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ABSTRACT

Our objective was to show with two examples thpharmacokinetic (PK) similarity analysis
can be performed with nonlinear mixed effects med&LMEM). We used two studies
comparing different biosimilars: a three-way crassotrial on somatropin and a parallel
group trial on epoetin alpha. For both datasetsMBM-based analysis was compared to
non-compartmental analysis (NCA). As for NCA, wefpemed NLMEM-based equivalence
Wald test on secondary parameters of the modelatba under the curve and the maximal
concentration. Somatropin PK was described by acongpartment model, epoetin alpha PK
by a two-compartment model with linear and Michadlienten elimination. For both studies,
PK similarity was demonstrated by NCA and NLMEM. tBaapproaches led to similar
results. Therefore, PK similarity data can be aredyby both methods. NCA is an easier
approach as it does not require data modellindNbMEM leads to a better understanding of

the underlying biological system.

INTRODUCTION

During the past two decades, an increasing fractbnpharmaceutical research and
development (R&D) effort has been devoted to bimatyugs [1]. This is driven by evidence

that biologics are bringing significant patient béhin difficult-to-treat diseases such as
rheumatoid arthritis and various cancers, and afteanging the practice of medicine in these
conditions. Biologics are typically expensive aridcp a large burden on shrinking health-
care budgets. Follow-on biologics or biosimilare aew biological medicinal products that
are similar or comparable to the originator’s coommb and that may be lower in price, and
hence offer the promise of reduced healthcare altpega [2]. However, biologics are more

complex, containing mixtures of proteins with véinas in molecular structure, versus the

more homogeneous small molecule drugs. Genericiovexrsof the latter can be easily



characterized by standard analytical techniquesesithey are chemically identical.
Consequently, assessing the similarity betweererdifft formulations of biologics is more
complex than assessing the equivalence betweeareattf formulations of chemical drugs [3].
It is not surprising therefore that the regulatapproval procedures vary from country to
country regarding biosimilars. Currently, therens guideline for an abbreviated approval
pathway of biosimilars from the Food and Drug Adistiration (FDA). The actual policy is
decided on a “case-by-case” principle [4]. The peasn Medicines Agency (EMA) has more
stringent approval requirements for biosimilarsnttier typical generic drugs [2]. As part of
the required information, a pharmacokinetic (PKgdugjuivalence study is usually performed
as traditionally done for chemical drugs [5, 6]el\vf the study design is less straightforward.
For example, a parallel group design may be nepe$sa biologics with long half-life, as
monoclonal antibodies [7]. Also, biosimilarity stad are often performed in patients, which
raises several design challenges such as theisaleftthe study population, the number of
doses or the treatment regimen.

Generally, to analyze bioequivalence study date, @tea under the curve (AUC) and the
maximal concentration (£ are estimated by non-compartmental analysis (N@AJ
pharmacokinetic bioequivalence is assessed usiegetiNCA estimates [6, 8]. Although
nonlinear mixed effects models (NLMEM) are incregty used in drug development for
analyzing PK data (especially in sparse samplirgigiiephase Il trials) [9], there are only
few published studies which use NLMEM to analyzeeguivalence trial data [10-17]. These
authors used various statistical approaches tabtestjuivalence with NLMEM but did not
propose a general methodology. Model-based bioatgnee tests were studied through
simulation for crossover trials [18-21]. Recentlyye proposed a NLMEM-based
bioequivalence analysis with a statistical approsaithilar to that recommended for NCA

[21]. We showed that NLMEM-based Wald tests havedgproperties except for very sparse



designs and/or drugs with highly variable PK. NC&quires a large enough number of
samples per subject to accurately determine AUC @Gng and suffers from some caveats
such as an inability to take into account nonling@armacokinetics which is often exhibited
by biologics [22]. NLMEM-based bioequivalence ams# would be more appropriate for
such cases.

