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Abstract

Background: The inheritance pattern in most cases of autism is complex. The risk of autism is increased in siblings

of children with autism and previous studies have indicated that the level of risk can be further identified by the

accumulation of multiple susceptibility single nucleotide polymorphisms (SNPs) allowing for the identification of a

higher-risk subgroup among siblings. As a result of the sex difference in the prevalence of autism, we explored the

potential for identifying sex-specific autism susceptibility SNPs in siblings of children with autism and the ability to

develop a sex-specific risk assessment genetic scoring system.

Methods: SNPs were chosen from genes known to be associated with autism. These markers were evaluated

using an exploratory sample of 480 families from the Autism Genetic Resource Exchange (AGRE) repository. A

reproducibility index (RI) was proposed and calculated in all children with autism and in males and females

separately. Differing genetic scoring models were then constructed to develop a sex-specific genetic score model

designed to identify individuals with a higher risk of autism. The ability of the genetic scores to identify high-risk

children was then evaluated and replicated in an independent sample of 351 affected and 90 unaffected siblings

from families with at least 1 child with autism.

Results: We identified three risk SNPs that had a high RI in males, two SNPs with a high RI in females, and three

SNPs with a high RI in both sexes. Using these results, genetic scoring models for males and females were

developed which demonstrated a significant association with autism (P = 2.2 × 10-6 and 1.9 × 10-5, respectively).

Conclusions: Our results demonstrate that individual susceptibility associated SNPs for autism may have important

differential sex effects. We also show that a sex-specific risk score based on the presence of multiple susceptibility

associated SNPs allow for the identification of subgroups of siblings of children with autism who have a

significantly higher risk of autism.
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Background
Autistic disorder is the most severe form of a group of

autism spectrum disorders (ASDs) characterized by

impairments in social interaction, deficits in verbal and

non-verbal communication, restricted interests, and repe-

titive behaviors [1]. With a prevalence of 1 in 110 children,

ASDs are among the most common forms of severe devel-

opmental disability [2]. The average recurrence risk of aut-

ism in siblings of affected children is approximately 10%

[3]. This rate is much higher than the prevalence rate for

ASDs in the general population, but lower than would be

expected for a highly penetrant mutation in a mendelian

disorder [4].

The inheritance pattern of autism in most families is

complex and not compatible with simple Mendelian

inheritance [5,6]. There is significant interest in the early

identification of infants at higher risk for autism because

studies have shown that early intervention leads to signifi-

cantly improved long-term outcome for the whole family

[7,8]. Several common variants localized in biological and

positional (that is, under known linkage peaks) candidate

genes have been associated with autism and some have

been replicated in independent studies [9]. Further
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support for these associations comes from genes for

which, in addition to autism-associated common variants,

rare mutations and/or copy number variations (CNVs)

have been shown to contribute to the disease, and/or for

which gene-disrupted mice exhibited autism-like traits.

These genes include CNTNAP2 [10-13], RELN [14-19]

and GABRB3 [20-23].

When taken individually, the risk of autism associated

with variants remains modest, but Carayol et al. [24]

recently showed that the accumulation of multiple risk

alleles markedly increases the risk of autism in siblings of

children who have been diagnosed with autism. They pro-

posed a genetic score (GS) that, compared with studying

polymorphisms individually, improves the identification of

subgroups of individuals at greater risk of autism [24]. In

the case of autism, tools for genetic risk assessment are

highly desirable to complement available behavioral

assessments.

Another important characteristic of autism is the sex

difference with a 4.5:1 male to female ratio [2]. Second,

intellectual disability, a key clinical dimension associated

with outcome, is more frequent in females than males

[25]. Third, the risk of epilepsy is 18 times higher in

females than males [26]. This sex difference may partly be

explained by sex-specific risk alleles or genes with different

expression or activity based on sex [27,28].

In the present study we propose to improve the genetic

risk score model developed by Carayol et al. [24] by add-

ing additional SNPs filtered for their relative importance

using internal validation process and by also developing

separate sex-specific genetic risk scores for males and

females using a first sample of families with children with

autism (exploratory sample). Their ability to better identify

siblings of children with autism who are at high risk of

autism was then evaluated and replicated in an indepen-

dent second sample of autism families (replication

sample).

