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Abstract. We provide a refined hierarchical classification of first-order
recurrent neural networks made up of McCulloch and Pitts cells. The
classification is achieved by first proving the equivalence between the ex-
pressive powers of such neural networks and Muller automata, and then
translating the Wadge classification theory from the automata-theoretic
to the neural network context. The obtained hierarchical classification
of neural networks consists of a decidable pre-well ordering of width 2
and height ωω, and a decidability procedure of this hierarchy is provided.
Notably, this classification is shown to be intimately related to the at-
tractive properties of the networks, and hence provides a new refined
measurement of the computational power of these networks in terms of
their attractive behaviours.

1 Introduction

In neural computability, the issue of the computational power of neural networks
has often been approached from the automata-theoretic perspective. In this con-
text, McCulloch and Pitts, Kleene, and Minsky already early proved that the
class of first-order recurrent neural networks discloses equivalent computational
capabilities as classical finite state automata [1–3]. Later, Kremer extended this
result to the class of Elman-style recurrent neural nets, and Sperduti discussed
the computational power of different other architecturally constrained classes of
networks [4, 5].

Besides, the computational power of first-order recurrent neural networks was
also proved to intimately depend on both the choice of the activation function of
the neurons as well as the nature of the synaptic weights under consideration. In-
deed, Siegelmann and Sontag showed that, assuming rational synaptic weights,
but considering a saturated-linear sigmoidal instead of a hard-threshold acti-
vation function drastically increases the computational power of the networks
from finite state automata up to Turing capabilities [6, 7]. In addition, Siegel-
mann and Sontag also nicely proved that real-weighted networks provided with a
saturated-linear sigmoidal activation function reveal computational capabilities
beyond the Turing limits [8–10].

This paper concerns a more refined characterization of the computational
power of neural nets. More precisely, we restrict our attention to the simple
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class of rational-weighted first-order recurrent neural networks made up of Mc-
Culloch and Pitts cells, and provide a refined classification of the networks of
this class. The classification is achieved by first proving the equivalence between
the expressive powers of such neural networks and Muller automata, and then
translating the Wadge classification theory from the automata-theoretic to the
neural network context [11–14]. The obtained hierarchical classification of neural
networks consists of a decidable pre-well ordering of width 2 and height ωω, and
a decidability procedure of this hierarchy is provided. Notably, this classification
is shown to be intimately related to the attractive properties of the considered
networks, and hence provides a new refined measurement of the computational
capabilities of these networks in terms of their attractive behaviours.

2 The Model

In this work, we focus on synchronous discrete-time first-order recurrent neural
networks made up of classical McCulloch and Pitts cells.

Definition 1. A first-order recurrent neural network consists of a tuple N =
(X, U, a, b, c), where X = {xi : 1 ≤ i ≤ N} is a finite set of N activation cells,
U = {ui : 1 ≤ i ≤ M} is a finite set of M external input cells, and a ∈ QN×N ,
b ∈ QN×M , and c ∈ QN×1 are rational matrices describing the weights of the
synaptic connections between cells as well as the incoming background activity.

The activation value of cells xj and uj at time t, respectively denoted by xj(t)
and uj(t), is a boolean value equal to 1 if the corresponding cell is firing at
time t and to 0 otherwise. Given the activation values xj(t) and uj(t), the value
xi(t + 1) is then updated by the following equation

xi(t + 1) = σ




N∑

j=1

ai,j · xj(t) +
M∑

j=1

bi,j · uj(t) + ci



 , i = 1, . . . , N (1)

where σ is the classical hard-threshold activation function defined by σ(α) = 1
if α ≥ 1 and σ(α) = 0 otherwise.

Note that Equation (1) ensures that the whole dynamics of network N is
described by the following governing equation

x(t + 1) = σ (a · x(t) + b · u(t) + c) , (2)

where x(t) = (x1(t), . . . , xN (t)) and u(t) = (u1(t), . . . , uM (t)) are boolean vec-
tors describing the spiking configuration of the activation and input cells, and
σ denotes the classical hard threshold activation function applied component by
component. An example of such a network is given below.

