C. Curat, V. Wegner, and C. Sengenes, Macrophages in human visceral adipose tissue: increased accumulation in obesity and a source of resistin and visfatin, Diabetologia, vol.113, issue.4, pp.744-751, 2006.
DOI : 10.1007/s00125-006-0173-z

M. Zeyda, D. Farmer, and J. Todoric, Human adipose tissue macrophages are of an anti-inflammatory phenotype but capable of excessive pro-inflammatory mediator production, International Journal of Obesity, vol.18, issue.9, pp.1420-1428, 2007.
DOI : 10.1038/sj.ijo.0803632

V. Bourlier, A. Zakaroff-girard, and A. Miranville, Remodeling Phenotype of Human Subcutaneous Adipose Tissue Macrophages, Circulation, vol.117, issue.6, pp.806-821, 2008.
DOI : 10.1161/CIRCULATIONAHA.107.724096

URL : https://hal.archives-ouvertes.fr/inserm-00480230

M. Spencer, A. Yao-borengasser, and R. Unal, Adipose tissue macrophages in insulin-resistant subjects are associated with collagen VI and fibrosis and demonstrate alternative activation, AJP: Endocrinology and Metabolism, vol.299, issue.6, pp.1016-1043, 2010.
DOI : 10.1152/ajpendo.00329.2010

X. Prieur, C. Mok, and V. Velagapudi, Differential Lipid Partitioning Between Adipocytes and Tissue Macrophages Modulates Macrophage Lipotoxicity and M2/M1 Polarization in Obese Mice, Diabetes, vol.60, issue.3, pp.797-809, 2011.
DOI : 10.2337/db10-0705

D. Patsouris, P. Li, and D. Thapar, Ablation of CD11c-Positive Cells Normalizes Insulin Sensitivity in Obese Insulin Resistant Animals, Cell Metabolism, vol.8, issue.4, pp.301-310, 2008.
DOI : 10.1016/j.cmet.2008.08.015

J. Hellmann, Y. Tang, and M. Kosuri, Resolvin D1 decreases adipose tissue macrophage accumulation and improves insulin sensitivity in obese-diabetic mice, The FASEB Journal, vol.25, issue.7, 2011.
DOI : 10.1096/fj.10-178657

J. Aron-wisnewsky, J. Tordjman, and C. Poitou, Human Adipose Tissue Macrophages: M1 and M2 Cell Surface Markers in Subcutaneous and Omental Depots and after Weight Loss, The Journal of Clinical Endocrinology & Metabolism, vol.94, issue.11, pp.4619-4642, 2009.
DOI : 10.1210/jc.2009-0925

M. Kovacikova, C. Sengenes, and Z. Kovacova, Dietary intervention-induced weight loss decreases macrophage content in adipose tissue of obese women, International Journal of Obesity, vol.62, issue.1, pp.91-98, 2011.
DOI : 10.1038/nature05894

URL : https://hal.archives-ouvertes.fr/inserm-00492223

N. Kawanishi, H. Yano, Y. Yokogawa, and K. Suzuki, Exercise training inhibits inflammation in adipose tissue via both suppression of macrophage infiltration and acceleration of phenotypic switching from M1 to M2 macrophages in high-fat-diet-induced obese mice, Exerc Immunol Rev, vol.16, pp.105-123, 2010.

G. Yakeu, L. Butcher, and I. S. , Low-intensity exercise enhances expression of markers of alternative activation in circulating leukocytes: Roles of PPAR?? and Th2 cytokines, Atherosclerosis, vol.212, issue.2, pp.668-73, 2010.
DOI : 10.1016/j.atherosclerosis.2010.07.002

S. Devaraj and I. Jialal, C-Reactive Protein Polarizes Human Macrophages to an M1 Phenotype and Inhibits Transformation to the M2 Phenotype ) 397 -402 This study describes a role for CRP in promoting macrophage differentiation toward an M1 phenotype. These data identify a novel pro-inflammatory property of CRP, Arterioscler Thromb Vasc Biol, vol.1, issue.6, 2011.

