E. Schneidman, B. Freedman, and I. Segev, Ion Channel Stochasticity May Be Critical in Determining the Reliability and Precision of Spike Timing, Neural Computation, vol.18, issue.4, pp.1679-1703, 1998.
DOI : 10.1016/S0006-3495(95)79995-7

G. Jacobson, K. Diba, A. Yaron-jakoubovitch, Y. Oz, and C. Koch, Subthreshold voltage noise of rat neocortical pyramidal neurones, The Journal of Physiology, vol.373, issue.1, pp.145-160, 2005.
DOI : 10.1113/jphysiol.2004.080903

A. Arieli, A. Sterkin, A. Grinvald, and A. Aertsen, Dynamics of Ongoing Activity: Explanation of the Large Variability in Evoked Cortical Responses, Science, vol.273, issue.5283, pp.1868-1871, 1996.
DOI : 10.1126/science.273.5283.1868

R. Azouz and C. Gray, Cellular mechanisms contributing to response variability of cortical neurons in vivo, J Neurosci, vol.19, pp.2209-2223, 1999.

M. Tsodyks, T. Kenet, A. Grinvald, and A. Arieli, Linking Spontaneous Activity of Single Cortical Neurons and the Underlying Functional Architecture, Science, vol.286, issue.5446, pp.1943-1946, 1999.
DOI : 10.1126/science.286.5446.1943

M. Boly, E. Balteau, C. Schnakers, C. Degueldre, and G. Moonen, Baseline brain activity fluctuations predict somatosensory perception in humans, Proceedings of the National Academy of Sciences, vol.104, issue.29, pp.12187-12192, 2007.
DOI : 10.1073/pnas.0611404104

M. Brecht, A. Roth, and B. Sakmann, Dynamic Receptive Fields of Reconstructed Pyramidal Cells in Layers 3 and 2 of Rat Somatosensory Barrel Cortex, The Journal of Physiology, vol.81, issue.1, pp.243-265, 2003.
DOI : 10.1113/jphysiol.2003.044222

A. Destexhe, M. Rudolph, and D. Pare, The high-conductance state of neocortical neurons in vivo, Nature Reviews Neuroscience, vol.4, issue.9, pp.739-751, 2003.
DOI : 10.1038/nrn1198

URL : https://hal.archives-ouvertes.fr/hal-00299172

A. Gulledge and G. Stuart, Action potential initiation and propagation in layer 5 pyramidal neurons of the rat prefrontal cortex: absence of dopamine modulation, J Neurosci, vol.23, pp.11363-11372, 2003.

L. Glickfeld, J. Roberts, P. Somogyi, and M. Scanziani, Interneurons hyperpolarize pyramidal cells along their entire somatodendritic axis, Nature Neuroscience, vol.429, issue.1, pp.21-23, 2009.
DOI : 10.1038/nn.2230

S. Rheims, M. Minlebaev, A. Ivanov, A. Represa, and R. Khazipov, Excitatory GABA in Rodent Developing Neocortex In Vitro, Journal of Neurophysiology, vol.100, issue.2, pp.609-619, 2008.
DOI : 10.1152/jn.90402.2008

URL : https://hal.archives-ouvertes.fr/inserm-00483487

D. Pare, E. Lang, and A. Destexhe, Inhibitory control of somatodendritic interactions underlying action potentials in neocortical pyramidal neurons in vivo: An intracellular and computational study, Neuroscience, vol.84, issue.2, pp.377-402, 1998.
DOI : 10.1016/S0306-4522(97)00530-7

A. Destexhe and D. Pare, Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo, J Neurophysiol, vol.81, pp.1531-1547, 1999.