In this paper, we describe the methodology to perfBK similarity analysis using NLMEM
and illustrate this with data from two trials stutty PK similarity of different biosimilars.
Omnitrope (Sandoz GmbH, Kundl, Austria) was thestfibiosimilar recombinant growth
hormone (or somatropin) approved in Europe, Jagath Canada as well as in the®and is
the first of our examples. Somatropins are usedeat growth hormone deficiency, mainly in
pituitary dwarfism. In the dataset we used, twarfolations of this biosimilar, 3.3 mg/ml
solution (formulation T) and 5 mg/ml powder (formulation,)] were compared to the
reference formulation, Genotropin (Pfizer PharmabBimKarlsruhe, Germany). The second
biologic is a recombinant human erythropoietingpoetin alpha. Epoetins alpha are used to
treat, amongst others, anaemia in chronic renklréapatients as it regulates the maturation
of erythroid-progenitor cells into red-blood cells.the dataset we used, the test formulation
Binocrit (Sandoz GmbH, Kundl, Austria) was compared the reference formulation
Erypo/Eprex (Janssen-Cilag GmbH, Neuss, Germarhg.single dose, three-way crossover
trial on somatropin was chosen to illustrate theVMMM-based PK similarity analysis for
“simple pharmacokinetics” and its utility for desgywith fewer sampling times than usually
done in NCA. The multiple dose parallel group toal epoetin alpha was chosen to illustrate

NLMEM-based PK similarity for “complex pharmacokiios”.

(1) Approvedin USunder 505(b)(: 4



RESULTS

Somatropin

Data: 36 subjects were randomized, but one was presigtwithdrawn from the study as
s/he did not present for the second treatment gefibus, 35 subjects were included in the
PK analysis. Overall measurements, 18 concentsatidn4%) are below the limit of
quantification (LOQ). These concentrations were sneed at one of the two last sampling
times. Based on pre and post-dose syringe weiglifferences between the intended and
actually administered dose were observed, possiblysed by slight variations in drug
reconstitution and administration technique. Indinal concentrations versus time profiles
plotted for each formulation with a semi-logaritltnsicale are displayed in the first column of
Figure 1 for the complete dataset.

[Figure 1 about here]
PK modelling: Administered doses were used for the populatidraRalysis and the plasma
concentrations below LOQ were taken into accounihéparameter estimation by the SAEM
algorithm implemented in MONOLIX software [23] whicconsiders those data as left
censored [24]. A one-compartment model with firstes absorption with a lag time, and
first-order elimination best described the somatragata of the reference formulation. The
best statistical model included between-subjedabdity (BSV) for all PK parameters with a
correlation between the clearance and the voluméistfibution, and a combined (additive
plus proportional) error model. Parameter estiméesept period and sequence effects) of
the final model used for PK similarity analysis atisplayed in Table 1 with their standard
errors (SE). Precision of estimation was judgedsfetory for all parameters. Model
evaluation plots are displayed in supplementaryife@d1 online and are satisfactory.
We used the reference formulation estimates inPfRM software [25] to determine the six

sampling times per subject and per period of theénmoped design (OD). The optimized



sampling times were: 1, 2, 8, 10, 20, and 24 h. ther empirical design (ED), the PK
modeller chose the following sampling times: 1, £, 6, 12, and 24 h. Individual
concentrations versus time profiles plotted forhefmrmulation with a semi-logarithmic scale
are displayed in the second and third columns géiféi 1 for the OD and ED datasets. For
both sparse datasets, the additive parameter artbe model was fixed to 0.1, the estimated
value for the complete dataset. Parameter estinaaéedisplayed in supplementary Table S1
online. Precision of estimation was judged satisigcfor all parameters and both sparse
datasets.

[Table 1 about here]
PK similarity analysis: Table 2 summarizes the PK similarity analysimgsNLMEM and
NCA for the complete dataset and both sparse daté®® and ED). For AUC andqf, and
the three datasets, the 90% confidence interva) (€tio of AUC and Gax for both
formulations are within the equivalence interval-85%. Thus, PK similarity was
demonstrated using both methodologies, for botmfdations, and the three datasets. For
both parameters and each dataset, the ratios amd®0% CI obtained by NCA or NLMEM
are similar. For NLMEM estimates, the geometric nzeaf AUC and Gax are rather similar
for the three datasets. For NCA estimates, the gemmmeans of AUC and {axare lower
for OD dataset compared to complete and ED datasets

[Table 2 about here]

Epoetin alpha
Data: Of the 80 subjects, 76 completed the study aaegrtb the protocol; 39 subjects
received the reference formulation and 37 recethedtest. Due to subject bodyweight, the
administered doses were between 5900 and 10,000Heke are no concentrations below