Example 1. Consider the network N depicted in Figure 1. The dynamics of this
network is then governed by the following equation:

(
x1(t+1)
x2(t+1)
x3(t+1)

)
= σ

[(
0 0 0
1
2 0 0
1
2 0 0

)
·
(

x1(t)
x2(t)
x3(t)

)
+

(
1 0
0 0
0 1

2

)
·
(

u1(t)
u2(t)

)
+

(
0
1
2
0

)]
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Fig. 1. A simple neural network

3 Attractors

The dynamics of recurrent neural networks made of neurons with two states of
activity can implement an associative memory that is rather biological in its de-
tails [15]. In the Hopfield framework, stable equilibrium reached by the network
that do not represent any valid configuration of the optimization problem are
referred to as spurious attractors. According to Hopfield et al., spurious modes
can disappear by “unlearning” [15], but Tsuda et al. have shown that rational
successive memory recall can actually be implemented by triggering spurious
modes [16]. Here, the notions of attractors, meaningful attractors, and spurious
attractors are reformulated in our precise context. Networks will then be clas-
sified according to their ability to switch between different types of attractive
behaviours. For this purpose, the following definitions need to be introduced.

As preliminary notations, for any k > 0, we let the space of k-dimensional
boolean vectors be denoted by Bk, and we let the space of all infinite sequences
of k-dimensional boolean vectors be denoted by [Bk]ω. Moreover, for any finite
sequence of boolean vectors v, we let the expression vω = vvvv · · · denote the
infinite sequence obtained by infinitely many concatenations of v.

Now, let N be some network with N activation cells and M input cells.
For each time step t ≥ 0, the boolean vectors x(t) = (x1(t), . . . , xN (t)) ∈
BN and u(t) = (u1(t), . . . , uM (t)) ∈ BM describing the spiking configurations
of both the activation and input cells of N at time t are respectively called
the state of N at time t and the input submitted to N at time t. An in-
put stream of N is then defined as an infinite sequence of consecutive inputs
s = (u(i))i∈N = u(0)u(1)u(2) · · · ∈ [BM ]ω. Moreover, assuming the initial
state of the network to be x(0) = 0, any input stream s = (u(i))i∈N =
u(0)u(1)u(2) · · · ∈ [BM ]ω induces via Equation (2) an infinite sequence of
consecutive states es = (x(i))i∈N = x(0)x(1)x(2) · · · ∈ [BN ]ω that is called the
evolution of N induced by the input stream s.

Along some evolution es = x(0)x(1)x(2) · · · , irrespective of the fact that
this sequence is periodic or not, some state will repeat finitely often whereas other
will repeat infinitely often. The (finite) set of states occurring infinitely often in
the sequence es is denoted by inf(es). It can be observed that, for any evolution
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es, there exists a time step k after which the evolution es will necessarily remain
confined in the set of states inf(es), or in other words, there exists an index k
such that x(i) ∈ inf(es) for all i ≥ k. However, along evolution es, the recurrent
visiting of states in inf(es) after time step k does not necessarily occur in a
periodic manner.

Now, given some networkN with N activation cells, a set A = {y0, . . . ,yk} ⊆
BN is called an attractor for N if there exists an input stream s such that
the corresponding evolution es satisfies inf(es) = A. Intuitively, an attractor
can be seen a trap of states into which some network’s evolution could become
forever confined. We further assume that attractors can be of two distinct types,
namely meaningful or optimal vs. spurious or non-optimal. In this study we do
not extend the discussion about the attribution of the attractors to either type.
From this point onwards, we assume any given network to be provided with the
corresponding classification of its attractors into meaningful and spurious types.

Now, let N be some network provided with an additional type specification
of each of its attractors. The complementary network N ! is then defined to be
the same network as N but with an opposite type specification of its attractors.3
In addition, an input stream s of N is called meaningful if inf(es) is a meaningful
attractor, and it is called spurious if inf(es) is a spurious attractor. The set of all
meaningful input streams of N is called the neural language of N and is denoted
by L(N ). Note that the definition of the complementary network implies that
L(N !) = L(N )!. Finally, an arbitrary set of input streams L ⊆ [BM ]ω is defined
as recognizable by some neural network if there exists a network N such that
L(N ) = L. All preceding definitions are now illustrated in the next example.