K. Wiesenfeld and F. Moss, Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDs, Nature, vol.373, issue.6509, pp.33-36, 1995.
DOI : 10.1038/373033a0

J. Wolfart, D. Debay, M. Le, A. Destexhe, and T. Bal, Synaptic background activity controls spike transfer from thalamus to cortex, Nature Neuroscience, vol.91, issue.12, pp.1760-1767, 2005.
DOI : 10.1038/nn1591

URL : https://hal.archives-ouvertes.fr/hal-00018620

I. Aradi, V. Santhakumar, K. Chen, and I. Soltesz, Postsynaptic effects of GABAergic synaptic diversity: regulation of neuronal excitability by changes in IPSC variance, Neuropharmacology, vol.43, issue.4, pp.511-522, 2002.
DOI : 10.1016/S0028-3908(02)00167-3

I. Aradi, V. Santhakumar, and I. Soltesz, Impact of Heterogeneous Perisomatic IPSC Populations on Pyramidal Cell Firing Rates, Journal of Neurophysiology, vol.91, issue.6, pp.2849-2858, 2004.
DOI : 10.1152/jn.00916.2003

Z. Mainen and T. Sejnowski, Reliability of spike timing in neocortical neurons, Science, vol.268, issue.5216, pp.1503-1506, 1995.
DOI : 10.1126/science.7770778

F. Pouille and M. Scanziani, Enforcement of Temporal Fidelity in Pyramidal Cells by Somatic Feed-Forward Inhibition, Science, vol.293, issue.5532, pp.1159-1163, 2001.
DOI : 10.1126/science.1060342

A. Bacci and J. Huguenard, Enhancement of Spike-Timing Precision by Autaptic Transmission in Neocortical Inhibitory Interneurons, Neuron, vol.49, issue.1, pp.119-130, 2006.
DOI : 10.1016/j.neuron.2005.12.014

M. Farrant and Z. Nusser, Variations on an inhibitory theme: phasic and tonic activation of GABAA receptors, Nature Reviews Neuroscience, vol.18, issue.3, pp.215-229, 2005.
DOI : 10.1006/frne.1999.0188

K. Kahle, K. Staley, B. Nahed, G. Gamba, and S. Hebert, Roles of the cation???chloride cotransporters in neurological disease, Nature Clinical Practice Neurology, vol.429, issue.9, pp.490-503, 2008.
DOI : 10.1038/ncpneuro0883

A. Holden, Models of stochastic activity of neurones, 1976.
DOI : 10.1007/978-3-642-46345-7

A. Manwani, P. Steinmetz, and C. Koch, The Impact of Spike Timing Variability on the Signal-Encoding Performance of Neural Spiking Models, Neural Computation, vol.83, issue.3, pp.347-367, 2002.
DOI : 10.1162/089976698300017214

J. Payne, C. Rivera, J. Voipio, and K. K. , Cation???chloride co-transporters in neuronal communication, development and trauma, Trends in Neurosciences, vol.26, issue.4, pp.199-206, 2003.
DOI : 10.1016/S0166-2236(03)00068-7

D. Pare, E. Shink, H. Gaudreau, A. Destexhe, and E. Lang, Impact of spontaneous synaptic activity on the resting properties of cat neocortical pyramidal neurons In vivo, J Neurophysiol, vol.79, pp.1450-1460, 1998.

F. Chance, L. Abbott, and A. Reyes, Gain Modulation from Background Synaptic Input, Neuron, vol.35, issue.4, pp.773-782, 2002.
DOI : 10.1016/S0896-6273(02)00820-6

URL : http://doi.org/10.1016/s0896-6273(02)00820-6

G. Ascoli, L. Alonso-nanclares, S. Anderson, G. Barrionuevo, and R. Benavides-piccione, Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex, Nature Reviews Neuroscience, vol.28, issue.7, pp.557-568, 2008.
DOI : 10.1038/nrn2402

URL : https://hal.archives-ouvertes.fr/hal-00292588

R. Miles, K. Toth, A. Gulyás, N. Hájos, and T. Freund, Differences between Somatic and Dendritic Inhibition in the Hippocampus, Neuron, vol.16, issue.4, pp.815-823, 1996.
DOI : 10.1016/S0896-6273(00)80101-4

R. Pearce, Physiological evidence for two distinct GABAA responses in rat hippocampus, Neuron, vol.10, issue.2, pp.189-200, 1993.
DOI : 10.1016/0896-6273(93)90310-N

M. Sceniak and M. Maciver, Slow GABAa mediated synaptic transmission in rat visual cortex, BMC Neuroscience, vol.9, issue.1, p.8, 2008.
DOI : 10.1186/1471-2202-9-8

P. Jedlicka, T. Deller, B. Gutkin, and K. Backus, Activity-dependent intracellular chloride accumulation and diffusion controls GABA(A) receptormediated synaptic transmission, Hippocampus, 2010.