LOQ. As expected, the epoetin alpha concentratemsus time plotted for each formulation



with a semi-logarithmic scale showed a behaviowt tis characteristic of a non-linear
(capacity limited) elimination process [22] (Figutke

[Figure 2 about here¢]
PK modelling: A two-compartment model with linear and Micha@dgnten elimination best
described the epoetin alpha data of the referemoeuiation. To check our hypothesis on the
elimination pathway, we compared the Bayesian m#iron Criteria (BIC) for this model
versus the corresponding models with only lineABIC=221) or Michaelis-Menten
(ABIC=11) elimination and confirmed that the mixedmhation pathway better described
the data. The best statistical model included B8iWvall PK parameters, with a correlation
between the clearance and the volume of centralpadment, and a proportional error
model. Parameter estimates of the final model &meBK similarity analysis are displayed in
Table 3 with their SE. Precision of estimation wadged satisfactory for all parameters.
Figure 3 displays the visual predictive check Jlefhd the individual weighted residuals
(IWRES) versus time (right) for each formulatiorogp. Most of the observations are in the
90% prediction interval, and there are no majosésaor trends in the IWRES plot.

[Table 3 about here]

[Figure 3 about hereg]
PK similarity analysis: Table 4 summarizes the PK similarity analysimgsNLMEM and
NCA. The 90% CI ratio of AUC and {a at steady state are within the equivalence interva
80-125%, using NCA and NLMEM. For both parametdt®e ratios and their 90% CI
obtained by NCA or NLMEM are similar. The geometmeans of Gax are higher by NCA
compared to NLMEM. The geometric means of AUC aedr by NCA compared to
NLMEM. We estimated the formulation effect on theogortion of the dose nonlinearly
eliminated (PDNE) by NLMEM-based analysis. The PDid&t/reference ratio was estimated

as 94.6 with a 90% Cl of [72.2; 123.9].



[Table 4 about here]

DISCUSSION

In this study, we presented the results of a pheokiaetic similarity analysis using NLMEM
for two biologics: somatropin and epoetin alphactSanalysis requires the collaboration of
statisticians and pharmacokineticists [26]. We pemal a general methodology to perform
such analysis for crossover and parallel desigdsaancompared the results to those obtained
using traditional NCA. NLMEM-based equivalence s$estere performed on secondary
parameters of the models using the delta methaihaulation to estimate the standard error
of formulation effects. PK bioequivalence resuttsni NCA and NLMEM are similar thereby
demonstrating that NLMEM can be used for equivadaiesting.

For somatropin where the PK is simple, we alsogoeréd the analysis on two sparse datasets
showing the importance of the design, especialyNfGA. Indeed, NCA is highly sensitive to
design, especially for the determination gfscand the computation of the terminal slope of
the PK profile. The currently available tools tatiopze the PK sampling times cannot take
into account that equivalence test would be peréoiron G Indeed, optimisation using
the Fisher information matrix gives sampling tinpgseviding information on PK parameters
of the model. This explains the difference in théANestimation of Gax between OD dataset
and the two other datasets. As shown in Duboi$[@7 with few samples per subject, NCA
estimates can be biased, even if the PK similasitstill demonstrated. For somatropin, we
adjusted the dose to estimate comparable AUC. atljgstment assumed a linear relation
between dose and concentration which is wrong émlinear PK [22]. The dose adjustment
is not necessary for the analysis by NLMEM as theeds taken into account in the model.
For epoetin alpha where the PK is complex, we eggéth by NLMEM PDNE, a PK

parameter that cannot be obtained by NCA. For neali PK, clearance is not proportional to



AUC and NCA parameters are not very physiologicallganingful. Only the use of models
allowed us to adequately study the nonlinear P&efdrug and its properties. We would like
to propose that parameters such as PDNE (or opfegteps linked to receptor occupancy)
might be useful metrics particularly if they canlimked to clinically meaningful readouts of
efficacy and safety [28].

