T. Hofmann, A. G. Obukhov, M. Schaefer, C. Harteneck, T. Gudermann et al., Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol, Nature, vol.397, pp.259-263, 1999.

G. Boulay, X. Zhu, M. Peyton, M. Jiang, R. Hurst et al., Cloning and expression of a novel mammalian homolog of Drosophila transient receptor potential (Trp) involved in calcium entry secondary to activation of receptors coupled by the Gq class of G protein, J. Biol. Chem, pp.272-29672, 1997.

J. Zhou, W. Du, K. Zhou, Y. Tai, H. Yao et al., Critical role of TRPC6 channels in the formation of excitatory synapses, Nature Neuroscience, vol.11, issue.7, pp.11-741, 2008.
DOI : 10.1038/nrn988

O. Beskina, A. Miller, A. Mazzocco-spezzia, M. V. Pulina, and V. A. Golovina, Mechanisms of interleukin-1beta-induced Ca2+ signals in mouse cortical astrocytes: roles of store- and receptor-operated Ca2+ entry, AJP: Cell Physiology, vol.293, issue.3, pp.1103-1111, 2007.
DOI : 10.1152/ajpcell.00249.2007

S. Boisseau, C. Kunert-keil, S. Lucke, and A. Bouron, Heterogeneous distribution of TRPC proteins in the embryonic cortex, Histochemistry and Cell Biology, vol.66, issue.50, pp.355-363, 2009.
DOI : 10.1007/s00418-008-0532-6

URL : https://hal.archives-ouvertes.fr/hal-00403054

P. Tu, C. Kunert-keil, S. Lucke, H. Brinkmeier, and A. Bouron, Diacylglycerol analogues activate second messenger-operated calcium channels exhibiting TRPC-like properties in cortical neurons, Journal of Neurochemistry, vol.130, issue.1, pp.126-138, 2009.
DOI : 10.1111/j.1471-4159.2008.05752.x

URL : https://hal.archives-ouvertes.fr/hal-00403052

J. Mwanjewe and A. K. Grover, Role of transient receptor potential canonical 6 (TRPC6) in non-transferrin-bound iron uptake in neuronal phenotype PC12 cells, Biochemical Journal, vol.378, issue.3, pp.975-982, 2004.
DOI : 10.1042/bj20031187

S. L. Sensi, P. Paoletti, A. I. Bush, and I. Sekler, Zinc in the physiology and pathology of the CNS, Nature Reviews Neuroscience, vol.31, issue.11, pp.780-791, 2009.
DOI : 10.1038/nrn2734

R. A. Colvin, C. P. Fontaine, M. Laskowski, and D. Thomas, Zn2+ transporters and Zn2+ homeostasis in neurons, European Journal of Pharmacology, vol.479, issue.1-3, pp.479-171, 2003.
DOI : 10.1016/j.ejphar.2003.08.067

R. M. Dietz, J. H. Weiss, and C. W. Shuttleworth, Zn2+ Influx Is Critical for Some Forms of Spreading Depression in Brain Slices, Journal of Neuroscience, vol.28, issue.32, pp.8014-8024, 2008.
DOI : 10.1523/JNEUROSCI.0765-08.2008

X. Zhu, M. Jiang, and L. Birnbaumer, Receptor-activated Ca2+ influx via human Trp3 stably expressed in human embryonic kidney (HEK)293 cells. Evidence for a noncapacitative Ca2+ entry, J. Biol. Chem, pp.273-133, 1998.

A. Bouron, X. Altafaj, S. Boisseau, and M. D. Waard, A store-operated Ca2+ influx activated in response to the depletion of thapsigargin-sensitive Ca2+ stores is developmentally regulated in embryonic cortical neurons from mice, Developmental Brain Research, vol.159, issue.1, pp.64-71, 2005.
DOI : 10.1016/j.devbrainres.2005.07.001

URL : https://hal.archives-ouvertes.fr/inserm-00381727

K. R. Gee, Z. L. Zhou, D. Ton-that, S. L. Sensi, and J. H. Weiss, Measuring zinc in living cells. A new generation of sensitive and selective fluorescent probes, Cell Calcium, pp.31-245, 2002.

O. P. Hamill, A. Marty, E. Neher, B. Sakmann, and F. J. Sigworth, Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches, Pflugers Arch, pp.391-85, 1981.

J. Gibon, P. Tu, and A. Bouron, Store-depletion and hyperforin activate distinct types of Ca (2+)-conducting channels in cortical neurons, Cell Calcium, pp.47-538, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00504784

E. Rousselet, P. Richaud, T. Douki, J. G. Chantegrel, A. Favier et al., Moulis, A zinc-resistant human epithelial cell line is impaired in cadmium and manganese import, Toxicol. Appl. Pharmacol, pp.230-312, 2008.