Example 2. Consider again the network N described in Example 1, and suppose
that an attractor is meaningful for N if and only if it contains the state (1, 1, 1)T

(i.e. where the three activation cells simultaneously fire). The periodic input
stream s = [( 1

1 ) ( 1
1 ) ( 1

1 ) ( 0
0 )]ω induces the corresponding periodic evolution

es =
(

0
0
0

) (
1
0
0

) [(
1
1
1

) (
1
1
1

) (
0
1
0

) (
1
0
0

)]ω
.

Hence, inf(es) = {(1, 1, 1)T , (0, 1, 0)T , (1, 0, 0)T }, and the evolution es of N re-
mains confined in a cyclic visiting of the states of inf(es) already from time
step t = 2. Thence, the set {(1, 1, 1)T , (0, 1, 0)T , (1, 0, 0)T } is an attractor of N .
Moreover, this attractor is meaningful since it contains the state (1, 1, 1)T .

4 Recurrent Neural Networks and Muller Automata

In this section, we provide an extension of the classical result stating the equiv-
alence of the computational capabilities of first-order recurrent neural networks
and finite state machines [1–3]. More precisely, here, the issue of the expressive
power of neural networks is approached from the point of view of the theory
3 More precisely, A is a meaningful attractor for N ! if and only if A is a spurious

attractor for N .
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of automata on infinite words, and it is proved that first-order recurrent neural
networks actually disclose the very same expressive power as finite Muller au-
tomata. Towards this purpose, the following definitions first need to be recalled.

A finite Muller automaton is a 5-tuple A = (Q, A, i, δ, T ), where Q is a finite
set called the set of states, A is a finite alphabet, i is an element of Q called
the initial state, δ is a partial function from Q× A into Q called the transition
function, and T ⊆ P(Q) is a set of set of states called the table of the automaton.
A finite Muller automaton is generally represented by a directed labelled graph
whose nodes and labelled edges respectively represent the states and transitions
of the automaton.

Given a finite Muller automaton A = (Q, A, i, δ, T ), every triple (q, a, q′) such
that δ(q, a) = q′ is called a transition of A. A path in A is then a sequence of
consecutive transitions ρ = ((q0, a1, q1), (q1, a2, q2), (q2, a3, q3), . . .), also denoted
by ρ : q0

a1−→ q1
a2−→ q2

a3−→ q3 · · · . The path ρ is said to successively visit the
states q0, q1, . . .. The state q0 is called the origin of ρ, the word a1a2a3 · · · is the
label of ρ, and the path ρ is said to be initial if q0 = i. If ρ is an infinite path,
the set of states visited infinitely often by ρ is denoted by inf(ρ). Besides, a cycle
in A consists of a finite set of states c such that there exists a finite path in A
with same origin and ending state that visits precisely all the sates of c. A cycle
is called successful if it belongs to T , and non-succesful otherwise. Moreover, an
infinite initial path ρ of A is called successful if inf(ρ) ∈ T . An infinite word is
then said to be recognized by A if it is the label of a successful infinite path in
A, and the ω-language recognized by A, denoted by L(A), is defined as the set
of all infinite words recognized by A. The class of all ω-languages recognizable
by some Muller automata is precisely the class of ω-rational languages.

Now, for each ordinal α < ωω, we introduce the concept of an α-alternating
tree in a Muller automaton A, which consists of a tree-like disposition of the
successful and non-successful cycles of A induced by the ordinal α (see Figure
2). We first recall that any ordinal 0 < α < ωω can uniquely be written of the
form α = ωnp ·mp+ωnp−1 ·mp−1+. . .+ωn0 ·m0, for some p ≥ 0, np > np−1 > . . . >
n0 ≥ 0, and mi > 0. Then, given some Muller automata A and some ordinal
α = ωnp ·mp + ωnp−1 ·mp−1 + . . . + ωn0 ·m0 < ωω, an α-alternating tree (resp.
α-co-alternating tree) is a sequence of cycles of A (Ci,j