The estimation of parameters through NCA does equire the assumptions inherent in
model-based approaches and tends to be more aoleeptal familiar to Health Authorities.
Despite claims that NCA is an *“assumption-free” raggh, it assumes linear
pharmacokinetics. It was already shown that, ire @@sionlinear pharmacokinetics, NCA can
bias the comparability analysis of a biologic ahdtta model-based approach can correct it
[29, 30]. Even for linear PK, the interpolation thie AUC between last sampling time and
infinity could be problematic for atypical conceattons profiles [20]. Furthermore, NCA
estimates are sensitive to data below LOQ. In stahdnalysis, pharmacokineticists usually
omit these data. When analyzing data below LOQ imadel-based paradigm, various
innovative approaches have been proposed [31, I82fhis study, we used the SAEM
algorithm implemented in MONOLIX [33] which takestdo account data below LOQ [24].
Though the percentage of these data is small iexamples, it can be important such as their
consideration impacts the parameter estimates.irBaircumstances as outlined above,
NLMEM-based bioequivalence analysis might be mg@rapriate than NCA.

In this paper, we proposed a PK similarity analyseéng NLMEM in agreement with the
guidelines recommendations for bioequivalence [5F6r crossover trials, treatment, period
and sequence effects were taken into account. &@ll@l and crossover trials, equivalence
tests were performed on the treatment effect etimbhis latter type of PK similarity
analysis requires the use of a robust algorithnih cSAEM because many parameters are

estimated in these complex models. NLMEM take &toount the knowledge accumulated



on the drug. Appropriately parameterised, such eratttical models can lead to a better
understanding of the underlying biological systdrant the fully empirical NCA approach,

especially for drugs with complex PK such as ofiesimilars.

METHODS

Data

Both studies were conducted according to the rdviskelsinki Declaration and GCP

guidelines. Data were described previously [34, 35]

Somatropin: The trial was a randomized, double-blind, singleel three-way crossover trial
designed to demonstrate the bioequivalence of ww@lnsomatropin formulations compared
to a reference in healthy subjects. Thirty-six @emien adults received octreotide for
endogenous growth hormone suppression before sopmatradministration. A single
subcutaneous dose of 5 mg was administered at égenrbng of each treatment period
separated by a seven day wash-out period. Subjecesrandomly allocated to one of the six
sequences of treatment (R-T, R-T>-T1, T1-T2-R, T1-R-Ty, To-T1-R, T>-R-T1) knowing that
there were six subjects by sequence. Blood sanipiegharmacokinetic assessments were
collected after each drug administration at 1,,24,35, 6, 8, 10, 12, 16, 20, and 24 h after
dosing. Concentrations were measured by a chemniksoent immunometric assay with a

LOQ of 0.2 ng/mL.

Epoetin alpha: The trial was a randomized, double-blind, multigteses, parallel group trial
designed to assess biosimilarity of epoetin alpheompared to epoetin alpha R at steady
state (after eleven doses). Eighty healthy caucasiales (forty by formulation) received

intravenous doses of 100 IU/kg three times a weamkfdur weeks. Blood samples for
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pharmacokinetic assessments were collected ablloeving sampling times: day 1, at 0.01 h
before dosing; days 8, 15, 19, 22 at the time skgdday 24, at 0.5, 0.33, 0.17, and 0 h before
dosing; and 0.08, 0.17, 0.25, 0.33, 0.5, 0.75,8, 24, 3, 4, 5, 6, 8, 10, 12, 16, 24, and 36 h
after dosing. Concentrations were determined usingenzyme immunoassay kit (EPO-

ELISA, Medac GmbH, Hamburg, Germany) with a LOQd miU/mL.

Nonlinear mixed effects modelling

Model building using the reference data: Before performing the model-based PK similarity
assessment, a population PK model was defined. dterrdine the structural and the
statistical model (random effect matrices and rgictrror model), data from the reference
formulation and information on the drug were usétk assumed exponential random effects
for all PK profiles. Diagonal, block diagonal, aooimplete matrices were tested during model
building. Regarding the error model, additive, pdnal, and combined error models were
tested. Models were compared by the Bayesian Ir&tom Criteria [36], standard goodness
of fit plots and visual predictive checks.

The final model was then used to fit all the datfefence and test formulations) and to
perform the PK similarity analysis. For crossovealt the structure of the within-subject
variability (WSV) matrix was chosen to be identit¢al the structure of the BSV matrix.
Population PK analyses were performed using theNbAkorithm [37, 38] implemented in
the MONOLIX software version 3.1R2 [33] (Monolix Bweare Project Group, Orsay,
France) with log-likelihoods estimated by importarsampling.