T. Mosmann, Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays, Journal of Immunological Methods, vol.65, issue.1-2, pp.55-63, 1983.
DOI : 10.1016/0022-1759(83)90303-4

S. Bohic, A. Simionovici, A. Snigirev, R. Ortega, G. Deves et al., Synchrotron hard x-ray microprobe: Fluorescence imaging of single cells, Applied Physics Letters, vol.78, issue.22, pp.78-3544, 2001.
DOI : 10.1063/1.1366362

URL : https://hal.archives-ouvertes.fr/hal-00137459

V. A. Sole, E. Papillon, M. Cotte, P. Walter, and J. Susini, A multiplatform code for the analysis of energy-dispersive X-ray fluorescence spectra, Spectrochimica Acta Part B: Atomic Spectroscopy, vol.62, issue.1, pp.62-63, 2007.
DOI : 10.1016/j.sab.2006.12.002

J. A. Chandler and M. S. Morton, Determination of elemental area concentration in ultrathin specimens by x-ray microanalysis and atomic absorption spectrophotometry, Analytical Chemistry, vol.48, issue.9, pp.48-1316, 1976.
DOI : 10.1021/ac50003a016

E. Aizenman, A. K. Stout, K. A. Hartnett, K. E. Dineley, B. Mclaughlin et al., Induction of Neuronal Apoptosis by Thiol Oxidation, Journal of Neurochemistry, vol.1, issue.5, pp.75-1878, 2000.
DOI : 10.1046/j.1471-4159.2000.0751878.x

W. Maret, Molecular aspects of human cellular zinc homeostasis: redox control of zinc potentials and zinc signals, BioMetals, vol.111, issue.202, pp.149-157, 2009.
DOI : 10.1007/s10534-008-9186-z

V. Aires, A. Hichami, G. Boulay, and N. A. Khan, Activation of TRPC6 calcium channels by diacylglycerol (DAG)-containing arachidonic acid: A comparative study with DAG-containing docosahexaenoic acid, Biochimie, vol.89, issue.8, pp.926-937, 2006.
DOI : 10.1016/j.biochi.2006.10.016

K. Leuner, V. Kazanski, M. Muller, K. Essin, B. Henke et al., Hyperforin a key constituent of St. John's wort specifically activates TRPC6 channels, The FASEB Journal, vol.21, issue.14, pp.4101-4111, 2007.
DOI : 10.1096/fj.07-8110com

]. P. Paoletti, P. Ascher, and J. Neyton, High-affinity zinc inhibition of NMDA NR1-NR2A receptors, J. Neurosci, vol.17, pp.5711-5725, 1997.
URL : https://hal.archives-ouvertes.fr/hal-00139995

P. Tu, J. Gibon, and A. Bouron, The TRPC6 channel activator hyperforin induces the release of zinc and calcium from mitochondria, Journal of Neurochemistry, vol.10, issue.1, pp.204-213, 2010.
DOI : 10.1111/j.1471-4159.2009.06446.x

URL : https://hal.archives-ouvertes.fr/inserm-00466704

W. Kresse, I. Sekler, A. Hoffmann, O. Peters, C. Nolte et al., mouse astrocytes, European Journal of Neuroscience, vol.20, issue.6, pp.1626-1634, 2005.
DOI : 10.1111/j.1460-9568.2005.03926.x

K. E. Dineley, M. J. Devinney, I. , J. A. Zeak, G. L. Rintoul et al., Glutamate mobilizes [Zn2+] through Ca2+-dependent reactive oxygen species accumulation, J. Neurochem, vol.106, pp.2184-2193, 2008.

P. J. Dittmer, J. G. Miranda, J. A. Gorski, and A. E. Palmer, Genetically Encoded Sensors to Elucidate Spatial Distribution of Cellular Zinc, Journal of Biological Chemistry, vol.284, issue.24, pp.284-16289, 2009.
DOI : 10.1074/jbc.M900501200

A. R. Kay, Detecting and minimizing zinc contamination in physiological solutions, BMC Physiol, vol.4, issue.4, 2004.

S. L. Sensi, D. Ton-that, and J. H. Weiss, Mitochondrial Sequestration and Ca2+-Dependent Release of Cytosolic Zn2+ Loads in Cortical Neurons, Neurobiology of Disease, vol.10, issue.2, pp.100-108, 2002.
DOI : 10.1006/nbdi.2002.0493