L. Ma, B. Corsa, and J. Zhou, Angiotensin type 1 receptor modulates macrophage polarization and renal injury in obesity, AJP: Renal Physiology, vol.300, issue.5, 2011.
DOI : 10.1152/ajprenal.00468.2010

E. Sierra-filardi, A. Puig-kroger, and F. Blanco, Activin A skews macrophage polarization by promoting a pro-inflammatory phenotype and inhibiting the acquisition of anti-inflammatory macrophage markers, Blood, 2011.

F. Lovren, Y. Pan, and A. Quan, Adiponectin primes human monocytes into alternative anti-inflammatory M2 macrophages, AJP: Heart and Circulatory Physiology, vol.299, issue.3, pp.656-63, 2010.
DOI : 10.1152/ajpheart.00115.2010

P. Mandal, B. Pratt, and M. Barnes, Molecular Mechanism for Adiponectin-dependent M2 Macrophage Polarization: LINK BETWEEN THE METABOLIC AND INNATE IMMUNE ACTIVITY OF FULL-LENGTH ADIPONECTIN, Journal of Biological Chemistry, vol.286, issue.15, pp.13460-13469, 2011.
DOI : 10.1074/jbc.M110.204644

@. Baitsch, D. Bock, H. Engel, and T. , Apolipoprotein E Induces Antiinflammatory Phenotype in Macrophages This paper reports the ability of apoE to induce the M2 phenotype in vivo, Arterioscler Thromb Vasc Biol, 2011.

A. Miller, D. Asquith, and A. Hueber, Interleukin-33 Induces Protective Effects in Adipose Tissue Inflammation During Obesity in Mice, Circulation Research, vol.107, issue.5, pp.650-658, 2010.
DOI : 10.1161/CIRCRESAHA.110.218867

K. Kohlstedt, C. Trouvain, D. Namgaladze, and I. Fleming, Adipocyte-derived lipids increase angiotensin-converting enzyme (ACE) expression and modulate macrophage phenotype, Basic Research in Cardiology, vol.105, issue.2, pp.205-220, 2011.
DOI : 10.1007/s00395-010-0137-9

@. Wu, D. Molofsky, A. Liang, and H. , Eosinophils Sustain Adipose Alternatively Activated Macrophages Associated with Glucose Homeostasis, Science, vol.332, issue.6026, pp.243-250, 2011.
DOI : 10.1126/science.1201475

E. Lutgens, D. Lievens, and L. Beckers, Deficient CD40-TRAF6 signaling in leukocytes prevents atherosclerosis by skewing the immune response toward an antiinflammatory profile, The Journal of Experimental Medicine, vol.1, issue.2, pp.391-404, 2010.
DOI : 10.1161/CIRCULATIONAHA.106.683201

@. Feig, J. Rong, J. Shamir, and R. , HDL promotes rapid atherosclerosis regression in mice and alters inflammatory properties of plaque monocyte-derived cells, Proc Natl

A. Sci and U. A. , 7166 -71 This is the first study to establish HDL as in vivo regulator of macrophage plasticity in a mouse model of atherosclerosis, 2011.

E. Rigamonti, G. Chinetti-gbaguidi, and B. Staels, Regulation of Macrophage Functions by PPAR-??, PPAR-??, and LXRs in Mice and Men, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.28, issue.6, pp.1050-1059, 2008.
DOI : 10.1161/ATVBAHA.107.158998

J. Huang, J. Welch, and M. Ricote, Interleukin-4-dependent production of PPAR-ligands in macrophages by 12/15 lipoxygenase ?, Nature, vol.400, pp.378-382, 1999.

A. Szanto, B. Balint, and Z. Nagy, STAT6 Transcription Factor Is a Facilitator of the Nuclear Receptor PPAR??-Regulated Gene Expression in Macrophages and Dendritic Cells, Immunity, vol.33, issue.5, pp.699-712, 2010.
DOI : 10.1016/j.immuni.2010.11.009

D. Vats, L. Mukundan, and J. Odegaard, Oxidative metabolism and PGC-1?? attenuate macrophage-mediated inflammation, Cell Metabolism, vol.4, issue.1, pp.13-24, 2006.
DOI : 10.1016/j.cmet.2006.05.011