Methods
The study design involved two independent family sam-

ples. The first sample (the ‘exploratory’ sample) consisted

of 480 families from the Autism Genetic Resource

Exchange (AGRE; http://www.agre.org) repository with at

least 1 sibling diagnosed with a ‘strict’ definition of autism

according to the Autism Diagnostic Interview Revisited

(ADI-R) and no unaffected siblings. A total of 844 affected

siblings including 664 males and 179 females met the diag-

nostic criteria for ‘strict’ autism. Minimizing phenotypic

heterogeneity can lead to an improvement of the study

power [29]. Shao et al. [30] demonstrated that the use of

homogeneous phenotype increases the power of linkage

studies in autism. Linkage signals have been observed in

studies in which the samples were stratified according to

specific phenotypes such as the sex [28,31,32], delayed

onset of phrase speech [30,33,34], and severe obsessive-

compulsive behaviors [35]. Two genome-wide association

studies using overlapping samples of children with autism

identified two different common variants in CNTNAP2, a

gene localized in the 7q34-7q36 region linked to language

disability in autism [36]; one SNP has been associated with

autism through the use of the quantitative trait ‘age at first

word’ [10] and the other using a qualitative strict autism

diagnosis [11]. Similarly, a recent genome-wide association

study (GWAS) [37] reported the largest association with

autism in MACROD2 using the strict autism diagnosis.

Therefore, as in Shao et al. [30], we studied individuals

with a strict autism rather than the heterogeneous broad

autism spectrum disorder phenotype. The second sample

(the ‘replication’ sample) included 187 families consisting

of the 2 parents, at least 1 child with autism and 1 unaf-

fected sibling from a sample collection at the University of

Pennsylvania. This replication sample led to 351 children

with autism (291 males and 60 females) with the same

strict definition of the disease and 90 unaffected children

(39 males and 51 females). Ethnicity was self-reported by

parents as Caucasian, Asian, Hispanic or Latino, Black or

African American, Native Hawaiian or other Pacific Islan-

der, or of mixed ethnicity. Caucasians represented the

major ethnicity, with more than two-thirds of families in

each sample.

Ten autism susceptibility genes were selected for this

study. Four of them (PITX1, EN2, SLC25A12 and

ATP2B2) have been previously demonstrated to have a

predictive ability and were used in a genetic score-based

model [24]. Genes shown to be statistically associated

with autism in at least one study using AGRE collection,

even at the nominal level, and for which additional data

support their implication in autism, were also included.

Six genes fulfilled the statistical association condition,

four of which were replicated in one or more indepen-

dent study: HOXA1 [38,39], GRIK2 [40-42], ITGB3

[43-46] and CNTNAP2 [10,11]; one gene, MARK1, was

found to be significantly overexpressed in brain from

individuals with autism compared to unaffected indivi-

duals [47] and the last gene, JARID2 was chosen since

one SNP, rs7766973, displays the strongest association

with autism (P = 6.8 × 10-7 [48]) among the three GWAS

performed on AGRE family data [37,42,48]. Table 1 lists

the genes selected for the study and the associated SNPs

with their deleterious alleles and corresponding

frequencies.

All parents and children from the exploratory sample

were genotyped for these ten markers. Only SNPs that

were selected for further investigation were genotyped in

the replication sample. Genotyping was performed using

TaqMan allele discrimination assays (Applied Biosystems,

Foster City, CA, USA). Genotyping was performed in 384-

well plates with 5 ng genomic DNA, 0.075 μl of 20 × SNP

Carayol et al. Molecular Autism 2011, 2:17

http://www.molecularautism.com/content/2/1/17

Page 2 of 8

http://www.agre.org


TaqMan Assay mix, 1.5 μl of TaqMan Universal PCR

Master Mix and 1.425 μl of dH2O in each well. PCR was

performed at 95°C for 10 min, followed by 50 cycles at

92°C for 15 s and 60°C for 90 s (9700 Gene Amp PCR Sys-

tem; Applied Biosystems). Plates were then subjected to

endpoint reading (7900 Real-Time PCR System; Applied

Biosystems). The alleles were called automatically using

the SDS software (Applied Biosystems), and a visual

inspection of genotype clusters was performed. Genotyp-

ing quality was assessed by signal intensity plots and miss-

ing genotype frequencies; any sample with poor clustering

and missing fractions ≥5% per SNP were retyped. Parental

genotypes were used to investigate Hardy-Weinberg equi-

librium (HWE) and to check for Mendelian inconsisten-

cies. Families with remaining inconsistencies were

excluded.