k,l)i≤p,j<2i,k<mi,l≤ni
such

that: firstly, C0,0
0,0 is successful (resp. not successful); secondly, Ci,j

k,l ! Ci,j
k,l+1, and

Ci,j
k,l+1 is successful iff Ci,j

k,l is not successful; thirdly, Ci,j
k+1,0 is strictly accessible

from Ci,j
k,0, and Ci,j

k+1,0 is successful iff Ci,j
k,0 is not successful; fourthly, Ci+1,2j

0,0

and Ci+1,2j+1
0,0 are both strictly accessible from Ci,j

mi−1,0, and each Ci+1,2j
0,0 is

successful whereas each Ci+1,2j+1
0,0 is not successful. An α-alternating tree is said

to be maximal in A if there is no β-alternating tree in A such that β > α.
We now come up to the equivalence of the expressive power of recurrent

neural networks and Muller automaton. First of all, we prove that any first-
order recurrent neural network can be simulated by some Muller automaton.

Proposition 1. Let N be a network provided with a type specification of its
attractors. Then there exists a Muller automaton AN such that L(N ) = L(AN ).
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Fig. 2. The inclusion and accessibility relations between cycles in an α-alternating tree

Proof. Let N be given by the tuple (X, U, a, b, c), with card(X) = N , card(U) =
M , and let the meaningful attractors ofN be given by A1, . . . , AK . Now, consider
the Muller automaton AN = (Q, A, i, δ, T ), where Q = BN , A = BM , i is the
N -dimensional zero vector, δ : Q × A → Q is defined by δ(x,u) = x′ if and
only if x′ = σ (a · x + b · u + c), and T = {A1, . . . , AK}. According to this
construction, any input stream s of N is meaningful for N if and only if s
is recognized by AN . In other words, s ∈ L(N ) if and only if s ∈ L(AN ), and
therefore L(N ) = L(AN ). ()

According to the construction given in the proof of Proposition 1, any evolu-
tion of the network N naturally induces a corresponding infinite initial path in
the Muller automaton AN , and conversely, any infinite initial path in AN corre-
sponds to some possible evolution of N . This observation ensures the existence
of a biunivocal correspondence between the attractors of the network N and the
cycles in the graph of the corresponding Muller automaton AN . Consequently,
a procedure to compute all possible attractors of a given network N is simply
obtained by first constructing the corresponding Muller automaton AN and then
listing all cycles in the graph of AN .

Conversely, we now prove that any Muller automaton can be simulated by
some first-order recurrent neural network. For the sake of convenience, we choose
to restrict our attention to Muller automata over the binary alphabet B1.

Proposition 2. Let A be some Muller automaton over the alphabet B1. Then
there exists a network NA such that L(A) = L(NA).

Proof. Let A be given by the tuple (Q, A, q1, δ, T ), with Q = {q1, . . . , qN} and
T ⊆ P(Q). Now, consider the network NA = (X, U, a, b, c) defined as follows:
First of all, X = {xi : 1 ≤ i ≤ 2N} ∪ {x′1, x′2, x′3, x′4}, U = {u1}, and each
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state qi in the automaton A gives rise to a two cell layer {xi, xN+i} in the
network NA as illustrated in Figure 3. Moreover, the synaptic weights between
u1 and all activation cells, between all cells in {x′1, x′2, x′3, x′4}, as well as the
background activity are precisely as depicted in Figure 3. Furthermore, for each
1 ≤ i ≤ N , both cells xi and xN+i receive a weighted connection of intensity
1
2 from cell x′4 (resp. x′2) if and only if δ(q1, (0)) = qi (resp. δ(q1, (1)) = qi), as
also shown in Figure 3. Farther, for each 1 ≤ i, j ≤ N , there exist two weighted
connection of intensity 1

