
HAL Id: inserm-00617238
https://inserm.hal.science/inserm-00617238

Submitted on 26 Aug 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamical modeling of microRNA action on the protein
translation process.

Andrei Zinovyev, Nadya Morozova, Nora Nonne, Emmanuel Barillot, Annick
Harel-Bellan, Alexander Gorban

To cite this version:
Andrei Zinovyev, Nadya Morozova, Nora Nonne, Emmanuel Barillot, Annick Harel-Bellan, et al..
Dynamical modeling of microRNA action on the protein translation process.. BMC Systems Biology,
2010, 4 (1), pp.13. �10.1186/1752-0509-4-13�. �inserm-00617238�

https://inserm.hal.science/inserm-00617238
https://hal.archives-ouvertes.fr


RESEARCH ARTICLE Open Access

Dynamical modeling of microRNA action on the
protein translation process
Andrei Zinovyev1,2,3*†, Nadya Morozova4†, Nora Nonne4, Emmanuel Barillot1,2,3, Annick Harel-Bellan4,

Alexander N Gorban5,6

Abstract

Background: Protein translation is a multistep process which can be represented as a cascade of biochemical

reactions (initiation, ribosome assembly, elongation, etc.), the rate of which can be regulated by small non-coding

microRNAs through multiple mechanisms. It remains unclear what mechanisms of microRNA action are the most

dominant: moreover, many experimental reports deliver controversial messages on what is the concrete

mechanism actually observed in the experiment. Nissan and Parker have recently demonstrated that it might be

impossible to distinguish alternative biological hypotheses using the steady state data on the rate of protein

synthesis. For their analysis they used two simple kinetic models of protein translation.

Results: In contrary to the study by Nissan and Parker, we show that dynamical data allow discriminating some of

the mechanisms of microRNA action. We demonstrate this using the same models as developed by Nissan and

Parker for the sake of comparison but the methods developed (asymptotology of biochemical networks) can be

used for other models. We formulate a hypothesis that the effect of microRNA action is measurable and

observable only if it affects the dominant system (generalization of the limiting step notion for complex networks)

of the protein translation machinery. The dominant system can vary in different experimental conditions that can

partially explain the existing controversy of some of the experimental data.

Conclusions: Our analysis of the transient protein translation dynamics shows that it gives enough information to

verify or reject a hypothesis about a particular molecular mechanism of microRNA action on protein translation. For

multiscale systems only that action of microRNA is distinguishable which affects the parameters of dominant

system (critical parameters), or changes the dominant system itself. Dominant systems generalize and further

develop the old and very popular idea of limiting step. Algorithms for identifying dominant systems in multiscale

kinetic models are straightforward but not trivial and depend only on the ordering of the model parameters but

not on their concrete values. Asymptotic approach to kinetic models allows putting in order diverse experimental

observations in complex situations when many alternative hypotheses co-exist.

Background

MicroRNAs (miRNAs) are currently considered as key

regulators of a wide variety of biological pathways,

including development, differentiation and oncogenesis.

Recently, remarkable progress was made in understand-

ing of microRNA biogenesis, functions and mechanisms

of action. Mature microRNAs are incorporated into the

RISC effector complex, which includes as a key compo-

nent an Argonaute protein. MicroRNAs affect gene

expression by guiding the RISC complex toward specific

target mRNAs. The exact mechanism of this inhibition

is still a matter of debate. In the past few years, several

mechanisms have been reported, and some of the

reports contradict to each other (for review, see [1-3]).

The inhibition mechanisms include, in particular, the

inhibition of translation initiation (acting at the level of

cap-40S or 40S-AUG-60S association steps), the inhibi-

tion of translation elongation and the premature transla-

tion termination. MicroRNA-mediated mRNA decay

and sequestration of target mRNAs in P-bodies have

been also proposed. Moreover, some microRNAs med-

iate target mRNA cleavage [4], chromatin reorganization
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followed by transcriptional repression or activation [5,6],

or translational activation [7,8].

