C. Kuhl, The Current Status of Breast MR Imaging Part I. Choice of Technique, Image Interpretation, Diagnostic Accuracy, and Transfer to Clinical Practice, Radiology, vol.244, issue.2, pp.356-378, 2007.
DOI : 10.1148/radiol.2442051620

E. Yeh, P. Slanetz, D. Kopans, E. Rafferty, D. Georgian-smith et al., Prospective Comparison of Mammography, Sonography, and MRI in Patients Undergoing Neoadjuvant Chemotherapy for Palpable Breast Cancer, American Journal of Roentgenology, vol.184, issue.3, pp.868-877, 2005.
DOI : 10.2214/ajr.184.3.01840868

S. Partridge, J. Gibbs, Y. Lu, L. Esserman, D. Tripathy et al., MRI Measurements of Breast Tumor Volume Predict Response to Neoadjuvant Chemotherapy and Recurrence-Free Survival, American Journal of Roentgenology, vol.184, issue.6, pp.1774-1781, 2005.
DOI : 10.2214/ajr.184.6.01841774

C. Loo, H. Teertstra, S. Rodenhuis, M. Van-de-vijver, J. Hannemann et al., Dynamic Contrast-Enhanced MRI for Prediction of Breast Cancer Response to Neoadjuvant Chemotherapy: Initial Results, American Journal of Roentgenology, vol.191, issue.5, pp.1911331-1338, 2008.
DOI : 10.2214/AJR.07.3567

J. Hattangadi, C. Park, J. Rembert, C. Klifa, J. Hwang et al., Breast Stromal Enhancement on MRI Is Associated with Response to Neoadjuvant Chemotherapy, American Journal of Roentgenology, vol.190, issue.6, pp.1630-1636, 2008.
DOI : 10.2214/AJR.07.2533

A. Rieber, H. Brambs, A. Gabelmann, V. Heilmann, R. Kreienberg et al., Breast MRI for monitoring response of primary breast cancer to neo-adjuvant chemotherapy, European Radiology, vol.12, issue.7, pp.1711-1719, 2002.
DOI : 10.1007/s00330-001-1233-x

A. Padhani, C. Hayes, L. Assersohn, T. Powles, A. Makris et al., Prediction of Clinicopathologic Response of Breast Cancer to Primary Chemotherapy at Contrast-enhanced MR Imaging: Initial Clinical Results, Radiology, vol.239, issue.2, pp.361-374, 2006.
DOI : 10.1148/radiol.2392021099

T. Yankeelov, M. Lepage, A. Chakravarthy, E. Broome, K. Niermann et al., Integration of quantitative DCE-MRI and ADC mapping to monitor treatment response in human breast cancer: initial results, Magnetic Resonance Imaging, vol.25, issue.1, pp.1-13, 2007.
DOI : 10.1016/j.mri.2006.09.006

J. Delille, P. Slanetz, E. Yeh, D. Kopans, and L. Garrido, Breast Cancer: Regional Blood Flow and Blood Volume Measured with Magnetic Susceptibility???based MR Imaging???Initial Results, Radiology, vol.223, issue.2, pp.558-565, 2002.
DOI : 10.1148/radiol.2232010428

E. Khoury, C. Servois, V. Thibault, F. Tardivon, A. Ollivier et al., MR Quantification of the Washout Changes in Breast Tumors Under Preoperative Chemotherapy: Feasibility and Preliminary Results, American Journal of Roentgenology, vol.184, issue.5, pp.1499-1504, 2005.
DOI : 10.2214/ajr.184.5.01841499

A. Padhani, Dynamic contrast-enhanced MRI in clinical oncology: Current status and future directions, Journal of Magnetic Resonance Imaging, vol.10, issue.4, pp.407-422, 2002.
DOI : 10.1002/jmri.10176

Y. Liu, M. Bellomi, G. Gatti, and X. Ping, Accuracy of computed tomography perfusion in assessing metastatic involvement of enlarged axillary lymph nodes in patients with breast cancer, Breast Cancer Research, vol.17, issue.4, p.40, 2007.
DOI : 10.1007/s00330-006-0424-x

H. Larsson, M. Stubgaard, J. Frederiksen, M. Jensen, O. Henriksen et al., Quantitation of blood-brain barrier defect by magnetic resonance imaging and gadolinium-DTPA in patients with multiple sclerosis and brain tumors, Magnetic Resonance in Medicine, vol.5, issue.1, pp.117-131, 1990.
DOI : 10.1002/mrm.1910160111

P. Tofts and A. Kermode, Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts, Magnetic Resonance in Medicine, vol.113, issue.2, pp.357-367, 1991.
DOI : 10.1002/mrm.1910170208