For somatropin, a one-compartment model with fiostler absorption and first order
elimination was used with or without a lag time foe absorption [39]. The estimated PK
parameters were CL/F (L/h), the apparent clearaicelimination, V/F (L), the apparent

volume of distribution, k(h™), the absorption rate constany th), the absorption lag time.
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Epoetin alpha is a drug showing target-mediated diisposition (TMDD) properties due to
its specific and saturable internalization in ergiti progenitor cells [40, 41]. Fitting the
TMDD PK model requires to assign some of the remepinding parameter values using
results of in vitro receptor binding studies. Wherch data are not available, a Michaelis-
Menten approximation can be made [42-44]. The &iestsidered structural model was a two-
compartment model with linear and Michaelis-Mentelimination. The corresponding

differential equation system is defined in Equatloand 2:

dC (t) I|n max c(t)

ot C o(0) - C (t) v, —C(1)- V(K. +C.(0) (1)
dc (1) Q i
T = V_pC (1) v, C o(0) (2)

With C¢: the drug concentration in the central compartméntthe drug concentration in the

peripheral compartmen€, (0) = C(0) = 0, and for each dosing time

Dose
V

c

C,(t")=C (t7) +

Modelling endogenous epoetin alpha production isnglex and requires much more
information on endogenous concentration than tlawséable [44]. As in Ramakrishnan et al
[45], we assumed this production was not altergdthe administration of recombinant
human epoetin alpha. The endogenous baseline doatens Co) measured before any drug

administration were taken into account considetimat: C(t) =C, +C, t), with C(t) the

measured concentration. The estimated PK parameters Cly, (L/h), the clearance of
elimination, Q (L/h), the inter-compartmental cleace, \¢ (L), the volume of distribution of
the central compartment,,\L), the volume of distribution of the periphe@mpartment,

Vmax (IU/h), the maximum elimination rate from plasria, (IU/L), the plasma concentration
at Vima{2, G (IU/L), the endogenous baseline concentration.isequal to the equilibrium

dissociation constant @ of the TMDD model and Max is proportional to the total receptor
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concentration [42, 43]. We computed the proporidrthe dose nonlinearly eliminated at

steady state for each formulation. SinBese=CL

lin

xAuc+jE%5%Ql—xcgodn we

m + Ce (1)
L, xA Vo (t L, xA
deduced 1=C w X AUC 1 j o) XCc(t)dt:M+ PDNE and
Dose Dose’ K., +C_(t) Dose
PDNE = 1- Shin *AVC
Dose

Sparse data for somatropin: From the somatropin dataset with twelve samptinges per
subject and period, two “sparse” datasets werpced: the optimized and empirical design
datasets. For both datasets, we fixed the numbsaroples to be half of the original design,
i.e. six per subject and period, and the sampling gimvere chosen among those of the
complete dataset. To optimize the OD dataset sampimes, we used the PFIM software
version 3.2 [25, 46] (Paris, France) with the parsnestimation of the reference formulation
[47]. The Fedorov-Wynn algorithm was used to defime six sampling times for which the
determinant of Fisher information matrix is maxim{#8]. The ED dataset sampling times
were determined by an experienced PK modeller bedoly knowledge on the data analysis,
using the somatropin concentration versus timeilpsofor each formulation (see Figure 1),

and knowing that we would estimate AUC anghC

PK similarity analysis
NLMEM based approach: We show here how to perform a model-based equicale
analysis with a statistical approach similar to NG#t using NLMEM. For crossover trial
(somatropin data), the statistical model includauniulation, period, and sequence effects for
all PK parameters. We considered that the refer@aroeulation, the first period, and the first

sequence (R-FT,) were the reference classes. For details on #tiststal model, see Dubois
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et al [27]. For parallel group trial (epoetin alpthata), formulation effects were added to all
PK parameters.