2 from cell xi (resp. from cell xN+i) to both cell xj and
xN+j if and only if δ(qi, (1)) = qj (resp. δ(qi, (0)) = qj), as partially illustrated
in Figure 3 only for the k-th layer. This description of the network NA ensures
that, for any possible evolution of NA, the two cells x′1 and x′3 are firing at
each time step t ≥ 1, and furthermore, one and only one cell of {xi : 1 ≤ i ≤
2N} are firing at each time step t ≥ 2. According to this observation, for any
1 ≤ j ≤ N , let 1j ∈ B2N+4 (resp. 1N+j ∈ B2N+4) denote the boolean vector
describing the spiking configuration where only the cells x′1, x′3, and xj (resp.
x′1, x′3, and xN+j) are firing. Hence, any evolution x(0)x(1)x(2) · · · of NA
satisfies x(t) ∈ {1k : 1 ≤ k ≤ N} ∪ {1N+l : 1 ≤ l ≤ N} for all t ≥ 2, and
thus any attractor A of N can necessarily be written of the form A = {1k :
k ∈ K} ∪ {1N+l : l ∈ L}, for some K, L ⊆ {1, 2, . . . , N}. Now, any infinite
sequence s = u(0)u(1)u(2) · · · ∈ [B1]ω induces both a corresponding infinite

path ρs : q1
u(0)−−−→ qj1

u(1)−−−→ qj2
u(2)−−−→ qj3 · · · in A as well as a corresponding

evolution es = x(0)x(1)x(2) · · · in NA. The network NA is then related to the
automaton A via the following important property: for each time step t ≥ 1, if
u(t) = (1), then x(t + 1) = 1jt , and if u(t) = (0), then x(t + 1) = 1N+jt .
In other words, the infinite path ρs and the evolution es evolve in parallel and
satisfy the property that the cell xj is spiking in NA if and only if the automaton
A is in state qj and reads letter (1), and the cell xN+j is spiking in NA if and
only if the automaton A is in state qj and reads letter (0). Finally, an attractor
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Fig. 3. The network NA
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A = {1k : k ∈ K} ∪ {1N+l : l ∈ L} with K, L ⊆ {1, 2, . . . , N} is set to be
meaningful if and only if {qk : k ∈ K} ∪{ ql : l ∈ L} ∈ T . Consequently, for any
infinite infinite sequence s ∈ [B1]ω, the infinite path ρs in A satisfies inf(ρs) ∈ T
if and only if the evolution es in NA is such that inf(es) is a meaningful attractor.
Therefore, L(A) = L(NA). ()

Finally, the following example provides an illustration of the two translating
procedures described in the proofs of propositions 1 and 2.

Example 3. The translation from the network N described in Example 2 to
its corresponding Muller automaton AN is illustrated in Figure 4. Proposition
1 ensures that L(N ) = L(AN ). Conversely, the translation from some given
Muller automaton A over the alphabet B1 to its corresponding network NA is
illustrated in Figure 5. Proposition 2 ensures that L(A) = L(NA).

1/2

1/2

x3

x2

x1

u1

u2

1

1/2

1/2
(

0
0
0

)

(
0
1
0

)

(
1
1
0

)(
1
1
1

)

(
0
1
1

)

(
1
0
0

)( 1
0 )

( 0
0 )

( 1
1 )

( 0
0 ) ( 0

1 )

( 1
0 )( 1

1 )

( 0
0 ) ( 0

1 )

( 1
0 ) ( 1

1 )

( 0
0 )

( 1
0 )

( 1
1 )

( 0
0 )

( 0
1 )

( 1
0 )

( 1
1 )

( 0
0 )

( 0
1 ) ( 1

1 )( 0
1 ) ( 0

1 )

( 1
0 )

A ⊆ B3 is meaningful for N Table T = {A ∈ B3 : A is meaningful for N}
if and only if (1, 1, 1)T ∈ A

Fig. 4. Translation from a given network N provided with a type specification of its
attractors to a corresponding Muller automaton AN
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5 The RNN Hierarchy

In the theory of automata on infinite words, abstract machines are commonly
classified according the topological complexity of their underlying ω-language,
as for instance in [11–14]. Here, this approach is translated from the automata
to the neural networks context, in order to obtain a refined classification of first-
order recurrent neural networks. Notably, the obtained classification actually
refers to the ability of the networks to switch between meaningful and spurious
attractive behaviours.