K. Kang, S. Reilly, and V. Karabacak, Adipocyte-Derived Th2 Cytokines and Myeloid PPAR?? Regulate Macrophage Polarization and Insulin Sensitivity, Cell Metabolism, vol.7, issue.6, pp.485-95, 2008.
DOI : 10.1016/j.cmet.2008.04.002

J. Odegaard, R. -. Gonzalez, R. Goforth, and M. , Macrophage-specific PPAR?? controls alternative activation and improves insulin resistance, Nature, vol.292, issue.7148, pp.1116-1136, 2007.
DOI : 10.1038/nature05894

J. Odegaard, R. -. Gonzalez, R. , R. Eagle, and A. , Alternative M2 Activation of Kupffer Cells by PPAR?? Ameliorates Obesity-Induced Insulin Resistance, Cell Metabolism, vol.7, issue.6, pp.496-507, 2008.
DOI : 10.1016/j.cmet.2008.04.003

C. Marathe, M. Bradley, and C. Hong, Preserved glucose tolerance in high-fat-fed C57BL/6 mice transplanted with PPAR??-/-, PPAR??-/-, PPAR????-/-, or LXR????-/- bone marrow, The Journal of Lipid Research, vol.50, issue.2, pp.214-224, 2009.
DOI : 10.1194/jlr.M800189-JLR200

T. Matsumura, H. Kinoshita, and N. Ishii, Telmisartan Exerts Antiatherosclerotic Effects by Activating Peroxisome Proliferator-Activated Receptor-gamma in Macrophages { }

S. Fujisaka, I. Usui, and Y. Kanatani, Telmisartan Improves Insulin Resistance and Modulates Adipose Tissue Macrophage Polarization in High-Fat-Fed Mice, Endocrinology, vol.152, issue.5, pp.1789-99, 2011.
DOI : 10.1210/en.2010-1312

R. Stienstra, C. Duval, and S. Keshtkar, Peroxisome Proliferator-activated Receptor ?? Activation Promotes Infiltration of Alternatively Activated Macrophages into Adipose Tissue, Journal of Biological Chemistry, vol.283, issue.33, pp.22620-22627, 2008.
DOI : 10.1074/jbc.M710314200

J. Feig, S. Parathath, and J. Rong, Reversal of Hyperlipidemia With a Genetic Switch Favorably Affects the Content and Inflammatory State of Macrophages in Atherosclerotic Plaques, Circulation, vol.123, issue.9, pp.989-98, 2011.
DOI : 10.1161/CIRCULATIONAHA.110.984146

M. Bouhlel, J. Brozek, and B. Derudas, Unlike PPAR??, PPAR?? or PPAR??/?? activation does not promote human monocyte differentiation toward alternative macrophages, Biochemical and Biophysical Research Communications, vol.386, issue.3, pp.459-62, 2009.
DOI : 10.1016/j.bbrc.2009.06.047

J. Ehrchen, L. Steinmuller, and K. Barczyk, Glucocorticoids induce differentiation of a specifically activated, anti-inflammatory subtype of human monocytes, Blood, vol.109, issue.3, pp.1265-74, 2007.
DOI : 10.1182/blood-2006-02-001115

F. Vallelian, C. Schaer, and T. Kaempfer, Glucocorticoid treatment skews human monocyte differentiation into a hemoglobin-clearance phenotype with enhanced heme-iron recycling and antioxidant capacity, Blood, vol.116, issue.24, pp.5347-56, 2010.
DOI : 10.1182/blood-2010-04-277319

D. Patsouris, J. Neels, and W. Fan, Glucocorticoids and Thiazolidinediones Interfere with Adipocyte-mediated Macrophage Chemotaxis and Recruitment, Journal of Biological Chemistry, vol.284, issue.45, pp.31223-31258, 2009.
DOI : 10.1074/jbc.M109.041665

M. Usher, S. Duan, and C. Ivaschenko, Myeloid mineralocorticoid receptor controls macrophage polarization and cardiovascular hypertrophy and remodeling in mice, Journal of Clinical Investigation, vol.120, issue.9, pp.3350-64, 2010.
DOI : 10.1172/JCI41080DS1