We assumed additive formulation, period and seqeieffects on log parameters. We defined
[Sr the formulation effect for a PK parameter. We perfed equivalence tests on the estimate
of Gr using its SE and the Schuirman’s two one-sidetd f@®cedure [49]. As we performed
equivalence tests on secondary parameters of thetwsal model, we estimated the
formulation effects from the fixed effects estinsate using simulation. The corresponding
SE was computed by the delta method [50] or viaiktion using the fixed effects estimates,
and the Fisher information matrix estimate of tixed effects. We also estimated the 90%
confidence interval of exp) which corresponds to the 90% CI of the test/exfee ratio for
average considered parameter. Furthermore, as neended in the guidelines, we reported
the geometric mean and coefficient of variation J@VAUC and G« for each formulation.
For somatropin, equivalence tests were performetherformulation effects of AUE., and
Cmax for each test formulation, with respect to theerefice formulation. Formulation effects
of AUCy., and their SE were obtained directly from the folation effects of the clearance
and their SE. The formulation effects on,& were computing from the fixed effects
estimates; their SE were computing by the deltdhotktas described in Dubois et al [27].

For epoetin alpha, equivalence tests were perforomethe formulation effects of AUC and
Cmax at steady state. AUC were computed between theedindose and the last sampling time
of the dose (AUg3¢). Because of the Michaelis-Menten elimination, streictural PK model
of epoetin alpha is written with ordinary differeditequations. So, the formulation effects and
their SE for these secondary parameters were dstintiarough simulations of concentration
profiles. See supplementary information onlinedetails on the simulation process.

For somatropin, AUg. and Gnax were also the estimates of the geometric mearts tran

corresponding CV were estimated by the total vdigpi.e. by the sum of the BSV and
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WSV. For epoetin alpha, we computed by simulatloe NLMEM-based geometric mean of
AUC.36 and Gax for each formulation and their CV were obtainednirtheir BSV (see

supplementary information online). We also estimaige formulation effect on PDNE at
steady state and the corresponding 90% CI. All Eitrans were performed using the R

software version 2.11.0 (R foundation for StatetiComputing).

Comparison to non-compartmental analysis. AUC and Gax were calculated from the
concentrations versus sampling time profiles bynddad NCA using the R software. A
combination of the linear and log-linear trapezbmathod was used, data below LOQ were
omitted, three to six sampling times were usedotmpute the terminal slope [22]. When the
administered dose differed from the intended dosagcentrations were divided by the ratio
administered/intended dose before NCA estimatkor. somatropin, AUC were computed
from the time of dose to infinity (AU.). For epoetin alpha, AUC and & were calculated
at steady state, subtracting the endogenous basetincentrations. AUC were calculated
between the time of dose and the last sampling (AEC,.36) Which corresponds to the AUC
at steady state (AUG).

Equivalence testing was performed on log-transfornparameters. For crossover trial
(somatropin data), a linear mixed effects modeluidiag formulation, period, sequence as
fixed effects, and subject as random effect, wasl usor parallel group trial (epoetin alpha
data), a linear model with formulation effect wased. 90% CI of formulation effects were
computed using a Student distribution with N-2 @egr of freedom (N: total number of

subjects). Equivalence analyses were performedjusaR software.

SUPPLEMENTARY MATERIAL is linked to the online version of the paper at

http://www.nature.com/cpt
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FIGURE LEGENDS
Figure 1: Somatropin concentration versus time ®=f8Bom the three-way crossover study
for each formulation and the three datasets: tingpbete (left), the optimized design (middle)
and the empirical design (right). Data from the edermulation but different periods are
pooled.
Figure 2: Epoetin alpha concentration versus time dach formulation (N=39 for the
reference and N=37 for the test formulation) fréma parallel group study
Figure 3: Observed concentrations of epoetin a@raus time with their 90% prediction
interval (left), and individual weighted residualBVRES) versus time (right) for each

formulation, reference (top), and test (bottom).
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Figure 1
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Figure 2
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Figure 3

Individual weighted residuals
versus time
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Table 1: Pharmacokinetic parameter estimates oasopmin (standard errors) from the three-

way crossover trial (complete dataset)

tiag (M) ke (M) VIF(L) CL/F(L/h) corey

IR 0.49 (0.07) 0.32(0.07) 26.22(0.1) 8.63 (0.03)

. -0.22 (0.07) -0.2(0.07) -0.12(0.1) 0.01(0.03)
. -0.07 (0.06) -0.06 (0.08) 0.07 (0.11) 0.05 (0.03)

