerase. This is

done by specific binding of the transcription factors

(TFs) onto DNA, in proximity to the target genes,

usually in the upstream regions. The transcription bind-

ing signatures on DNA are thus biologically important

patterns.

We retrieved the sequence of transcription factor

binding sites of Saccharomyces cerevisiae on the YEAS-

TRACT website http://www.yeastract.com/consensuslist.

php and searched for a subset of these transcription fac-

tor binding sites in the upstream regions of yeast genes,

retrieved on the Regulatory Sequence Analysis Tools

website [56]http://rsat.ulb.ac.be/rsat/. This data set com-

prises a total of 1,371 upstream sequences between posi-

tions -800 and -1 (the length is hence ℓ = 800 for each

sequence).

On these data, we first fit an order 1 homogeneous

Markov model. Since there is little difference between

the starting distribution observed in the data set over

 = {A, C, G, T}(0.30 0.16 0.19 0.35) and the station-

ary distribution (0.32 0.18 0.18 0.32), and since the

magnitude of the second eigenvalue of the transition

matrix is fairly low (μ = 0.092), we do not expect a

great difference between the exact computations and

the single sequence approximation. However, since

exact computations are easily tractable, we do not

further consider the single sequence approach for this

particular problem.

We can see in Table 5 the P-values (column “homoge-

neous”) of a selection of known TFs (marked with a

star) as well as arbitrary candidate patterns. Several

known TFs appear to be highly significant (e.g., TF

AAGAAAAA with a P-value of 1.31 × 10-99) while others

are not (e.g., TF WWWTTTGCTCR with a P-value of 4.15

× 10-1). It is the same for arbitrary candidate patterns.

These results are difficult to interpret since these varia-

tions may be due either to statistical problems (e.g.,

insufficient Markov order) or real functional activities.

Moreover, it is obviously impossible to distinguish a sig-

nificant pattern which is a real TF of the organism from

a significant pattern which is directly or indirectly impli-

cated in another biochemical process.

We now want to get rid of the homogeneous

assumption of the model in an attempt to get a better

fitting on the data. A simple way to achieve this is to

perform a point-wise estimation of our transition func-

tion at position i by fitting the model on a window of

Table 3 P-values for a selection of PROSITE patterns of low (or moderate) complexities using the complete proteome

of Escherichia coli (NC_000913.faa).

PROSITE signature n Exact SSA with no offset SSA (offset)

RGD 215 5.35 × 10-1 5.91 × 10-1 5.55 × 10-1(2)

ER_TARGET 72 4.01 × 10-2 5.21 × 10-2 4.70 × 10-2(2)

PPASE 3 2.60 × 10-2 2.76 × 10-2 2.63 × 10-2(6)

ALDEHYDE_DEHYDR_GLU 12 1.99 × 10-5 2.41 × 10-5 1.95 × 10-5(7)

PROKAR_NTER_METHYL 10 6.79 × 10-3 8.01 × 10-3 5.10 × 10-3(20)

GLY_RADICAL_1 6 1.58 × 10-6 1.86 × 10-6 1.60 × 10-6(8)

PEP_ENZYMES_PHOS_SITE 4 1.49 × 10-10 1.74 × 10-10 1.49 × 10-10(12)

PUR_PYR_PR_TRANSFER 7 2.15 × 10-14 2.75 × 10-14 2.10 × 10-14(12)

Table 4 Exact P-values for a selection of PROSITE

patterns of high complexities using the complete

proteome of Escherichia coli (NC_000913.faa). We use an

order 1 homogeneous Markov model estimated over the

data set.

PROSITE signature n Exact

PILI_CHAPERONE 10 3.27 × 10-46

SIGMA54_INTERACT × 2 12 1.58 × 10-42

EFACTOR_GTP 8 4.43 × 10-20

ALDEHYDE_DEHYDR_CYS 11 5.63 × 10-9

ADH_ZINC 12 8.93 × 10-16

THIOLASE_1 5 5.76 × 10-9

SUGAR_TRANSPORT_1 18 3.75 × 10-8

FGGY_KINASES_2 5 2.14 × 10-4

PTS_EIIA_TYPE_2_HIS 8 7.19 × 10-19

MOLYBDOPTERIN_PROK_3 11 2.59 × 10-35

SUGAR_TRANSPORT_2 10 1.22 × 10-5
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size w centered around i. Small values of w lead to

better fitting, while large values lead to better smooth-

ing (resulting in a homogeneous model if w ≥ ℓ, the

length of the sequence). In this example, we achieve a

satisfactory trade-off between the two extremes with

an arbitrary choice of w = 200. We can see in Figure

5, that the model gives a unique profile for each transi-

tion probability (e.g., πi(A, G) or πi(G, G)), and these

profiles are both quantitatively and qualitatively differ-

ent from each other. In Figure 6 we consider the

model in a more global way with the marginal distri-

butions of the four nucleotides. According to this

graph, it is clear that the upstream region has a bias in

GC content that depends on the position. In particular,

we observe a smaller GC content in the region [-200,

Table 5 P-values for several DNA patterns (known transcription factors are marked with a star) in the upstream region

data set.