L. M. Malaiyandi, O. Vergun, K. E. Dineley, and I. J. Reynolds, Direct visualization of mitochondrial zinc accumulation reveals uniporter-dependent and -independent transport mechanisms, Journal of Neurochemistry, vol.127, issue.5, pp.93-1242, 2005.
DOI : 10.1111/j.1471-4159.2005.03116.x

A. Takeda, Movement of zinc and its functional significance in the brain, Brain Research Reviews, vol.34, issue.3, pp.137-148, 2000.
DOI : 10.1016/S0165-0173(00)00044-8

R. A. Colvin, A. I. Bush, I. Volitakis, C. P. Fontaine, D. Thomas et al., Insights into Zn2+ homeostasis in neurons from experimental and modeling studies, AJP: Cell Physiology, vol.294, issue.3, pp.726-742, 2008.
DOI : 10.1152/ajpcell.00541.2007

F. Chimienti, E. Jourdan, A. Favier, and M. Seve, Zinc resistance impairs sensitivity to oxidative stress in hela cells: protection through metallothioneins expression, Free Radical Biology and Medicine, vol.31, issue.10, pp.31-1179, 2001.
DOI : 10.1016/S0891-5849(01)00701-8

M. S. Willis, S. A. Monaghan, M. L. Miller, R. W. Mckenna, W. D. Perkins et al., Zinc-Induced Copper Deficiency, American Journal of Clinical Pathology, vol.123, issue.1, pp.123-125, 2005.
DOI : 10.1309/V6GVYW2QTYD5C5PJ

C. I. Prodan, N. R. Holland, P. J. Wisdom, S. A. Burstein, and S. S. Bottomley, CNS demyelination associated with copper deficiency and hyperzincemia, CNS demyelination associated with copper deficiency and hyperzincemia, pp.1453-1456, 2002.
DOI : 10.1212/01.WNL.0000032497.30439.F6

B. C. Lee, S. E. Hong, H. H. Lim, H. Kim-do, and C. S. Park, Alteration of the Transcriptional Profile of Human Embryonic Kidney Cells by Transient Overexpression of Mouse TRPM7 Channels, Cellular Physiology and Biochemistry, vol.27, issue.3-4, pp.27-313, 2011.
DOI : 10.1159/000327958

L. M. Malaiyandi, K. E. Dineley, and I. J. Reynolds, Divergent consequences arise from metallothionein overexpression in astrocytes: Zinc buffering and oxidant-induced zinc release, Glia, vol.10, issue.4, pp.346-353, 2004.
DOI : 10.1002/glia.10332

C. Lof, T. Blom, and K. Tornquist, Overexpression of TRPC3 reduces the content of intracellular calcium stores in HEK-293 cells, Journal of Cellular Physiology, vol.138, issue.1, pp.245-252, 2008.
DOI : 10.1002/jcp.21396

M. A. Aras, K. A. Hartnett, and E. Aizenman, Assessment of Cell Viability in Primary Neuronal Cultures, Curr. Protoc. Neurosci, vol.47, issue.7 7, 2008.
DOI : 10.1002/0471142301.ns0718s44

K. E. Dineley, L. L. Richards, T. V. Votyakova, and I. J. Reynolds, Zinc causes loss of membrane potential and elevates reactive oxygen species in rat brain mitochondria, Mitochondrion, vol.5, issue.1, pp.55-65, 2005.
DOI : 10.1016/j.mito.2004.11.001

R. Inoue, T. Okada, H. Onoue, Y. Hara, S. Shimizu et al., The transient receptor potential protein homologue TRP6 is the essential component of vascular {{alpha}}1-adrenoceptor-activated Ca2+-permeable cation channel, Circ. Res, pp.88-325, 2001.

S. Jung, R. Strotmann, G. Schultz, and T. D. Plant, TRPC6 is a candidate channel involved in receptor-stimulated cation currents in A7r5 smooth muscle cells, AJP: Cell Physiology, vol.282, issue.2, pp.347-359, 2002.
DOI : 10.1152/ajpcell.00283.2001

K. Leuner, J. H. Heiser, S. Derksen, M. I. Mladenov, C. J. Fehske et al., Simple 2,4-Diacylphloroglucinols as Classic Transient Receptor Potential-6 Activators--Identification of a Novel Pharmacophore, Molecular Pharmacology, vol.77, issue.3, pp.77-368, 2010.
DOI : 10.1124/mol.109.057513

V. Kumar, A. Mdzinarishvili, C. Kiewert, T. Abbruscato, U. Bickel et al., NMDA receptor-antagonistic properties of hyperforin