G. Brix, M. Bahner, U. Hoffmann, A. Horvath, and W. Schreiber, Regional Blood Flow, Capillary Permeability, and Compartmental Volumes: Measurement with Dynamic CT???Initial Experience, Radiology, vol.210, issue.1, pp.269-276, 1999.
DOI : 10.1148/radiology.210.1.r99ja46269

S. Lawrence, K. Lee, and T. , An Adiabatic Approximation to the Tissue Homogeneity Model for Water Exchange in the Brain: I. Theoretical Derivation, Journal of Cerebral Blood Flow & Metabolism, vol.16, issue.12, pp.1365-1377, 1998.
DOI : 10.1097/00004647-199812000-00011

S. Lawrence, K. Lee, and T. , An Adiabatic Approximation to the Tissue Homogeneity Model for Water Exchange in the Brain: II. Experimental Validation, Journal of Cerebral Blood Flow & Metabolism, vol.37, issue.12, pp.1378-1385, 1998.
DOI : 10.1097/00004647-199812000-00012

C. De-bazelaire, N. Siauve, L. Fournier, F. Frouin, P. Robert et al., Comprehensive model for simultaneous MRI determination of perfusion and permeability using a blood-pool agent in rats rhabdomyosarcoma, European Radiology, vol.58, issue.Suppl 1, pp.152497-2505, 2005.
DOI : 10.1007/s00330-005-2873-z

D. Buckley, Uncertainty in the analysis of tracer kinetics using dynamic contrast-enhancedT1-weighted MRI, Magnetic Resonance in Medicine, vol.52, issue.3, pp.601-606, 2002.
DOI : 10.1002/mrm.10080

M. Ah-see, A. Makris, N. Taylor, M. Harrison, P. Richman et al., Early Changes in Functional Dynamic Magnetic Resonance Imaging Predict for Pathologic Response to Neoadjuvant Chemotherapy in Primary Breast Cancer, Clinical Cancer Research, vol.14, issue.20, pp.146580-6589, 2008.
DOI : 10.1158/1078-0432.CCR-07-4310

C. Kuhl, Current Status of Breast MR Imaging Part 2. Clinical Applications, Radiology, vol.244, issue.3, pp.672-691, 2007.
DOI : 10.1148/radiol.2443051661

K. Li, R. Henry, L. Wilmes, J. Gibbs, X. Zhu et al., Kinetic assessment of breast tumors using high spatial resolution signal enhancement ratio (SER) imaging, Magnetic Resonance in Medicine, vol.10, issue.3, pp.572-581, 2007.
DOI : 10.1002/mrm.21361

X. Li, W. Rooney, C. Springer, and . Jr, A unified magnetic resonance imaging pharmacokinetic theory: Intravascular and extracellular contrast reagents, Magnetic Resonance in Medicine, vol.95, issue.6, pp.1351-1359, 2005.
DOI : 10.1002/mrm.20684

C. Kuhl, H. Schild, and N. Morakkabati, Dynamic Bilateral Contrast-enhanced MR Imaging of the Breast: Trade-off between Spatial and Temporal Resolution, Radiology, vol.236, issue.3, pp.789-800, 2005.
DOI : 10.1148/radiol.2363040811

E. Eyal and H. Degani, Model-based and model-free parametric analysis of breast dynamic-contrast-enhanced MRI, NMR in Biomedicine, vol.3, issue.1, 2009.
DOI : 10.1002/nbm.1221

M. Van-osch, E. Vonken, C. Bakker, and M. Viergever, Correcting partial volume artifacts of the arterial input function in quantitative cerebral perfusion MRI, Magnetic Resonance in Medicine, vol.33, issue.3, pp.477-485, 2001.
DOI : 10.1002/1522-2594(200103)45:3<477::AID-MRM1063>3.0.CO;2-4

H. Weinmann, M. Laniado, and W. Mutzel, Pharmacokinetics of GdDTPA/ dimeglumine after intravenous injection into healthy volunteers, Physiol Chem Phys Med NMR, vol.16, issue.2, pp.167-172, 1984.

S. Riethdorf and K. Pantel, Clinical relevance and current challenges of research on disseminating tumor cells in cancer patients, Breast Cancer Research, vol.360, issue.Suppl, p.10, 2009.
DOI : 10.1056/NEJMoa0806285

J. Pierga, F. Bidard, C. Mathiot, E. Brain, S. Delaloge et al., Circulating Tumor Cell Detection Predicts Early Metastatic Relapse After Neoadjuvant Chemotherapy in Large Operable and Locally Advanced Breast Cancer in a Phase II Randomized Trial, Clinical Cancer Research, vol.14, issue.21, pp.147004-7010, 2008.
DOI : 10.1158/1078-0432.CCR-08-0030

D. Sataloff, B. Mason, A. Prestipino, U. Seinige, C. Lieber et al., Pathologic response to induction chemotherapy in locally advanced carcinoma of the breast: a determinant of outcome, J Am Coll Surg, vol.180, issue.3, pp.297-306, 1995.