DNA pattern n L homogeneous heterogeneous

CGCACCC* 28 10 2.95 × 10-3 3.74 × 10-3

AAGAAAAA* 427 11 1.31 × 10-99 1.29 × 10-99

AACAACAAC 25 10 1.76 × 10-6 1.38 × 10-6

TCCGTGGA* 22 11 1.12 × 10-6 1.55 × 10-6

GCGCGCGC 18 11 6.52 × 10-10 1.65 × 10-9

RTAAAYAA* 391 14 7.70 × 10-12 1.68 × 10-12

WWWTTTGCTCR* 15 17 4.15 × 10-1 4.09 × 10-1

AAAAAAAAAAAAAAAAAAAAAAAA 42 27 2.05 × 10-23 2.14 × 10-22

TAWWWWTAGM* 212 36 3.08 × 10-9 3.04 × 10-9

YCCNYTNRRCCGN* 11 40 3.10 × 10-2 3.05 × 10-2

GCGCNNNNNNGCGC 1 106 8.97 × 10-1 8.84 × 10-1

CGGNNNNNNNNCGG* 102 183 1.26 × 10-14 1.73 × 10-13

GCGCNNNNNNNNNNGCGC 6 464 2.88 × 10-2 2.84 × 10-2

Figure 5 Some transitions of the order 1 heterogeneous Markov model fitted using a sliding window of size 200 on the upstream

region data set. The plots respectively correspond to the following quantities: a) πi(A, G); b) πi(G, A); c) πi(G, G); d) πi(T, T), 1 ≤ i ≤ 800.
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-1] (positions 601 to 800) than in the region [-800,

-201] (positions 1 to 599).

Thanks to Algorithm 1, it is possible to compute the

P-values of DNA patterns in our heterogeneous model.

The results are given in Table 5 (column “heteroge-

neous”). For most patterns, we can see that the P-values

obtained with this heterogeneous model are in fact very

close to the ones obtained with the homogeneous one.

There are however several patterns for which a ratio

factor of 10 may appear between these two P-values (e.

g., Pattern GCGCGCGC or CGGNNNNNNNNCGG).

Conclusion
In this paper, we introduce efficient algorithms to com-

pute the exact distribution of random pattern counts in

a set of multi-state sequences generated by a Markov

source. These algorithms are able to deal both with low

or high complexity patterns, and with either homoge-

neous or heterogenous Markov models.

This work, based on the recent notion of optimal

Markov chain embedding through DFAs [46-49], is a

natural extension of the methods and algorithms devel-

oped in [51] to obtain the first kth moment of a random

pattern count in one sequence. These computations of

moments for a single sequence can easily be extended

to a set of independent sequences by taking advantage

of the fact that the cumulants (the first two cumulants

are the expectation and the variance) of a sum of inde-

pendent variables are the sum of the individual

cumulants.

To the best of our knowledge, there currently exists

no method specifically designed to compute the distri-

bution of a random pattern count in a set of Markov

sequences. However it exists a great deal of concurrent

approaches to perform the computations for a single

sequence, the result for a set of sequences being then

obtained by convolution products. In this regard, Algo-

rithm 1 has the interesting feature to completely avoid

these convolutions and their possibly prohibitive O(r ×

n2) additional cost (r being the number of sequences in

the data set, and n being the observed number of occur-

rences), especially for large n. Algorithm 1 also has the

advantage to be able to deal both with heterogenous

models and high complexity patterns. However, with a

complexity in O(ℓ × n × | | × L) (ℓ = ℓ1 + ...+ ℓr being

the total length of the data set, s being the alphabet size,

and L being the pattern complexity), this algorithm may

be too slow when considering large data sets.

In the homogeneous model, Algorithm 2 can dramati-

cally reduce the overall complexity by replacing ℓ by ℓr

the length of the longest sequence in the data set. More-

over this algorithm can deal with high complexity pat-

terns, but this requires performing convolution

products. However, it is clear that Algorithm 2 remains

the best option when considering a data set with a large

number of sequences with reasonable length: ℓr << ℓ =

ℓ1 + ... + ℓr.