For this purpose, the following facts and definitions need to be introduced.
To begin with, for any k > 0, the space [Bk]ω can naturally be equipped with
the product topology of the discrete topology over Bk. Thence, a function f :
[Bk]ω → [Bl]ω is said to be continuous if and only if the inverse image by f of
every open set of [Bl]ω is an open set of [Bk]ω. Now, given two first-order recurrent
neural networks N1 and N2 with M1 and M2 input cells respectively, we say that
N1 Wadge reduces [17] (or continuously reduces or simply reduces) toN2, denoted
by N1 ≤W N2, if any only if there exists a continuous function f : [BM1 ]ω →
[BM2 ]ω such that any input stream s of N1 satisfies s ∈ L(N1) ⇔ f(s) ∈ L(N2).
The corresponding strict reduction, equivalence relation, and incomparability
relation are then naturally defined by N1 <W N2 iff N1 ≤W N2 ,≤W N1, as well
as N1 ≡W N2 iff N1 ≤W N2 ≤W N1, and N1 ⊥W N2 iff N1 ,≤W N2 ,≤W N1.
Moreover, a network N is called self-dual if N ≡W N !; it is non-self-dual if
N ,≡W N !, which can be proved to be equivalent to saying that N ⊥W N !.
By extension, an ≡W -equivalence class of networks is called self-dual if all its
elements are self-dual, and non-self-dual if all its elements are non-self-dual.

Now, the Wadge reduction over the class of neural networks naturally induces
a hierarchical classification of networks. Formally, the collection of all first-order
recurrent neural networks ordered by the Wadge reduction “≤W ” is called the
RNN hierarchy.

Propositions 1 and 2 ensure that the RNN hierarchy and the Wagner hierar-
chy – the collection of all ω-rational languages ordered by the Wadge reduction
[14] – coincide up to Wadge equivalence. Accordingly, a precise description of
the RNN hierarchy can therefore be given as follows. First of all, the RNN hi-
erarchy is well founded, i.e. there is no infinite strictly descending sequence of
networks N0 >W N1 >W N2 >W . . .. Moreover, the maximal strict chains in the
RNN hierarchy have length ωω, meaning that the RNN hierarchy has a height
of ωω. Furthermore, the maximal antichains of the RNN hierarchy have length
2, meaning that the RNN hierarchy has a width of 2.4 More precisely, any two
networks N1 and N2 satisfy the incomparability relation N1 ⊥W N2 if and only
if N1 and N2 are non-self-dual networks such that N1 ≡W N !

2 . These properties
imply that, up to Wadge equivalence and complementation, the RNN hierarchy

4 A strict chain (resp. an antichain) in the RNN hierarchy is a sequence of neural
networks (Nk)k∈α such that Ni <W Nj iff i < j (resp. such that Ni ⊥W Nj for all
i, j ∈ α with i $= j). A strict chain (resp. an antichain) is said to be maximal if its
length is at least as large as the length of every other strict chain (resp. antichain).
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is actually a well-ordering. In fact, the RNN hierarchy consists of an alternat-
ing succession of non-self-dual and self-dual classes with pairs of non-self-dual
classes at each limit level, as illustrated in Figure 6, where circle represent the
Wadge equivalence classes of networks and arrows between circles represent the
strict Wadge reduction between all elements of the corresponding classes. For
convenience reasons, the degree of a network N in the RNN hierarchy is now de-
fined in order to make the non-self-dual (n.s.d.) networks and the self-dual ones
located just one level above share the same degree, as illustrated in Figure 6:

d(N ) =






1 if L(N ) = ∅ or ∅!,
sup {d(M) + 1 : M n.s.d. and M <W N} if N is non-self-dual,
sup {d(M) : M n.s.d. and M <W N} if N is self-dual.

Also, the equivalence between the Wagner and RNN hierarchies ensure that the
RNN hierarchy is actually decidable, in the sense that there exists a algorithmic
procedure computing the degree of any network in the RNN hierarchy. All the
above properties of the RNN hierarchy are summarized in the following result.

Theorem 1. The RNN hierarchy is a decidable pre-well-ordering of width 2 and
height ωω.