The development of the genetic score model and the

definition of the increased risk GS thresholds (that define

the high-risk groups) were based on the exploratory sam-

ple with all affected children whereas, for the replication

study using the second sample, the index cases were

excluded.

A model that is efficient only in the sample in which it

was developed does not have validity. To be valid, the

results need to be reproduced in a separate independent

population. A genetic score model, such as the one pro-

posed in this paper, is generally built on the simple sum of

deleterious alleles observed at each of the chosen genes.

Thus, the reproducibility of the genetic score is condi-

tioned by the reproducibility of the deleterious allele for

each SNPs included in the model. Markers that are more

reproducible carry stronger and more stable information.

The reproducibility of the SNPs was analyzed using the

bootstrap resampling process and a reproducibility index

(RI) was estimated similarly to Ma [49] as follows: (1)

generation of a ‘pseudosample’ consisting of 480 families

by randomly sampling the 480 families of the exploratory

population with replacement; (2) estimation of the genetic

relative risk associated with the deleterious allele of each

SNP as defined in Table 1; (3) repetition 1,000 times of

steps 1 and 2; (4) estimation for each SNP of the RIs indi-

cating the proportion of ‘pseudosamples’ in which the

deleterious allele maintains a risk greater than 1.00 in

males, in females or in both males and females.

A high RI indicates that the effect of a deleterious

allele of a given SNP is maintained across the bootstrap

pseudosamples and that this SNP is a good candidate

for the reproducibility of the genetic score. A stringent

RI = 0.80 in children with autism was set to select best

SNPs. Then, the RI in males and females with autism

was checked separately to discard SNPs that lack of sta-

bility in a particular sex. Since all variants have been

associated with autism using AGRE family data, this

internal validation process prevents from an optimistic

evaluation of their association, that is, an overestimation

of the effect of risk alleles, and a potential deterioration

of this effect in an independent sample. The sex genetic

scores (GS) was then constructed as follows:

GSsex = Wall · RSall + Wsex · RSsex

where sex = (male, female); RSall and RSsex are the risk

scores built as the sum of deleterious alleles from genes

with a high RI in males only (RSmale), in females only

(RSfemale) or in both sexes (RSall); and Wall, Wmale, and

Wfemale are the integer values of the corresponding

genetic relative risks (GRR) associated with the corre-

sponding risk scores (RSall, RSmale and RSfemale, respec-

tively). These weights were calculated following Lin

et al. [50] who showed that a weighted genetic score

Table 1 Risk allele frequency (defined as the allele associated with autism)

Gene SNP Risk allele Exploratory sample Replication sample

Frequency HWEa Frequency HWEa

MARK1 rs12410279 A 0.85 0.26 0.83 1.00

SLC25A12 rs2292813 C 0.90 1.00 NEb NE

ATP2B2 rs2278556 A 0.40 0.68 0.38 0.11

PITX1 rs6872664 C 0.89 1.00 0.85 0.32

GRIK2 rs2235076 G 0.98 1.00 NE NE

HOXA1 rs10951154 T 0.86 0.02 0.86 1.00

CNTNAP2 rs7794745 T 0.40 0.73 0.39 0.04

EN2 rs1861972 A 0.73 0.68 0.76 0.90

ITGB3 rs5918 T 0.87 1.00 0.85 0.85

JARID2 rs7766973 C 0.60 0.22 0.58 0.76

aHardy-Weinberg Equilibrium (HWE) P value estimated with the exact test [65].
bNE, not estimated since not genotyped in the replication sample.

SNP, single nucleotide polymorphism.
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provided more predictive value than an unweighted

genetic score.

Because the exploratory sample did not include unaf-

fected children, all genetic relative risks were estimated as

described in Carayol et al. [24] using the case-pseudocon-

trol approach proposed by Cordell and Clayton [51] and

implemented in the DGCgenetics R package (http://www-

gene.cimr.cam.ac.uk/clayton/software/). Sensitivity and

specificity values of the GSs were estimated in the explora-

tory and the replication samples as in Carayol et al. [24].