The most frequently reported, but also much debated,

is the mechanism of gene repression by microRNAs

which occurs at the level of mRNA translation. At this

level, several mode of actions have been suggested (see

Fig. 1). Historically, the first proposed mechanism was

the inhibition of translation elongation. The major argu-

ment supporting this hypothesis was the observation that

the inhibited mRNA remained associated with the poly-

somal fraction (in which mRNAs are associated with

polysomes). This observation was reproduced in different

systems [9-13]. The idea of a post-initiation mechanism

was further supported by the observation that some

mRNAs can be repressed by a microRNA even when

their translation is cap-independent (mRNAs with an

IRES or A-capped) [11,14-16]. Although it was initially

proposed that the ribosomes were somehow “frozen” on

the mRNA, it is important to note that it is difficult to

discriminate experimentally between different potential

post-initiation mechanisms, such as elongation inhibi-

tion, premature ribosome dissociation ("ribosome drop-

off”) or normal elongation but with nascent polypeptide

degradation. The last proposition (this mechanism can

occur in conjunction with the two others) is supported

by the fact that the mRNA-polysomal association is puro-

mycin-sensitive, indicating that it depends on a peptidyl-

transferase activity [13,17]. However, no nascent peptide

has ever been experimentally demonstrated; thus its

degradation would occur extremely rapidly after the

synthesis [10,11,18]. The premature ribosome dissocia-

tion is supported by the decreased read-through of inhib-

ited mRNA [11]. The ribosomal drop-off and/or

ribosomal “slowing” are supported by the slight decrease

in the number of associated ribosomes observed in some

studies [10,13].

Concurrently, several reports have been published indi-

cating an action of microRNAs at the level of initiation.

An increasing number of papers reports that microRNA-

targeted mRNAs shift towards the light fractions in poly-

somal profiles [18-20]. This shows a decrease of mature

translating ribosomes, suggesting that microRNAs act at

the initiation step. Moreover, several reports show that

microRNA-mediated inhibition is relieved when transla-

tion is driven by a cap-independent mechanism such as

IRES-mRNA or A-capped-mRNA [18,20,21]. This obser-

vation was confirmed in several in-vitro studies [22-25].

In particular, in one of those, an excess of eIF4F could

relieve the inhibition, and the inhibition led to the

decreased 80S in the polysomal gradient [22].

Most of the data indicating a shift towards the light

polysomal fraction or the requirement for a cap-

dependent translation are often interpreted in favour of

involvement of microRNAs at early steps of translation,

i.e., cap binding and 40S recruitment. However, some of

them are also compatible with a block at the level of

60S subunit joining. This hypothesis is also supported

by in-vitro experiments showing a lower amount of 60S

relative to 40S on inhibited mRNAs. Moreover, toe-

printing experiments show that 40S is positioned on the

AUG [26]. Independently, it was shown that eIF6, an

inhibitor of 60S joining, is required for microRNA

action [27], but this was in contradiction with other

studies [2].

Thus, the data on the exact step of translational inhi-

bition are clearly contradictory . Taking also into

account the data about mRNA degradation and P-

bodies localization, it is difficult to draw a clear picture

of the situation, and the exact mechanism by which

microRNA represses mRNA expression is highly con-

troversial, not mentioning the interrelations between

the different mechanisms and their possible concomi-

tant action. Several attempts to integrate the different

hypotheses have been made [1-3,28-30]. For example,

it was proposed that one mechanism could act as a

“primary” effect, and the other as a “secondary”

mechanism, either used to reinforce the inhibition or
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Figure 1 Interaction of microRNA with protein translation

process. Four mechanisms of translation repression which are

considered in the mathematical modeling are indicated: 1) on the

initiation process, preventing assembling of the initiation complex;

2) on a late initiation step, such as searching for the start codon; 3)

on the ribosome assembly; 4) on the translation process. There exist

other mechanisms of microRNA action on protein translation

(transcriptional, transport to P-bodies, ribosome drop-off, co-

translational protein degradation and others) that are not

considered in this paper. Here 40S and 60S are light and heavy

components of the ribosome, 80S is the assembled ribosome

bound to mRNA, eIF4F is an translation initiation factor, PABC1 is

the Poly-A binding protein, “cap” is the mRNA cap structure needed

for mRNA circularization, RISC is the RNA-induced silencing complex.
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as a back-up mechanism. In others, the different

mechanisms could all coexist, but occur differentially

depending on some yet unidentified characteristics. For

example, it has been observed than the same mRNA

targeted by the same microRNA can be regulated

either at the initiation or the elongation step depend-

ing on the mRNA promoter and thus on the mRNA

nuclear history [31]. It was also proposed that techni-

cal (experimental) problems, including the variety of

experimental systems used, may also account for these

discrepancies [1-3]. However, this possibility does not

seem to be sufficient to provide a simple and convin-

cing explanation to the reported discrepancies.