C. Brun, I. Ferrand, N. Caillard, O. Tosetti, P. et al., Spontaneous synaptic activity is required for the formation of functional GABAergic synapses in the developing rat hippocampus, The Journal of Physiology, vol.5, issue.1, pp.129-139, 2004.
DOI : 10.1113/jphysiol.2004.065060

URL : https://hal.archives-ouvertes.fr/inserm-00484656

I. Llano, N. Leresche, and M. A. , Calcium entry increases the sensitivity of cerebellar Purkinje cells to applied GABA and decreases inhibitory synaptic currents, Neuron, vol.6, issue.4, pp.565-574, 1991.
DOI : 10.1016/0896-6273(91)90059-9

T. Pitler and B. Alger, Postsynaptic spike firing reduces synaptic GABAA responses in hippocampal pyramidal cells, J Neurosci, vol.12, pp.4122-4132, 1992.

H. Mclean, O. Caillard, R. Khazipov, Y. Ben-ari, and J. Ga?¨arsaga?¨arsa, Spontaneous release of GABA activates GABA B receptors and controls network activity in the neonatal rat hippocampus, J Neurophysiol, vol.76, pp.1036-1046, 1996.

O. Caillard, B. Ari, Y. Ga?¨arsaga?¨arsa, and J. , Mechanisms of induction and expression of long-term depression at GABAergic synapses in the neonatal rat hippocampus, J Neurosci, vol.19, pp.7568-7577, 1999.
URL : https://hal.archives-ouvertes.fr/inserm-00484950

T. Hashimoto, T. Ishii, and H. Ohmori, Release of Ca2+ is the crucial step for the potentiation of IPSCs in the cultured cerebellar Purkinje cells of the rat., The Journal of Physiology, vol.497, issue.3, pp.611-627, 1996.
DOI : 10.1113/jphysiol.1996.sp021794

L. Rutherford, A. Dewan, H. Lauer, and G. Turrigiano, Brain-derived neurotrophic factor mediates the activity-dependent regulation of inhibition in neocortical cultures, J Neurosci, vol.17, pp.4527-4535, 1997.

J. Kang, L. Jiang, S. Goldman, and M. Nedergaard, Astrocyte-mediated potentiation of inhibitory synaptic transmission, Nature Neuroscience, vol.1, issue.8, pp.683-692, 1998.
DOI : 10.1038/3684

O. Caillard, B. Ari, Y. Ga?¨arsaga?¨arsa, and J. , Long-term potentiation of GABAergic synaptic transmission in neonatal rat hippocampus, The Journal of Physiology, vol.12, issue.1, pp.109-119, 1999.
DOI : 10.1111/j.1469-7793.1999.0109r.x

URL : https://hal.archives-ouvertes.fr/inserm-00486287

M. Galante, A. Nistri, and L. Ballerini, receptors, The Journal of Physiology, vol.12, issue.3, pp.639-651, 2000.
DOI : 10.1111/j.1469-7793.2000.t01-1-00639.x

URL : https://hal.archives-ouvertes.fr/hal-01182948

M. Ouardouz and B. Sastry, Mechanisms underlying LTP of inhibitory synaptic transmission in the deep cerebellar nuclei, J Neurophysiol, vol.84, pp.1414-1421, 2000.

J. Hirsch, C. Agassandian, A. Merchan-perez, Y. Ben-ari, and J. Defelipe, Deficit of quantal release of GABA in experimental models of temporal lobe epilepsy, Nat Neurosci, vol.2, pp.499-500, 1999.
URL : https://hal.archives-ouvertes.fr/inserm-00486214

M. Kobayashi, X. Wen, and P. Buckmaster, Reduced inhibition and increased output of layer II neurons in the medial entorhinal cortex in a model of temporal lobe epilepsy, J Neurosci, vol.23, pp.8471-8479, 2003.

M. Kobayashi and P. Buckmaster, Reduced inhibition of dentate granule cells in a model of temporal lobe epilepsy, J Neurosci, vol.23, pp.2440-2452, 2003.