BSV 0.33(0.05) 0.18(0.04) 0.44(0.04) 0.23(0.02)0.81
WSV 0.09 (0.04) 0.19(0.03) 0.26(0.03) 0.1(0.01)0.49
a (ng/mL)| 0.11(0.02)

b 0.14 (0.004)

Period and sequence effects are not reported. ditiv@derror model parameter; b, proportional emeodel

parameter; BSV, standard deviation for betweenesbjariability; ,BTl, formulation effect for the test

formulation T; 'BTz' formulation effect for the test formulation;Tcorr; .y, correlation between CL/F and V/F;

IR, fixed effects for the formulation of reference SW, standard deviation for within-subject variatyili
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Table 2: Pharmacokinetic similarity analysis fog gomatropin data

Formulation R Formulation T Formulation & TR T./R
PK Geometric CV Geometric CV Geometric CV  Ratio 90% Cl Ratio 90% ClI
Dataset Method

parameter mean (%) mean (%) mean (%) (%) (%) (%) (%)
AUC,., NLMEM 579.1 25.0 574 25.0 550.1 25.0 99.1 [95.0;103.4]95.0 [91.0;99.1]
(h.ng/mL) NCA 5745 21.6 565.7 26.2 544 249 985 [94.1;103.1]94.6 [90.4;99.1]
© Cnax NLMEM 695 381 66.0 381 635 381 950 [87.5;103.0]191.4 [84.5;98.8]
(ng/mL)  NCA 737 345 700 319 686 37.9 953 [87.8;103.3]93.1 [85.9;101.0]
AUC,., NLMEM 559.2 259 550.2 259 5241 259 098.4 [94.1;102.9]93.7 [89.6;98.0]
(h.ng/mL) NCA 491.3 23.2 491.6 29.3 464.2 26.4 100.1[95.6;104.9] 94.4 [90.1; 98.9]
> Cnax NLMEM 68.6 388 63.7 388 60.7 388 929 [85.2;101.3]88.5 [81.4;96.2]
(ng/mL)  NCA 59.7 422 551 453 540 47.8 92.6 [83.4;102.8]90.4 [81.4;100.4]
AUC,., NLMEM 586.4 23.2 597.0 23.2 565.1 23.2 101.8 [97.8;106] 96.4 [92.5;100.4]
(h.ng/mL) NCA 566.4 21.6 570 26 541.9 25.6 100.7 [96.1; 105.6] 95.6 [91.2; 100.2]
= Cnax NLMEM 708 382 681 382 652 382 96.2 [88.8;104.1]92.0 [85.0;99.7]
(ng/mL) NCA 724 343 686 324 675 37.0 95.0 [87.5;103.2]93.3 [86.0;101.3]

AUC,.,, area under the curve between the time of doseimsfimity; C, complete dataset; .z, maximal

concentration; CV, coefficient of variation; Cl,faence interval; ED, empirical design dataset;A\@on-

compartmental analysis; NLMEM, nonlinear mixed effe model; OD, optimized design dataset; PK,

pharmacokinetic.
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Table 3: Pharmacokinetic parameter estimates aétepalpha (standard errors) from the

parallel group trial

CLun Q V. Ko C,  cor
Ve(L) V(L)
(Lh)  (Uh)  (UM) (UML) (IUL)  ClinVe

iR 405 258 036 0.34 34122 9083 8.26
(0.14) (0.46) (0.06) (0.06) (38.09) (17.74) (0.34)
B 006 017 017 020 -007 -0.16  0.06
(0.05) (0.23) (0.23) (0.21) (0.16) (0.28)  (0.06)
BSV 021 0.16 034 013 013 039  0.25
(0.01) (0.04) (0.02) (0.05) (0.03) (0.05) (0.02)
b 0.15
(0.003)

0.9 (/)

b, proportional error model parameter; BSV, stadddeviation for the between-subject variabili
formulation effect for the test formulatiorﬁ;orrCL”n_Vc, correlation between Gl and \.; ug, fixed effects for

the formulation of reference
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Table 4: Pharmacokinetic similarity analysis fog #poetin alpha data

Formulation R Formulation T T/R
PK Geometric CV Geometric CV Ratio 90% CI
Method

parameter mean (%) mean (%) (%) (%)

AUC NLMEM 9,522.4 21.4 8,643.5 21.5 91.1 [83.6; 99.3]
(h.mlU/mL) NCA 8,651.5 20.5 7,755.3 29.7 89.6 B3R3.8]

