J. Amiel, E. Sproat-emison, M. Garcia-barcelo, F. Lantieri, G. Burzynski et al., Hirschsprung disease, associated syndromes and genetics: a review, Journal of Medical Genetics, vol.45, issue.1, pp.1-14, 2008.
DOI : 10.1136/jmg.2007.053959

A. Argentaro, H. Sim, S. Kelly, S. Preiss, A. Clayton et al., A SOX9 Defect of Calmodulin-dependent Nuclear Import in Campomelic Dysplasia/Autosomal Sex Reversal, Journal of Biological Chemistry, vol.278, issue.36, pp.33839-33886, 2003.
DOI : 10.1074/jbc.M302078200

C. Barnett, R. Mendoza-londono, S. Blaser, J. Gillis, L. Dupuis et al., Aplasia of cochlear nerves and olfactory bulbs in association with SOX10 mutation, Am J Med Genet A, vol.149, pp.431-437, 2009.

P. Bernard, H. Sim, K. Knower, E. Vilain, and V. Harley, Human SRY inhibits ??-catenin-mediated transcription, The International Journal of Biochemistry & Cell Biology, vol.40, issue.12, pp.2889-900, 2008.
DOI : 10.1016/j.biocel.2008.06.006

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2586953

R. Bolande, The neurocristopathiesA unifying concept of disease arising in neural crest maldevelopment, Human Pathology, vol.5, issue.4, pp.409-429, 1974.
DOI : 10.1016/S0046-8177(74)80021-3

N. Bondurand, D. Moal, F. Stanchina, L. Collot, N. Baral et al., Deletions at the SOX10 Gene Locus Cause Waardenburg Syndrome Types 2 and 4, The American Journal of Human Genetics, vol.81, issue.6, pp.1169-85, 2007.
DOI : 10.1086/522090

URL : https://hal.archives-ouvertes.fr/inserm-00196715

N. Bondurand, M. Girard, V. Pingault, N. Lemort, O. Dubourg et al., Human Connexin 32, a gap junction protein altered in the X-linked form of Charcot-Marie-Tooth disease, is directly regulated by the transcription factor SOX10, Human Molecular Genetics, vol.10, issue.24, pp.2783-95, 2001.
DOI : 10.1093/hmg/10.24.2783

N. Bondurand, K. Kuhlbrodt, V. Pingault, J. Enderich, M. Sajus et al., A Molecular Analysis of the Yemenite Deaf-Blind Hypopigmentation Syndrome: SOX10 Dysfunction Causes Different Neurocristopathies, Human Molecular Genetics, vol.8, issue.9, pp.1785-1794, 1999.
DOI : 10.1093/hmg/8.9.1785

N. Bondurand, V. Pingault, D. Goerich, N. Lemort, E. Sock et al., Interaction among SOX10, PAX3 and MITF, three genes altered in Waardenburg syndrome, Human Molecular Genetics, vol.9, issue.13, pp.1907-1924, 2000.
DOI : 10.1093/hmg/9.13.1907

URL : http://hmg.oxfordjournals.org/cgi/content/short/9/13/1907

K. Borden, Pondering the Promyelocytic Leukemia Protein (PML) Puzzle: Possible Functions for PML Nuclear Bodies, Molecular and Cellular Biology, vol.22, issue.15, pp.5259-69, 2002.
DOI : 10.1128/MCB.22.15.5259-5269.2002

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC133952

S. Britsch, D. Goerich, D. Riethmacher, R. Peirano, M. Rossner et al., The transcription factor Sox10 is a key regulator of peripheral glial development, Genes & Development, vol.15, issue.1, pp.66-78, 2001.
DOI : 10.1101/gad.186601

M. Carmo-fonseca, M. Berciano, and M. Lafarga, Orphan Nuclear Bodies, Cold Spring Harbor Perspectives in Biology, vol.2, issue.9, p.703, 2010.
DOI : 10.1101/cshperspect.a000703

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2926751

A. Chakravarti, A. S. Mccallion, and S. Lyonnet, Hirschsprung disease. The metabolic and molecular bases of inherited disease, 2003.
URL : https://hal.archives-ouvertes.fr/inserm-00921630