L. El-hassar, M. Milh, F. Wendling, N. Ferrand, and M. Esclapez, Cell domain-dependent changes in the glutamatergic and GABAergic drives during epileptogenesis in the rat CA1 region, The Journal of Physiology, vol.26, issue.1, pp.193-211, 2007.
DOI : 10.1113/jphysiol.2006.119297

P. Tiesinga and J. Toups, The Possible Role of Spike Patterns in Cortical Information Processing, Journal of Computational Neuroscience, vol.395, issue.60, pp.275-286, 2005.
DOI : 10.1007/s10827-005-0330-2

P. Tiesinga, J. Fellous, and T. Sejnowski, Regulation of spike timing in visual cortical circuits, Nature Reviews Neuroscience, vol.533, issue.5, pp.97-107, 2008.
DOI : 10.1038/nrn2315

D. Cope, G. Di, S. Fyson, G. Orban, and A. Errington, Enhanced tonic GABAA inhibition in typical absence epilepsy, Nature Medicine, vol.114, issue.12, pp.1392-1398, 2009.
DOI : 10.1038/nm.2058

K. Kaila, Ionic basis of GABAA receptor channel function in the nervous system, Progress in Neurobiology, vol.42, issue.4, pp.489-537, 1994.
DOI : 10.1016/0301-0082(94)90049-3

A. Marty and I. Llano, Excitatory effects of GABA in established brain networks, Trends in Neurosciences, vol.28, issue.6, pp.284-289, 2005.
DOI : 10.1016/j.tins.2005.04.003

K. Stiefel, V. Wespatat, B. Gutkin, F. Tennigkeit, and W. Singer, Phase Dependent Sign Changes of GABAergic Synaptic Input Explored In-Silicio and In-Vitro, Journal of Computational Neuroscience, vol.4, issue.41, pp.71-85, 2005.
DOI : 10.1007/s10827-005-0188-3

A. Kreiter and W. Singer, Stimulus-dependent synchronization of neuronal responses in the visual cortex of the awake macaque monkey, J Neurosci, vol.16, pp.2381-2396, 1996.

R. Decharms and M. Merzenich, Primary cortical representation of sounds by the coordination of action-potential timing, Nature, vol.381, issue.6583, pp.610-613, 1996.
DOI : 10.1038/381610a0

K. Macleod and G. Laurent, Distinct Mechanisms for Synchronization and Temporal Patterning of Odor-Encoding Neural Assemblies, Science, vol.274, issue.5289, pp.976-979, 1996.
DOI : 10.1126/science.274.5289.976

S. Hefft and J. P. , Asynchronous GABA release generates long-lasting inhibition at a hippocampal interneuron???principal neuron synapse, Nature Neuroscience, vol.488, issue.10, pp.1319-1328, 2005.
DOI : 10.1073/pnas.0304752101

A. Ali and M. Todorova, Asynchronous release of GABA via tonic cannabinoid receptor activation at identified interneuron synapses in rat CA1, European Journal of Neuroscience, vol.56, issue.7, 2010.
DOI : 10.1111/j.1460-9568.2010.07165.x

M. Daw, L. Tricoire, F. Erdelyi, G. Szabo, and C. Mcbain, Asynchronous Transmitter Release from Cholecystokinin-Containing Inhibitory Interneurons Is Widespread and Target-Cell Independent, Journal of Neuroscience, vol.29, issue.36, pp.11112-11122, 2009.
DOI : 10.1523/JNEUROSCI.5760-08.2009

D. Debanne, S. Boudkkazi, E. Campanac, R. Cudmore, and P. Giraud, Paired-recordings from synaptically coupled cortical and hippocampal neurons in acute and cultured brain slices, Nature Protocols, vol.23, issue.10, pp.1559-1568, 2008.
DOI : 10.1038/nprot.2008.147

URL : https://hal.archives-ouvertes.fr/inserm-00484944

N. Axmacher and R. Miles, Intrinsic cellular currents and the temporal precision of EPSP-action potential coupling in CA1 pyramidal cells, The Journal of Physiology, vol.36, issue.Suppl, pp.713-725, 2004.
DOI : 10.1113/jphysiol.2003.052225