Areas under the receiver operating curves (AUCs) were

estimated in the exploratory sample and tested against the

AUC = 0.5 null hypothesis to validate the discriminative

power of the GSs. However, AUCs do not provide an

informative tool of the clinical utility of the genetic score

(here, the high-risk classification of siblings of children

with autism). Cutoff values were chosen to define a high-

risk group in the exploratory sample and the odds ratios

were estimated. These high-risk thresholds (one for male

and one for female) were selected considering a false posi-

tive rate lower than 20% (that is, specificity higher than

80%). External validation of the clinical utility of the high-

risk GS group was then conducted in the replication sam-

ple. Positive predictive values in siblings of children with

autism were estimated from the sensitivity, specificity and

the sibling recurrence risk estimates in males and females.

Since no data were available in the literature, we estimated

the sibling recurrence risk to 0.16 in males and 0.04 in

females assuming an overall 0.10 sibling recurrence risk

[3] and a 4:1 male to female sex ratio [2].

Results
None of the SNPs exhibited a departure from HWE and

allele frequencies were similar between samples (Table 1).

Table 2 lists the RI of each SNP based on the bootstrap

analysis using the exploratory sample. Eight markers

reached the stringent 80% RI threshold. SNPs rs2292813

(SLC25A12) and rs2235076 (GRIK2) were excluded

because of their low reproducibility (RI = 52% and 36%,

respectively). Among the eight remaining SNPs, two dis-

played low RI in males but RI of 100% in females,

rs12410279 (MARK1, RImale = 47%) and rs5918 (ITGB3,

RImale = 65%). Inversely, three SNPs displayed a low RI in

females and RI greater than 95% in males, rs227855

(ATP2B2, RIfemale = 59%), rs6872664 (PITX1, RIfemale =

30%) and rs10951154 (HOXA1, RIfemale = 20%).

The three separate risk scores were then constructed

based on the sum of deleterious alleles in their corre-

sponding SNPs. These included rs7794745, rs1861972 and

rs7766973 for RSall, rs12410279 and rs5918 for RSfemale,

and rs2278556, rs6872664 and rs10951154 for RSmale. The

GRRs associated to one point increase in the RS were esti-

mated to be 1.23 for RSall (P = 2.3 × 10-5; 95% confidence

interval (CI) 1.12 to 1.36), 1.25 for RSmale (P = 5.8 × 10-4;

95% CI 1.10 to 1.41) and 2.29 for RSfemale (P = 1.7 × 10-6;

95% CI 1.57 to 3.34). The overall P value of the three

tested scores were 3.1 × 10-9 with corresponding weights

of 1.00, 1.00 and 2.00 for RSall, RSmale and RSfemale, respec-

tively. The two genetic scores (GSs) were then con-

structed. GSmale ranged between 3 and 12 with a GRR

associated to 1 point increase in the score of 1.23 (P =

2.2 × 10-6; 95% CI 1.13 to 1.34) and GSfemale ranged

between 4 and 14 with a GRR of 1.41 (P = 1.9 × 10-5; 95%

CI 1.21 to 1.65) for a highly significant global test with P =

8.4 × 10-10. Table 3 displays the sensitivity and specificity

values for the GS in males and females. To define the

high-risk group, GS values were selected in males and

females with the aim to minimize the number of false

positive below 20% and to maximize the sensitivity as high

as possible. A genetic score threshold of nine points for

males was associated with a moderate 0.24 sensitivity (95%

CI 0.19 to 0.28) and a 0.86 specificity (95% CI 0.82 to 0.90)

that minimizes the number of false positive test to 0.14

and lead to a 0.23 positive predictive value (PPV). For

Table 2 Reproducibility indexes (RIs) in children with autism, in males and in females

Gene SNP RI in children with autism RI in male children with autism RI in female children with autism

MARK1 rs12410279 0.93 0.468 1.00

SLC25A12 rs2292813 0.52 0.757 0.52

ATP2B2 rs2278556 0.99 0.997 0.59

PITX1 rs6872664 0.97 0.983 0.30

GRIK2 rs2235076 0.36 0.277 0.59

HOXA1 rs10951154 0.93 0.958 0.20

CNTNAP2 rs7794745 1.000 1.000 0.89

EN2 rs1861972 0.97 0.880 0.94

ITGB3 rs5918 0.98 0.646 1.00

JARID2 rs7766973 0.98 0.951 0.88

RIs that reached the 80% threshold are in bold.