Y. Chi, Homeodomain revisited: a lesson from disease-causing mutations, Human Genetics, vol.2, issue.Suppl 3, pp.433-477, 2005.
DOI : 10.1007/s00439-004-1252-1

A. Desmazieres, P. Charnay, and P. Gilardi-hebenstreit, Krox20 Controls the Transcription of Its Various Targets in the Developing Hindbrain According to Multiple Modes, Journal of Biological Chemistry, vol.284, issue.16, pp.10831-10871, 2009.
DOI : 10.1074/jbc.M808683200

J. Dyck, G. Maul, W. Miller, J. Chen, J. Kakizuka et al., A novel macromolecular structure is a target of the promyelocyte-retinoic acid receptor oncoprotein, Cell, vol.76, issue.2, pp.333-376, 1994.
DOI : 10.1016/0092-8674(94)90340-9

E. Emison, M. Garcia-barcelo, E. Grice, F. Lantieri, J. Amiel et al., Differential Contributions of Rare and Common, Coding and Noncoding Ret Mutations to Multifactorial Hirschsprung Disease Liability, The American Journal of Human Genetics, vol.87, issue.1, pp.60-74, 2010.
DOI : 10.1016/j.ajhg.2010.06.007

R. Fernandez-lloris, N. Osses, E. Jaffray, L. Shen, O. Vaughan et al., Repression of SOX6 transcriptional activity by SUMO modification, FEBS Letters, vol.19, issue.5, pp.1215-1236, 2006.
DOI : 10.1016/j.febslet.2006.01.031

J. Foster, M. Dominguez-steglich, S. Guioli, G. Kowk, P. Weller et al., Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene, Nature, vol.52, issue.6506, pp.525-555, 1994.
DOI : 10.1002/ajmg.1320210204

X. Fu and T. Maniatis, Factor required for mammalian spliceosome assembly is localized to discrete regions in the nucleus, Nature, vol.343, issue.6257, pp.437-478, 1990.
DOI : 10.1038/343437a0

S. Gabriel, R. Salomon, A. Pelet, M. Angrist, J. Amiel et al., Segregation at three loci explains familial and population risk in Hirschsprung disease, Nature Genetics, vol.31, pp.89-93, 2002.
DOI : 10.1038/ng868

S. Guth and M. Wegner, Having it both ways: Sox protein function between conservation and innovation, Cellular and Molecular Life Sciences, vol.65, issue.19, pp.3000-3018, 2008.
DOI : 10.1007/s00018-008-8138-7

V. Harley, S. Layfield, C. Mitchell, J. Forwood, A. John et al., Defective importin ?? recognition and nuclear import of the sex-determining factor SRY are associated with XY sex-reversing mutations, Proceedings of the National Academy of Sciences, vol.100, issue.12, pp.7045-50, 2003.
DOI : 10.1073/pnas.1137864100

K. Hata, R. Nishimura, S. Muramatsu, A. Matsuda, T. Matsubara et al., Paraspeckle protein p54nrb links Sox9-mediated transcription with RNA processing during chondrogenesis in mice, Journal of Clinical Investigation, vol.118, issue.9, pp.3098-108, 2008.
DOI : 10.1172/JCI31373

C. Hong and J. Saint-jeannet, Sox proteins and neural crest development, Seminars in Cell & Developmental Biology, vol.16, issue.6, pp.694-703, 2005.
DOI : 10.1016/j.semcdb.2005.06.005

K. Inoue, M. Khajavi, T. Ohyama, S. Hirabayashi, J. Wilson et al., Molecular mechanism for distinct neurological phenotypes conveyed by allelic truncating mutations, Nature Genetics, vol.36, issue.4, pp.361-370, 2004.
DOI : 10.1038/ng1322

Z. Jiao, R. Mollaaghababa, W. Pavan, A. Antonellis, E. Green et al., Direct Interaction of Sox10 with the Promoter of Murine Dopachrome Tautomerase (Dct) and Synergistic Activation of Dct Expression with Mitf, Pigment Cell Research, vol.1, issue.4, pp.352-62, 2004.
DOI : 10.1016/0378-1119(94)90114-7