A possible solution to exploit the experimental obser-

vations and to provide a rational and straightforward

data interpretation is the use of mathematical models

for microRNA action on protein translation. For many

years, the process of protein synthesis is a subject of

mathematical modeling with use of various approaches

from chemical kinetics and theoretical physics. Many of

the models created consider several stages of translation,

however, most of them concentrate on the elongation

and termination processes. In [32-34], a non-equilibrium

statistical physics description of protein synthesis was

proposed. Models taking into account gene sequence

were developed in [33,35-37]. These models can predict

the probability of that a ribosome will completely termi-

nate a transcript, spatio-temporal organization of

ribosomes in polysome, dependence of the protein

synthesis rate on various factors, such as presence of

slow synonymous codons in the gene sequence [33,37]

and the frequency of non-sense errors [35]. Several

models of the effect of microRNA on protein translation

were proposed. Thus, in [38] the authors tried to deter-

mine which inhibition mechanism (via translation

repression or transcript degradation) is the most abun-

dant in mammalian cells using Bayesian modeling and

microarray data. Quantitative features of sRNA-

mediated gene regulation were considered in [39]. A

simple kinetic model of microRNA-mediated mRNA

degradation was proposed in [40] and compared to a

temporal microarray dataset.

In this paper we will analyze two simple models of

microRNA action on protein translation developed

recently by Nissan and Parker [41]. They studied the

microRNA-dependent steady states rates of protein

synthesis [41] and provided a critical analysis for the

experiments with alternative mRNA cap structures and

IRES elements [22,23,25]. This analysis led to a possible

explanation of the conflicting results. The authors sug-

gested that the relief of translational repression upon

replacement of the cap structure can be explained if

microRNA is acting on a step which is not rate-limiting

in the modified system, in which case, the effect of

microRNA can simply not be observed. It was claimed

that it is impossible to discriminate between two alter-

native interpretations of the biological experiments with

cap structure replacement, using sole monitoring of the

steady state level of protein synthesis [41].

Two remarks can be made in this regard. Firstly, in

practice not only the steady state level of protein can be

observed but also other dynamical characteristics, such

as the relaxation time, i.e. the time needed to achieve

the steady state rate after a perturbation (such as

restarting the translation process). We argue that having

these measurements in hands, one can distinguish

between two alternative interpretations. In this paper we

provide such a method from the same models as con-

structed by Nissan and Parker, for comparison purposes.

However, the method applied can be easily generalized

for other models.

Secondly, even in the simple non-linear model of pro-

tein translation, taking into account the recycling of

ribosomal components, it is difficult to define what is

the rate limiting step. It is known from the theory of

asymptotology of biochemical networks [42] that even

in complex linear systems the “rate limiting place”

notion is not trivial and cannot be reduced to a single

reaction step. Moreover, in non-linear systems the “rate

limiting place” can change with time and depend on the

initial conditions. Hence, conclusions of [41] should be

re-considered for the non-linear model, made more pre-

cise and general. The notion of rate limiting step should

be replaced by the notion of dominant system.

In this paper we perform careful analysis of the Nissan

and Parker’s models and provide their approximate ana-

lytical solutions, which allows us to generalize the

conclusions of [41] and make new checkable predictions

on the identifiability of active mechanism of microRNA-

dependent protein translation inhibition.

The paper is organized in the following way. The

Methods contain introduction, all necessary definitions

and basic results of the asymptotology of biochemical

reaction networks (quasiequilibrium, quasi steady-state,

limiting step and dominant system asymptotics), used

further in the Results. The Methods section is deliber-

ately made rather detailed to make the reading self-

sufficient. These details are necessary for reproducing

the analytical calculations but not for understanding the

interpretation of the modeling results. When the most

important notions are introduced (such as dominant

system, critical parameters), they are emphasized in

bold. The Results section starts with listing model

assumptions, followed by deriving semi-analytical solu-

tions of Nissan and Parker’s model and interpretation of

the analysis results and prediction formulations. For

those readers who are interested only in the applied

aspect of this work, it is possible to skip the details of
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deriving the analytical solutions and start reading from

the “Model assumptions” section, look at the definition

of the model parameters and variables and continue

with ‘the ‘Effect of microRNA on the translation

dynamics” section.