SNP, single nucleotide polymorphism.
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females, a genetic score threshold of 12 was associated

with a similar specificity of 0.86 (95% CI 0.80 to 0.92) but

a higher sensitivity of 0.37 (95% CI 0.29 to 0.44) and a

PPV of 0.09. These two GS values were chosen as thresh-

olds to define the group of children with a high risk of aut-

ism. AUCs were estimated to be 0.59 and 0.66 in males

and females, respectively. They are both significantly dif-

ferent from the 0.5 null hypothesis (P = 2 × 10-8 and 1.5 ×

10-7) indicating a predictive ability of the GSs.

In the replication sample (Table 4), sensitivity and speci-

ficity associated with the high-risk group GS threshold

(GSmale = 9) were slightly higher in males (but not signifi-

cantly different as it can be seen from the overlapping 95%

CIs) with a 0.26 (95% CI 0.18 to 0.35) sensitivity and 0.87

(95% CI 0.76 to 0.98) specificity. The PPV reached 0.28 for

a 0.16 sibling recurrence risk. Differences were observed

in females for the sensitivity with an estimated 0.28 (95%

CI 0.12 to 0.44) instead of 0.37 and the specificity with a

0.76 specificity (95% CI 0.64 to 0.89) instead of 0.86 but

the differences were not significant (overlapping confi-

dence intervals). In females, variances for sensitivity and

specificity values were larger in the replication sample

than in the exploratory sample because of the smaller

number of females in the replication sample. As a conse-

quence, the PPV (estimated to 5%) was very small and

close to the 4% sibling recurrence risk.

Extending the analysis to a broader definition of aut-

ism and including or excluding the index cases as was

performed with the replication study did not change the

characteristics of the genetic score or the associated sig-

nificance levels.

Discussion
Our results demonstrate that the sex difference in autism

may have an important influence on the genetic score

characteristics, and therefore, on the risk assessment. Tak-

ing sex and reproducibility of the SNPs into account led to

two GSs with different characteristics that allowed the

identification of a subgroup of siblings of children with

autism with a high risk of autism in males. The genetic

score model with four genes [24] was also tested on this

large sample of families and its association was clearly

lower (P = 7 × 10-4 in males and females as a whole) com-

pared to those of the sex-specific GSs (P = 2.2 × 10-6 and

1.9 × 10-5 for males and females, respectively). The risk for

males with a high GS to develop autism was 28%, almost

three times higher than the reported 10% sibling recur-

rence risk. In females, the 10% recurrence risk seems over-

estimated and we estimate this value to 4% considering a

4.5:1 male to female sex ratio.

The GS model has been developed through the use of

affected children and the pseudocontrol approach

[52,53]. This was confirmed by analyzing unaffected sib-

lings of children with autism. The pseudocontrols

approach has been validated for the estimation of diag-

nostic accuracy using only affected children compared to

full population-based data [54]. We cannot exclude an

Table 3 Genetic score (GS) sensitivities and specificities with their 95% CIs by sex estimated in the exploratory sample

Genetic score threshold Males Females

Sensitivity (95% CI) Specificity (95% CI) Sensitivity (95% CI) Specificity (95% CI)

3 1.00 0.000 - -

4 1.00 (0.99 to 1.00) 0.01 (0.01 to 0.02) 1.00 0.00

5 0.97 (0.94 to 1.00) 0.03 (0.02 to 0.05) 1.00 0.00

6 0.90 (0.85 to 0.94) 0.19 (0.15 to 0.22) 1.00 0.00

7 0.75 (0.70 to 0.80) 0.41 (0.36 to 0.46) 1.00 0.00

8 0.47 (0.43 to 0.52) 0.64 (0.59 to 0.69) 0.99 (0.98 to 1.00) 0.10 (0.00 to 0.19)

9 0.24 (0.19 to 0.28) 0.86 (0.82 to 0.90) 0.90 (0.85 to 0.96) 0.20 (0.15 to 0.25)

10 0.08 (0.06 to 0.11) 0.95 (0.92 to 0.97) 0.78 (0.71 to 0.85) 0.40 (0.31 to 0.49)

11 0.02 (0.01 to 0.04) 0.98 (0.96 to 0.99) 0.61 (0.52 to 0.69) 0.65 (0.57 to 0.74)

12 0.00 1.00 0.37 (0.29 to 0.44) 0.86 (0.80 to 0.92)

13 - - 0.17 (0.11 to 0.23) 0.94 (0.89 to 0.98)

14 - - 0.03 (0.01 to 0.06) 0.99 (0.97 to 1.00)

The two GSs chosen as threshold value to define children with a higher risk of autism in males and in females are shown in bold.