Y. Kamachi, M. Uchikawa, and H. Kondoh, Pairing SOX off: with partners in the regulation of embryonic development, Trends in Genetics, vol.16, issue.4, pp.182-189, 2000.
DOI : 10.1016/S0168-9525(99)01955-1

R. Kelsh, Sorting outSox10 functions in neural crest development, BioEssays, vol.10, issue.8, pp.788-98, 2006.
DOI : 10.1002/bies.20445

H. Kondoh and Y. Kamachi, SOX???partner code for cell specification: Regulatory target selection and underlying molecular mechanisms, The International Journal of Biochemistry & Cell Biology, vol.42, issue.3, pp.391-400, 2010.
DOI : 10.1016/j.biocel.2009.09.003

D. Lang, F. Chen, R. Milewski, J. Li, M. Lu et al., Pax3 is required for enteric ganglia formation and functions with Sox10 to modulate expression of c-ret, Journal of Clinical Investigation, vol.106, issue.8, pp.963-71, 2000.
DOI : 10.1172/JCI10828

D. Lang and J. Epstein, Sox10 and Pax3 physically interact to mediate activation of a conserved c-RET enhancer, Human Molecular Genetics, vol.12, issue.8, pp.937-982, 2003.
DOI : 10.1093/hmg/ddg107

L. Douarin, N. Kalcheim, and C. , The neural crest, 1999.
DOI : 10.1017/CBO9780511897948

URL : https://hal.archives-ouvertes.fr/hal-00115827

V. Lefebvre, B. Dumitriu, A. Penzo-mendez, Y. Han, and B. Pallavi, Control of cell fate and differentiation by Sry-related high-mobility-group box (Sox) transcription factors, The International Journal of Biochemistry & Cell Biology, vol.39, issue.12, pp.2195-214, 2007.
DOI : 10.1016/j.biocel.2007.05.019

B. Li, N. Phillips, A. Jancso-radek, V. Ittah, R. Singh et al., SRY-directed DNA Bending and Human Sex Reversal: Reassessment of a Clinical Mutation Uncovers a Global Coupling between the HMG Box and its Tail, Journal of Molecular Biology, vol.360, issue.2, pp.310-338, 2006.
DOI : 10.1016/j.jmb.2006.04.048

A. Ludwig, S. Rehberg, and M. Wegner, Melanocyte-specific expression of dopachrome tautomerase is dependent on synergistic gene activation by the Sox10 and Mitf transcription factors, FEBS Letters, vol.12, issue.1-3, pp.236-280, 2004.
DOI : 10.1016/S0014-5793(03)01446-7

Y. Lundberg, M. Ritzén, J. Harlin, and A. Wedell, Novel missense mutation (P131R) in the HMG box of SRY in XY sex reversal, Human Mutation, vol.346, issue.S1, 1997.
DOI : 10.1002/humu.13801101108

S. Malki, B. Boizet-bonhoure, and F. Poulat, Shuttling of SOX proteins, The International Journal of Biochemistry & Cell Biology, vol.42, issue.3, pp.411-417, 2010.
DOI : 10.1016/j.biocel.2009.09.020

URL : https://hal.archives-ouvertes.fr/hal-00463200

A. Matera, Nuclear bodies: multifaceted subdomains of the interchromatin space, Trends in Cell Biology, vol.9, issue.8, pp.302-311, 1999.
DOI : 10.1016/S0962-8924(99)01606-2

A. Matera, M. Izaguire-sierra, K. Praveen, and T. Rajendra, Nuclear Bodies: Random Aggregates of Sticky Proteins or Crucibles of Macromolecular Assembly?, Developmental Cell, vol.17, issue.5, pp.639-686, 2009.
DOI : 10.1016/j.devcel.2009.10.017

A. Mccallion, E. Emison, C. Kashuk, R. Bush, M. Kenton et al., Genomic Variation in Multigenic Traits: Hirschsprung Disease, Cold Spring Harbor Symposia on Quantitative Biology, vol.52, issue.0, pp.373-81, 2003.
DOI : 10.1073/pnas.93.7.3155