A. Miller, B. Hoogstraten, M. Staquet, and A. Winkler, Reporting results of cancer treatment, Cancer, vol.11, issue.1, pp.207-214, 1981.
DOI : 10.1002/1097-0142(19810101)47:1<207::AID-CNCR2820470134>3.0.CO;2-6

R. Port, M. Knopp, and G. Brix, Dynamic contrast-enhanced MRI using Gd-DTPA: Interindividual variability of the arterial input function and consequences for the assessment of kinetics in tumors, Magnetic Resonance in Medicine, vol.46, issue.6, pp.451030-1038, 2001.
DOI : 10.1002/mrm.1137

D. Balvay, F. Frouin, G. Calmon, B. Bessoud, E. Kahn et al., New criteria for assessing fit quality in dynamic contrast-enhancedT1-weighted MRI for perfusion and permeability imaging, Magnetic Resonance in Medicine, vol.47, issue.4, pp.868-877, 2005.
DOI : 10.1002/mrm.20650

P. Tofts, B. Berkowitz, and M. Schnall, Quantitative Analysis of Dynamic Gd-DTPA Enhancement in Breast Tumors Using a Permeability Model, Magnetic Resonance in Medicine, vol.26, issue.4, pp.564-568, 1995.
DOI : 10.1002/mrm.1910330416

E. Delong, D. Delong, and D. Clarke-pearson, Comparing the Areas under Two or More Correlated Receiver Operating Characteristic Curves: A Nonparametric Approach, Biometrics, vol.44, issue.3, pp.837-845, 1988.
DOI : 10.2307/2531595

N. Wolmark, J. Wang, E. Mamounas, J. Bryant, and B. Fisher, Preoperative Chemotherapy in Patients With Operable Breast Cancer: Nine-Year Results From National Surgical Adjuvant Breast and Bowel Project B-18, JNCI Monographs, vol.2001, issue.30, pp.96-102, 2001.
DOI : 10.1093/oxfordjournals.jncimonographs.a003469

E. Sevick and R. Jain, Geometric resistance to blood flow in solid tumors perfused ex vivo: effects of tumor size and perfusion pressure, Cancer Res, issue.13, pp.493506-3512, 1989.

E. Sevick and R. Jain, Viscous resistance to blood flow in solid tumors: effect of hematocrit on intratumor blood viscosity, Cancer Res, issue.13, pp.493513-3519, 1989.

J. Less, T. Skalak, E. Sevick, and R. Jain, Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions, Cancer Res, vol.51, issue.1, pp.265-273, 1991.

S. Li, N. Taylor, A. Makris, M. Ah-see, M. Beresford et al., Primary Human Breast Adenocarcinoma: Imaging and Histologic Correlates of Intrinsic Susceptibility-weighted MR Imaging before and during Chemotherapy, Radiology, vol.257, issue.3, pp.643-652
DOI : 10.1148/radiol.10100421

S. Wedam, J. Low, S. Yang, C. Chow, P. Choyke et al., Antiangiogenic and Antitumor Effects of Bevacizumab in Patients With Inflammatory and Locally Advanced Breast Cancer, Journal of Clinical Oncology, vol.24, issue.5, pp.769-777, 2006.
DOI : 10.1200/JCO.2005.03.4645

A. Green, R. Francis, S. Baig, and R. Begent, Semiautomatic volume of interest drawing for (18)F-FDG image analysis-method and preliminary results

W. Chen, M. Giger, and U. Bick, A Fuzzy C-Means (FCM)-Based Approach for Computerized Segmentation of Breast Lesions in Dynamic Contrast-Enhanced MR Images1, Academic Radiology, vol.13, issue.1, pp.63-72, 2006.
DOI : 10.1016/j.acra.2005.08.035

M. Stoutjesdijk, J. Veltman, H. Huisman, N. Karssemeijer, J. Barentsz et al., Automated analysis of contrast enhancement in breast MRI lesions using mean shift clustering for ROI selection, Journal of Magnetic Resonance Imaging, vol.7, issue.3, pp.606-614, 2007.
DOI : 10.1002/jmri.21026

E. Henderson, B. Rutt, and T. Lee, Temporal sampling requirements for the tracer kinetics modeling of breast disease, Magnetic Resonance Imaging, vol.16, issue.9, pp.1057-1073, 1998.
DOI : 10.1016/S0730-725X(98)00130-1