Table 4 Sensitivity and specificity estimates in the

exploratory and replication samples with their

corresponding 95% CIs for the high-risk group

Exploratory sample Replication sample

Males:

Sensitivity 0.24 (0.19 to 0.28) 0.26 (0.18 to 0.35)

Specificity 0.86 (0.82 to 0.90) 0.87 (0.76 to 0.98)

Females:

Sensitivity 0.37 (0.29 to 0.44) 0.28 (0.12 to 0.44)

Specificity 0.86 (0.80 to 0.92) 0.76 (0.64 to 0.89)
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over-representation of deleterious alleles in unaffected

siblings compared to pseudocontrols, which are geneti-

cally the opposite of affected children, nor the effect of

population controls that may lower the risk ratio between

affected and unaffected siblings and consequently affect

the discriminative ability of the GS models. This does not

seem to occur for males since the high-risk class repli-

cates its predictive accuracy but would need further

investigation for females.

Reproducibility of effects is of major interest to enter in

a predictive model since it conditions the reproducibility

of the predictive model outside the study sample, which

is of primary importance to validate such a model.

According to the replication of the performance of the

risk assessment model in males in an independent sample

and the ability to find support for female specific variants

despite the relatively small number of samples, the pro-

posed approach can be used for developing stable and

reproducible models. SLC25A12 associated and repli-

cated in different studies [55-58] did not reach the repro-

ducibility thresholds, whereas JARID2 that reached a

suggestive significant threshold in a unique GWAS [48]

seems of more interest. Some markers were reproducible

(high RI) in a specific sex only but did not show any sta-

tistically significant interaction with sex nor were

reported as being sex specific in the literature. The SNP

rs7794745 located within CNTNAP2 has a high RI in

both sexes whereas a previous association with autism

has been reported preferentially in males [10,11]. Due to

the low number of females analyzed, these studies lack

power to observe any association in females [11].

Another SNP, rs5918 located within ITGB3, has been

shown to be associated with autism in both sexes but

with different risk effect [46], which could explain the dif-

ference of reproducibility observed in males and females.

The stability is not necessarily linked to the sex specificity

of the SNP or to the strength of previous association

results. This may be explained in part by a study of

Jakobsdotir et al. [59] which showed that a highly signifi-

cant association of genes with a disease does not guaran-

tee an effective discrimination between cases and

controls.

Several limits of the study may be identified. The moder-

ate number of females with autism in the replication sam-

ple as a consequence of the significant sex ratio in autism

led to a lack of power for the replication of the high-risk

group characteristics. Sibling recurrence risk of males and

females were not estimated or reported from real data but

calculated assuming a sibling recurrence risk of 10% [3]

and the widely observed 4.5:1 male to female sex ratio.

Reported PPVs are intuitive estimates that quantify the

increase in the risk for an individual (a sibling of a child

with autism) who has a genetic score that falls in the high-

risk class. Accurate PPVs could be estimated by using

observed and reported data. The selection of the genes

and the SNPs included in the genetic scores could be dis-

cussed. The methodology used to select the common var-

iants and the internal validation approach performed in

this study strongly support the implication of these SNPs

in autism as well as their discriminative ability. The addi-

tion of other SNPs from the same genetic region would

have led to a much more complicated model because of

the linkage disequilibrium (LD) between these SNPs as

well as the haplotypes resulting from the different combi-

nation of alleles. Finally, other approaches may be used to

select genes to enter in a genetic score. Genes may be

selected using statistically significant results from GWAS

[60,61] or a complementary approach as in convergent

functional genomics (CFG) autism [62,63], when none or

few association results reach significance as it is frequently

the case in complex disease and particularly in autism.

The recent paper of Lu and Cantor [64] together with

the present results highlights the importance of the sex in

genetic study of autism. They showed that using sex as a

risk factor in GWAS of multiplex autism families

increased the power of the study and identified one new

gene implicated in calcium channel defect. Stone et al.

[28] also suggested that sex is an important factor in the

genetics of autism and could be used to decrease heteroge-

neity in genetic study.

Conclusions
The results of this study confirm previous results [24] that

predictive models are of major interest in autism and may

help to identify siblings of children with autism at high

risk of disease. The choice of genes to enter in the model

must be made with caution since association and replica-

tion of a particular SNP in different studies are not suffi-

cient justification to enter a SNP in a genetic score and

sex is an important factor that needs to be included in aut-

ism risk evaluation.
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