L. Michel-calemard, G. Lesca, Y. Morel, D. Boggio, H. Plauchu et al., Campomelic acampomelic dysplasia presenting with increased nuchal translucency in the first trimester, Prenatal Diagnosis, vol.24, issue.7, pp.519-542, 2004.
DOI : 10.1002/pd.935

R. Mollaaghababa and W. Pavan, The importance of having your SOX on: role of SOX10??? in the development of neural crest-derived melanocytes and glia, Oncogene, vol.22, issue.20, pp.3024-3058, 2003.
DOI : 10.1038/sj.onc.1206442

M. Morin, A. Vinuela, T. Rivera, M. Villamar, M. Moreno-pelayo et al., A de novo missense mutation in the gene encoding the SOX10 transcription factor in a Spanish sporadic case of Waardenburg syndrome type IV, American Journal of Medical Genetics Part A, vol.140, issue.8, pp.1032-1039, 2008.
DOI : 10.1002/ajmg.a.32181

F. Murisier, S. Guichard, and F. Beermann, The tyrosinase enhancer is activated by Sox10 and Mitf in mouse melanocytes, Pigment Cell Research, vol.269, issue.3, pp.173-84, 2007.
DOI : 10.1093/nar/18.24.7293

E. Murphy, V. Zhurkin, J. Louis, G. Cornilescu, and G. Clore, Structural Basis for SRY-dependent 46-X,Y Sex Reversal: Modulation of DNA Bending by a Naturally Occurring Point Mutation, Journal of Molecular Biology, vol.312, issue.3, pp.481-99, 2001.
DOI : 10.1006/jmbi.2001.4977

K. Ohe, E. Lalli, and P. Sassone-corsi, A direct role of SRY and SOX proteins in pre-mRNA splicing, Proceedings of the National Academy of Sciences, vol.99, issue.3, pp.1146-51, 2002.
DOI : 10.1073/pnas.022645899

P. Palasingam, R. Jauch, C. Ng, and P. Kolatkar, The Structure of Sox17 Bound to DNA Reveals a Conserved Bending Topology but Selective Protein Interaction Platforms, Journal of Molecular Biology, vol.388, issue.3, pp.619-649, 2009.
DOI : 10.1016/j.jmb.2009.03.055

R. Peirano, D. Goerich, D. Riethmacher, and M. Wegner, Protein Zero Gene Expression Is Regulated by the Glial Transcription Factor Sox10, Molecular and Cellular Biology, vol.20, issue.9, pp.3198-209, 2000.
DOI : 10.1128/MCB.20.9.3198-3209.2000

R. Peirano and M. Wegner, The glial transcription factor Sox10 binds to DNA both as monomer and dimer with different functional consequences, Nucleic Acids Research, vol.28, issue.16, pp.3047-55, 2000.
DOI : 10.1093/nar/28.16.3047

V. Pingault, N. Bondurand, K. Kuhlbrodt, D. Goerich, M. Prehu et al., SOX10 mutations in patients with Waardenburg-Hirschsprung disease, SOX10 mutations in patients with Waardenburg-Hirschsprung disease, pp.171-174, 1998.
DOI : 10.1038/ng0198-60

V. Pingault, D. Ente, D. Moal, F. Goossens, M. Marlin et al., Review and update of mutations causing Waardenburg syndrome, Human Mutation, vol.56, issue.6, pp.391-406, 2010.
DOI : 10.1002/humu.21211

URL : https://hal.archives-ouvertes.fr/inserm-00483195

S. Potterf, M. Furumura, K. Dunn, H. Arnheiter, and W. Pavan, Transcription factor hierarchy in Waardenburg syndrome: regulation of MITF expression by SOX10 and PAX3, Human Genetics, vol.107, issue.1, pp.1-6, 2000.
DOI : 10.1007/s004390000328

F. Poulat, F. Girard, M. Chevron, C. Goze, X. Rebillard et al., Nuclear localization of the testis determining gene product SRY, The Journal of Cell Biology, vol.128, issue.5, pp.737-785, 1995.
DOI : 10.1083/jcb.128.5.737