Proof. The Wagner hierarchy consists of a decidable pre-well-ordering of width
2 and height ωω [14]. Propositions 1 and 2 ensure that the RNN hierarchy and
Wagner hierarchy coincide up to Wadge equivalence. ()

height
ωω

degree
1

degree
2

degree
3

degree
ω

degree
ω + 1

degree
ω · 2 + 1

degree
ω · 2

Fig. 6. The RNN hierarchy

The following result provides a detailed description of the decidability pro-
cedure of the RNN hierarchy. More precisely, it is shown that the degree of a
network N in the RNN hierarchy corresponds precisely to the largest ordinal α
such that there exists an α-alternating tree or an α-co-alternating tree in the
Muller automaton AN .

Theorem 2. Let N be a network provided with a type specification of its at-
tractors, AN be the corresponding Muller automaton of N , and α be an ordinal
such that 0 < α < ωω.

• If there exists in AN a maximal α-alternating tree and no maximal α-co-
alternating tree, then d(N ) = α and N is non-self-dual.
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• If there exists in AN a maximal α-co-alternating tree and no maximal α-
alternating tree, then d(N ) = α and N is non-self-dual.

• If there exist in AN both a maximal α-alternating tree as well as a maximal
α-co-alternating tree, then d(N ) = α and N is self-dual.

Proof. For any ω-rational language L, let dW (L) denote the degree of L in the
Wagner hierarchy. On the one hand, propositions 1 and 2 ensure that d(N ) =
dW (L(AN )). On the other hand, the decidability procedure of the Wagner hi-
erarchy states that dW (L(AN )) corresponds precisely to the largest ordinal α
such that there exists a maximal α-(co)-alternating tree in AN [14]. ()

The decidability procedure of the degree of a network N in the the RNN hi-
erarchy thus consists in first translating the network N into its corresponding
Muller automaton AN (as described in Proposition 1), and then returning the
ordinal α associated to the maximal α-(co)-alternating tree(s) in contained in
AN (which can be achieved by some graph analysis of the automaton AN ). In
other words, the complexity of a network N is directly related to the relative
disposition of the successful and non-successful cycles in the Muller automaton
AN , or in other words, to how some infinite path in AN could maximally alter-
nate between successful and non-successful cycles along its evolution. Therefore,
according to the biunivocal correspondence between cycles in AN and attractors
of N , as well as between infinite paths in AN and evolutions of the network N ,
it follows that the complexity of a network N in the RNN hierarchy actually
refers to the capacity of this network to maximally alternate between punctual
visitings of meaningful and spurious attractors along some possible evolution –
a concept close to chaotic itinerancy [18, 19].

Example 4. Let N be the network of Example 2. Then d(N ) = ω and N is
non-self-dual. Indeed, {(0, 0, 0)T } ! {(0, 0, 0)T , (1, 0, 0)T , (1, 1, 1)T , (0, 1, 1)T } is
a maximal ω1-co-alternating tree in the Muller automaton AN of Figure 4.

6 Conclusion

The present work proposes a new approach of neural computability from the
point of view infinite word reading automata theory. More precisely, the Wadge
classification of infinite word languages is translated from the automata-theoretic
to the neural network context, and a transfinite decidable hierarchical classi-
fication of first-order recurrent neural network is obtained. This classification
provides a better understanding of this simple class of neural networks that
could be relevant for implementation issues. Moreover, the Wadge hierarchies of
deterministic pushdown automata or deterministic Turing Machines both with
Muller conditions [11, 13] ensure that such Wadge-like classifications of strictly
more powerful models of neural networks could also be described; however, in
these cases, the decidability procedures of the obtained hierarchies remain hard
open problems.

Besides, this work is envisioned to be extended in several directions. First of
all, it could be of interest to study the same kind of hierarchical classification
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applied to more biologically oriented models, like neural networks provided with
some additional simple STDP rule. In addition, neural networks’ computational
capabilities should also rather be approached from the point of view of finite word
instead of infinite word reading automata, as for instance in [4, 8, 9, 6, 10, 7, 5].
Unfortunately, as opposed to the case of infinite words, the classification theory of
finite words reading machines is still a widely undeveloped, yet promising issue.
Finally, the study of hierarchical classifications of neural networks induced by
more biologically oriented reduction relations than the Wadge reduction would
be of specific interest.
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