In the particular case where ℓr is too high (e.g., ℓr =

106 or more), it may be necessary to switch from linear

to logarithmic complexity. This may be achieved by sev-

eral methods. When dealing with low complexity pat-

terns, the best known approach consists in computing

the bivariate rational moment generating function G(y,

z) of Nℓ the random number of pattern occurrences in a

random sequence of length ℓ and then to perform fast

Taylor expansions (logarithmic complexity) to get the

probabilities of interest. However, this approach requires

sophisticated computation in bivariate polynomial

Figure 6 Marginal distribution of the four nucleotides along the 800 positions of a upstream region. The underlying model is an order 1

heterogeneous Markov model fitted using a sliding window of size 200 on the upstream region data set.
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algebra, and has at least a cubic complexity with the

denominator degree of the rational function G(y, z)

whose value may be too high to perform the computa-

tions. Alternatively, the power approach proposed in

Algorithm 3 also achieves logarithmic complexity, but

with an easier implementation relying only on basic

floating point linear algebra.

For high complexity patterns, the cubic complexity in

L is prohibitive and prevents using neither power com-

putations nor the plain formal inversion that is required

to compute G(y, z). The partial recursion approach we

introduce to deal with such a case appears to be a very

interesting alternative, but its numerical instabilities in

floating point arithmetic need to be further investigated.

It is also possible to compute G(y, z) by solving the cor-

responding sparse linear system with appropriate sparse

linear algebra methods (e.g., sparse LU), but the avail-

ability of such methods for multivariate polynomial

matrices is likely to be an issue. Moreover, one should

expect the denominator degree of the moment generat-

ing function to increase with the pattern complexity

which could thus result again in untractable

computations.

Another tempting option is to ignore the particular

structure of the data set by approximating the distribu-

tion of N = N1 +... + Nr by the one of N’, the random

pattern count in a single sequence of length ℓ = ℓ1 +...

+ℓr. When one wants to use exact computations to get

the distribution of N’, the resulting complexity is likely

to be far greater that the one required to obtain the

exact distribution of N. However, these approximations

might be interesting if the distribution of N’ is obtained

through efficient asymptotic approximations like Poisson

or Large Deviations approximations. Unfortunately, we

have seen in our applications that this approach is sub-

ject to important edge effects, especially when the con-

vergence of the marginal distribution of the model

toward the stationary distribution is slow. It is therefore

necessary to use this single sequence approximation

with extreme caution when the stationary assumption of

the model is clearly in contradiction with the observed

data.

Thanks to Algorithm 1, it is possible for the first time

(up to our knowledge) to study the distribution of pat-

terns in a data set of upstream regions using an hetero-

geneous model. Despite the fact that there are some

noticeable differences between this heterogeneous model

and its homogeneous alternative, in practice we observe

very little difference between the resulting P-values for

most of the tested patterns. Some patterns are neverthe-

less more sensitive than others to the heterogeneity of

the data, and their P-values may by altered by a factor

10 or more.

It should also be noted that heterogeneous Markov

chains may be used to describe the behavior of homoge-

neous Markov chains under particular constraints. For

example, this is exactly the distribution we get when

considering the distribution of the hidden sequence of a

HMM conditionally to the observed data (e.g., detection

of CpG islands [20]). We get similar distribution when

we take into account the special characters (N means

“any nucleotides” in DNA sequences; X means “any ami-

noacid” in proteins) in biological sequences [21].

There are several interesting directions for further

developments of this work. The first one could be to

slightly change the statistic of interest for patterns pro-

blem by considering the M = M1 + ... + Mr number of

matching sequences instead of the number of occur-

rences. Such a choice might be motivated by the nature

of the selection pressure on a particular pattern: at least

k occurrences of the pattern in a sequence insure a

given biochemical activity (e.g., structured motifs in reg-

ulation [57]). In such a case, the pattern would match

sequence j (Mj = 1) if it occurs at least k times in the

sequence, and would else mismatch the sequence (Mj =

0). From a technical point of view, this is only a minor

extension of the present work, where one only needs to

adapt the existing method to get the moment generating

function of each Mj. However, the practical interest of

such alternative statistic for pattern problem is yet to be

studied.

A open problem remains open: how to deal with high

complexity patterns (high L) in long homogeneous

sequences (high ℓ)? The partial recursion we introduce

here might be a solution, but it is necessary to study in

further details its numerical stability issues. The only

alternative seems to be the sparse LU bivariate polyno-

mial approach suggested above to compute the bivariate

moment generating function G(y, z). However, an

exhaustive study of the relation between pattern com-

plexity and the denominator degree of G(y, z) remains

to be done in order to assess the practical interest of

this approach.

Finally, let us point out that all the methods and algo-

rithms presented in this paper are not yet available in

an efficient implementation. One important task yet to

be completed is to add these innovative techniques into

the Statistics for Patterns package (SPatt) the purpose of

which is to gather and make available the best pattern

methods. SPatt is a C++ General Public License (GPL)

program package which is freely available at the follow-

ing url: http://stat.genopole.cnrs.fr/spatt
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