S. Preiss, A. Argentaro, A. Clayton, A. John, D. Jans et al., Compound Effects of Point Mutations Causing Campomelic Dysplasia/Autosomal Sex Reversal upon SOX9 Structure, Nuclear Transport, DNA Binding, and Transcriptional Activation, Journal of Biological Chemistry, vol.276, issue.30, pp.27864-72, 2001.
DOI : 10.1074/jbc.M101278200

N. Rajaram and T. Kerppola, Synergistic Transcription Activation by Maf and Sox and Their Subnuclear Localization Are Disrupted by a Mutation in Maf That Causes Cataract, Molecular and Cellular Biology, vol.24, issue.13, pp.5694-709, 2004.
DOI : 10.1128/MCB.24.13.5694-5709.2004

A. Read and V. Newton, Waardenburg syndrome., Journal of Medical Genetics, vol.34, issue.8, pp.656-65, 1997.
DOI : 10.1136/jmg.34.8.656

S. Rehberg, P. Lischka, G. Glaser, T. Stamminger, M. Wegner et al., Sox10 Is an Active Nucleocytoplasmic Shuttle Protein, and Shuttling Is Crucial for Sox10-Mediated Transactivation, Molecular and Cellular Biology, vol.22, issue.16, pp.5826-5860, 2002.
DOI : 10.1128/MCB.22.16.5826-5834.2002

A. Remenyi, K. Lins, L. Nissen, R. Reinbold, H. Scholer et al., Crystal structure of a POU/HMG/DNA ternary complex suggests differential assembly of Oct4 and Sox2 on two enhancers, Genes & Development, vol.17, issue.16, pp.2048-59, 2003.
DOI : 10.1101/gad.269303

S. Sachdev, L. Bruhn, H. Sieber, A. Pichler, F. Melchior et al., PIASy, a nuclear matrix-associated SUMO E3 ligase, represses LEF1 activity by sequestration into nuclear bodies, Genes & Development, vol.15, issue.23, pp.3088-103, 2001.
DOI : 10.1101/gad.944801

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC312834

A. Sanchez-mejias, Y. Watanabe, R. Mf, M. Lopez-alonso, G. Antinolo et al., Involvement of SOX10 in the pathogenesis of Hirschsprung disease: report of a truncating mutation in an isolated patient, Journal of Molecular Medicine, vol.277, issue.5, pp.507-521, 2010.
DOI : 10.1007/s00109-010-0592-7

URL : https://hal.archives-ouvertes.fr/inserm-00481710

B. Schlierf, T. Werner, G. Glaser, and M. Wegner, Expression of Connexin47 in Oligodendrocytes is Regulated by the Sox10 Transcription Factor, Journal of Molecular Biology, vol.361, issue.1, pp.11-21, 2006.
DOI : 10.1016/j.jmb.2006.05.072

H. Sim, A. Argentaro, and V. Harley, Boys, girls and shuttling of SRY and SOX9, Trends in Endocrinology & Metabolism, vol.19, issue.6, pp.213-235, 2008.
DOI : 10.1016/j.tem.2008.04.002

A. Staffler, M. Hammel, M. Wahlbuhl, C. Bidlingmaier, A. Flemmer et al., Heterozygous SOX9 Mutations Allowing for Residual DNA-binding and Transcriptional Activation Lead to the Acampomelic Variant of Campomelic Dysplasia, Human Mutation, vol.31, issue.6, pp.1436-1480, 2010.
DOI : 10.1002/humu.21238

C. Stolt, S. Rehberg, M. Ader, P. Lommes, D. Riethmacher et al., Terminal differentiation of myelin-forming oligodendrocytes depends on the transcription factor Sox10, Genes & Development, vol.16, issue.2, pp.165-70, 2002.
DOI : 10.1101/gad.215802

P. Sudbeck and G. Scherer, Two Independent Nuclear Localization Signals Are Present in the DNA-binding High-mobility Group Domains of SRY and SOX9, Journal of Biological Chemistry, vol.272, issue.44, pp.27848-52, 1997.
DOI : 10.1074/jbc.272.44.27848