Crax NLMEM 2,024.4 20.3 1,916.9 20.3 94.7 [87.5; 102.6]
(mlIU/mL) NCA 2,213.7 18.7 2,143.9 18.0 96.8 [93180.5]

AUC,, area under the curve between for th& tibse; G., maximal concentration for the 't dose; CV,

coefficient of variation; ClI, confidence interv@CA, non-compartmental analysis; NLMEM, nonlineaixea

effects model; PK, pharmacokinetic.
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Supplementary Figure S1. Observed concentrations of somatropin of the cetaptiataset

versus time with their 90% prediction interval {Jefand individual weighted residuals

(IWRES) versus time (right) for each formulatioefarence (top), test;{middle) and test I

(bottom).
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Supplementary table S1: Pharmacokinetic parameter estimates of somati(gspandard

errors) from the three-way crossover trial for bgplarsified dataset

tiag () ke (M) VIF(L)  CLF (hL) coreLy

IR 0.52(0.07) 0.32(0.04) 25.37 (6.62)8.94 (0.96)

-0.28 (0.11) -0.20 (0.07) -0.10(0.11) 0.02 (0.03)

Br,

. -0.15 (0.08) -0.04 (0.08) 0.14(0.11) 0.06 (0.03)

oD
BSV | 0.20(0.06) 0.15(0.04) 0.48(0.04) 0.25(0.02)0.80

WSV | 0.07(0.10) 0.17(0.02) 0.23(0.03) 0.07 (0.01)0.71

a (ng/mL) 0.1()
b 0.16 (0.007)

LR 0.49 (0.07) 0.32(0.03) 25.29 (6.12) 8.53 (0.82)

0.22(0.09) -0.18(0.07) -0.10 (0.11) -0.02 (0.02)

By,
B,

ED
BSV | 0.26(0.05) 0.15(0.04) 0.47 (0.04) 0.22(0.02)0.86

-0.05 (0.07) -0.01 (0.09) 0.12 (0.12) 0.04 (0.02)

WSV | 0.05(0.08) 0.16(0.03) 0.24(0.03) 0.06 (.01 0.84

a (ng/mL) 0.1()

b 0.18 (0.007)

Period and sequence effects are not reported.dpogional error model parameter; a, additive emadel

parameter (fixed to 0.1); BSV, standard deviationlfetween-subject variability,BTl, formulation effect for the

test formulation T; 'BTz' formulation effect for the test formulation;Tcorr, .y, correlation between CL/F and

V/F; ED, empirical design dataset OD, optimisediglesdatasetyur, fixed effects for the formulation of

reference; WSV, standard deviation for within-sebjeariability.
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Supplementary information to: Simulation for epoetin alpha dataset

For the # and 11" dose, the formulation effects were estimated fi900 concentration
profiles simulated for each formulation on a filmeed grid with a stepsize 0.01 h. To do so,
first we simulated 5000 sets of PK parameters hed formulation effects using a Gaussian
distribution with mean the fixed effects estima@sg covariance matrix the inverse of Fisher
Information matrix estimate of the fixed effectsftek simulating the concentration profiles,
for each profile, we computed AUC using the liné@pezoidal method, and.&x as the
maximal observed concentration. For each dosdptheulation effect of AUC was estimated
as the mean of the 5000 differences between thaitbg of the simulated AUC for the test
and the reference formulations. The correspondiiagdsrd error was estimated as the
standard deviation of the 5000 differences. Theesamthodology was used to estimate the
formulation effect of Gax and of the proportion of the dose nonlinearly elamted. To
compare to NCA, we also computed the NLMEM-basezhggtric mean of AUG., and Gnax

for each formulation and their CV obtained fromiti&SV. For the 1 and 11" dose, and for
each formulation, the population means of AUC apgiGnd their CV were estimated from
5000 concentration profiles. In that case, the 5883 of PK parameters were simulating
using a log-normal distribution with mean the fixefflect estimates, and covariance matrix
the BSV matrix estimates. After simulating the camication profiles, for each dose and
formulation, the population mean AUC and,cwere computed as the mean of the 5000
simulated AUC and &y respectively. The corresponding standard deviatibBSV were

estimated as the standard deviation of the 5000lated AUC or Gax
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