M. A. Aras, H. Hara, K. A. Hartnett, K. Kandler, and E. Aizenman, Protein kinase C regulation of neuronal zinc signaling mediates survival during preconditioning, Journal of Neurochemistry, vol.23, issue.Suppl 5, pp.110-106, 2009.
DOI : 10.1111/j.1471-4159.2009.06106.x

S. M. Bousquet, M. Monet, and G. Boulay, Protein Kinase C-dependent Phosphorylation of Transient Receptor Potential Canonical 6 (TRPC6) on Serine 448 Causes Channel Inhibition, Journal of Biological Chemistry, vol.285, issue.52, pp.285-40534, 2010.
DOI : 10.1074/jbc.M110.160051

R. D. Palmiter, T. B. Cole, C. J. Quaife, and S. D. Findley, ZnT-3, a putative transporter of zinc into synaptic vesicles, Proceedings of the National Academy of Sciences, vol.93, issue.25, pp.93-14934, 1996.
DOI : 10.1073/pnas.93.25.14934

A. R. Kay and K. Toth, Is Zinc a Neuromodulator?, Science Signaling, vol.1, issue.19, 2008.
DOI : 10.1126/stke.119re3

K. Vogt, J. Mellor, G. Tong, and R. , The Actions of Synaptically Released Zinc at Hippocampal Mossy Fiber Synapses, Neuron, vol.26, issue.1, pp.187-196, 2000.
DOI : 10.1016/S0896-6273(00)81149-6

J. Qian and J. L. Noebels, Visualization of transmitter release with zinc fluorescence detection at the mouse hippocampal mossy fibre synapse, The Journal of Physiology, vol.4, issue.Suppl. 6, pp.747-758, 2005.
DOI : 10.1113/jphysiol.2005.089276

P. Paoletti, A. M. Vergnano, B. Barbour, and M. Casado, Zinc at glutamatergic synapses, Neuroscience, vol.158, issue.1, pp.126-136, 2009.
DOI : 10.1016/j.neuroscience.2008.01.061

A. Mathie, G. L. Sutton, C. E. Clarke, and E. L. Veale, Zinc and copper: Pharmacological probes and endogenous modulators of neuronal excitability, Pharmacology & Therapeutics, vol.111, issue.3, pp.567-583, 2006.
DOI : 10.1016/j.pharmthera.2005.11.004

C. Nicholson, Modulation of extracellular calcium and its functional implications, Fed. Proc, vol.39, pp.1519-1523, 1980.

I. A. Silver and M. Erecinska, Intracellular and extracellular changes of [Ca2+] in hypoxia and ischemia in rat brain in vivo, The Journal of General Physiology, vol.95, issue.5, pp.95-837, 1990.
DOI : 10.1085/jgp.95.5.837

D. A. Rusakov and A. Fine, Extracellular Ca2+ Depletion Contributes to Fast Activity-Dependent Modulation of Synaptic Transmission in the Brain, Neuron, vol.37, issue.2, pp.287-297, 2003.
DOI : 10.1016/S0896-6273(03)00025-4

U. Heinemann and R. Pumain, Extracellular calcium activity changes in cat sensorimotor cortex induced by iontophoretic application of aminoacids, Experimental Brain Research, vol.40, issue.3, pp.247-250, 1980.
DOI : 10.1007/BF00237788

H. Hu, M. Bandell, M. J. Petrus, M. X. Zhu, and A. Patapoutian, Zinc activates damage-sensing TRPA1 ion channels, Nature Chemical Biology, vol.3, issue.3, pp.183-190, 2009.
DOI : 10.1038/nchembio.146

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2677965

T. F. Wagner, A. Drews, S. Loch, F. Mohr, S. E. Philipp et al., TRPM3 channels provide a regulated influx pathway for zinc in pancreatic beta cells, Pflugers Arch, pp.460-755, 2010.

M. K. Monteilh-zoller, M. C. Hermosura, M. J. Nadler, A. M. Scharenberg, R. Penner et al., TRPM7 Provides an Ion Channel Mechanism for Cellular Entry of Trace Metal Ions, The Journal of General Physiology, vol.6, issue.1, pp.121-170, 2003.
DOI : 10.1016/S0165-6147(00)01541-8

X. P. Dong, X. Cheng, E. Mills, M. Delling, F. Wang et al., The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel, Nature, vol.2, issue.7215, pp.992-996, 2008.
DOI : 10.1038/nature07311

G. Kovacs, T. Danko, M. J. Bergeron, B. Balazs, Y. Suzuki et al., Heavy metal cations permeate the TRPV6 epithelial cation channel, Cell Calcium, vol.49, issue.1, pp.49-92, 2011.
DOI : 10.1016/j.ceca.2010.11.007