L. Thevenet, C. Mejean, B. Moniot, N. Bonneaud, N. Galeotti et al., Regulation of human SRY subcellular distribution by its acetylation/deacetylation, The EMBO Journal, vol.17, issue.16, pp.3336-3381, 2004.
DOI : 10.1128/MCB.21.17.5979-5991.2001

T. Wagner, J. Wirth, J. Meyer, B. Zabel, M. Held et al., Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9, Cell, vol.79, issue.6, pp.1111-1131, 1994.
DOI : 10.1016/0092-8674(94)90041-8

M. Werner, J. Huth, A. Gronenborn, and G. Clore, Molecular basis of human 46X,Y sex reversal revealed from the three-dimensional solution structure of the human SRY-DNA complex, Cell, vol.81, issue.5, pp.705-719, 1995.
DOI : 10.1016/0092-8674(95)90532-4

M. Wilson and P. Koopman, Matching SOX: partner proteins and co-factors of the SOX family of transcriptional regulators, Current Opinion in Genetics & Development, vol.12, issue.4, pp.441-447, 2002.
DOI : 10.1016/S0959-437X(02)00323-4

S. Wissmuller, T. Kosian, M. Wolf, M. Finzsch, and M. Wegner, The high-mobility-group domain of Sox proteins interacts with DNA-binding domains of many transcription factors, Nucleic Acids Research, vol.34, issue.6, pp.1735-1779, 2006.
DOI : 10.1093/nar/gkl105

J. Wong, P. Farlie, S. Holbert, P. Lockhart, and P. Thomas, Polyalanine expansion mutations in the X-linked hypopituitarism gene SOX3 result in aggresome formation and impaired transactivation, Frontiers in Bioscience, vol.12, issue.1, pp.2085-95, 2007.
DOI : 10.2741/2213

S. Yokoyama, K. Takeda, and S. Shibahara, Functional Difference of the SOX10 Mutant Proteins Responsible for the Phenotypic Variability in Auditory-Pigmentary Disorders, Journal of Biochemistry, vol.140, issue.4, pp.491-500, 2006.
DOI : 10.1093/jb/mvj177

S. Yokoyama, K. Takeda, and S. Shibahara, SOX10, in combination with Sp1, regulates the endothelin receptor type B gene in human melanocyte lineage cells, FEBS Journal, vol.275, issue.8, pp.1805-1825, 2006.
DOI : 10.1093/hmg/9.1.125

L. Zhu, H. Lee, C. Jordan, V. Cantrell, E. Southard-smith et al., Spatiotemporal regulation of endothelin receptor-B by SOX10 in neural crest???derived enteric neuron precursors, Nature Genetics, vol.126, issue.7, pp.732-739, 2004.
DOI : 10.1172/JCI200215043

. Supp and S. Figure, Characterization of nuclear foci HeLa cells were transfected with the p.Leu145Pro mutated version of SOX10-GFP expression vector and immunostained with various markers such as SC35 (A1 to A4), PML (B1 to B4), and ubiquitin (C1 to C4) Cells were counterstained with TO-PRO-3-iodide to visualize nuclei (blue, A1 to C1)

P. Biotechnology, I. , and S. Cruz, CA, USA) 1:10; SC35 (mouse; Sigma) 1:50; Ub P4D1 (mouse, p.50

. Supp and S. Figure, The SOX10 mutants recruit wild-type SOX10 protein but not its cofactors within foci. (A) The intracellular distribution of a myc-tagged version of wild-type SOX10 (red) was compared with that of wild-type or the p.Leu145Pro mutated version of SOX10-GFP (green) after co-transfection. (B) The wild-type or p.Leu145Pro mutated version of SOX10-GFP expression vector co-transfected with the expression vector encoding

J. Ordahl and . Michael, Bishop were obtained from the Developmental Studies Hybridoma Bank under the auspices of the NICHD and maintained by the University of Iowa, 52242, and used at 1:200 and 1:50 dilutions