S. Li, A. Makris, M. Beresford, N. Taylor, M. Ah-see et al., Use of Dynamic Contrast-enhanced MR Imaging to Predict Survival in Patients with Primary Breast Cancer Undergoing Neoadjuvant Chemotherapy, Radiology, vol.260, issue.1, pp.68-78, 2011.
DOI : 10.1148/radiol.11102493

S. Li, A. Padhani, N. Taylor, M. Beresford, M. Ah-see et al., Vascular characterisation of triple negative breast carcinomas using dynamic MRI, European Radiology, vol.257, issue.1, pp.1364-1373, 2011.
DOI : 10.1007/s00330-011-2061-2

K. Li, L. Wilmes, R. Henry, M. Pallavicini, J. Park et al., Heterogeneity in the angiogenic response of a BT474 human breast cancer to a novel vascular endothelial growth factor-receptor tyrosine kinase inhibitor: Assessment by voxel analysis of dynamic contrast-enhanced MRI, Journal of Magnetic Resonance Imaging, vol.33, issue.4, pp.511-519, 2005.
DOI : 10.1002/jmri.20387

C. Planey, E. Welch, L. Xu, A. Chakravarthy, J. Gatenby et al., Temporal sampling requirements for reference region modeling of DCE-MRI data in human breast cancer, Journal of Magnetic Resonance Imaging, vol.54, issue.1, pp.121-134, 2009.
DOI : 10.1002/jmri.21812

K. Pinker, G. Grabner, W. Bogner, S. Gruber, P. Szomolanyi et al., A combined high temporal and high spatial resolution 3 Tesla MR imaging protocol for the assessment of breast lesions: initial results, Invest Radiol, issue.9, pp.44553-558, 2009.

P. Tofts, Modeling tracer kinetics in dynamic Gd-DTPA MR imaging, Journal of Magnetic Resonance Imaging, vol.11, issue.1, pp.91-101, 1997.
DOI : 10.1002/jmri.1880070113

H. Daldrup, D. Shames, W. Husseini, M. Wendland, Y. Okuhata et al., Quantification of the extraction fraction for gadopentetate across breast cancer capillaries, Magnetic Resonance in Medicine, vol.28, issue.4, pp.537-543, 1998.
DOI : 10.1002/mrm.1910400406

K. Wasser, H. Sinn, C. Fink, S. Klein, H. Junkermann et al., Accuracy of tumor size measurement in breast cancer using MRI is influenced by histological regression induced by neoadjuvant chemotherapy, Eur Radiol, vol.13, issue.6, pp.1213-1223, 2003.

F. Denis, A. Desbiez-bourcier, C. Chapiron, F. Arbion, G. Body et al., Contrast enhanced magnetic resonance imaging underestimates residual disease following neoadjuvant docetaxel based chemotherapy for breast cancer, European Journal of Surgical Oncology (EJSO), vol.30, issue.10, pp.301069-1076, 2004.
DOI : 10.1016/j.ejso.2004.07.024

A. Rieber, H. Zeitler, H. Rosenthal, J. Gorich, R. Kreienberg et al., MRI of breast cancer: influence of chemotherapy on sensitivity., The British Journal of Radiology, vol.70, issue.833, pp.452-458, 1997.
DOI : 10.1259/bjr.70.833.9227225

C. Kuhl, F. Traber, J. Gieseke, W. Drahanowsky, N. Morakkabati-spitz et al., Whole-Body High-Field-Strength (3.0-T) MR Imaging in Clinical Practice??? Part II. Technical Considerations and Clinical Applications, Radiology, vol.247, issue.1, pp.16-35, 2008.
DOI : 10.1148/radiol.2471061828

J. Connett, J. Smith, and R. Mchugh, Sample size and power for pair-matched case-control studies, Statistics in Medicine, vol.12, issue.1, pp.53-59, 1987.
DOI : 10.1002/sim.4780060107

K. Danishad, U. Sharma, R. Sah, V. Seenu, R. Parshad et al., Assessment of therapeutic response of locally advanced breast cancer (LABC) patients undergoing neoadjuvant chemotherapy (NACT) monitored using sequential magnetic resonance spectroscopic imaging (MRSI), NMR in Biomedicine, vol.54, issue.3, pp.233-241, 2010.
DOI : 10.1002/nbm.1436

S. Park, W. Moon, N. Cho, I. Song, J. Chang et al., Diffusion-weighted MR Imaging: Pretreatment Prediction of Response to Neoadjuvant Chemotherapy in Patients with Breast Cancer, Radiology, vol.257, issue.1, pp.56-63, 2010.
DOI : 10.1148/radiol.10092021