Results

Model assumptions

We consider two models of action of microRNA on

protein translation process proposed in [41]: the sim-

plest linear model, and the non-linear model which

explicitly takes into account recycling of ribosomal sub-

units and initiation factors.

Both models, of course, are significant simplifications

of biological reality. Firstly, only a limited subset of all

possible mechanisms of microRNA action on the

translation process is considered (see Fig. 1). Secondly,

all processes of synthesis and degradation of mRNA

and microRNA are deliberately neglected. Thirdly,

interaction of microRNA and mRNA is simplified: it is

supposed that when microRNA is added to the experi-

mental system then only mRNA with bound micro-

RNAs are present (this also assumes that the

concentration of microRNA is abundant with respect

to mRNA). Concentrations of microRNA and mRNA

are supposed to be constant. Interaction of only one

type of microRNA and one type of mRNA is consid-

ered (not a mix of several microRNAs). The process of

initiation is greatly simplified: all initiation factors are

represented by only one molecule which is marked as

eIF4F.

Finally, the classical chemical kinetics approach is

applied, based on solutions of ordinary differential

equations, which supposes sufficient and well-stirred

amount of both microRNAs and mRNAs. Another

assumption in the modeling is the mass action law

assumed for the reaction kinetic rates.

It is important to underline the interpretation of cer-

tain chemical species considered in the system. The ribo-

somal subunits and the initiation factors in the model

exist in free and bound forms, moreover, the ribosomal

subunits can be bound to several regions of mRNA (the

initiation site, the start codon, the coding part). Impor-

tantly, several copies of fully assembled ribosome can be

bound to one mRNA. To model this situation, we have

to introduce the following quantification rule for chemi-

cal species: amount of “ribosome bound to mRNA”

means the total number of ribosomes translating pro-

teins, which is not equal to the number of mRNAs with

ribosome sitting on them, since one mRNA can hold sev-

eral translating ribosomes (polyribosome). In this view,

mRNAs act as places or catalyzers, where translation

takes place, whereas mRNA itself formally is not con-

sumed in the process of translation, but, of course, can

be degraded or synthesized (which is, however, not con-

sidered in the models described further).

The simplest linear protein translation model

The simplest representation of the translation process

has the form of a circular cascade of reactions [41] (see

Fig. 2).

The list of chemical species in the model is the

following:

1. 40S, free small ribosomal subunit.

2. mRNA:40S, small ribosomal subunit bound to the

initiation site.

Figure 2 The simplest model of microRNA action on the protein translation. The simplest model of microRNA action on the protein

translation, represented with use of Systems Biology Graphical Notation (a) and schematically with the condition on the constants (b). The two

mechanisms of microRNA action (cap-dependent and cap-independent) are depicted.

Zinovyev et al. BMC Systems Biology 2010, 4:13

http://www.biomedcentral.com/1752-0509/4/13

Page 4 of 24



3. AUG, small ribosomal subunit bound to the start

codon.

The catalytic cycle is formed by the following

reactions:

1. 40S ® mRNA:40S, Initiation complex assembly

(rate k1).

2. mRNA:40S ® AUG, Some late and cap-indepen-

dent initiation steps, such as scanning the 5’UTR for the

start AUG codon recognition (rate k2) and 60S riboso-

mal unit joining.

3. AUG ® 40S, combined processes of protein elonga-

tion and termination, which leads to production of the

protein (rate k3), and fall off of the ribosome from mRNA.

The model is described by the following system of

equations [41]:

d S t

dt
k S k AUG

d mRNA S t

dt
k S k mR
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where Prsynth(t) is the rate of protein synthesis.

Following [41], let us assume that k3 >>k1, k2. This

choice was justified by the following statement: “...The

subunit joining and protein production rate (k3) is faster

than k1 and k2 since mRNA:40S complexes bound to

the AUG without the 60S subunit are generally not

observed in translation initiation unless this step is

stalled by experimental methods, and elongation is gen-

erally thought to not be rate limiting in protein synth-

esis...” [41].

Under this condition, the equations (1) have the fol-

lowing approximate solution (which becomes the more

exact the smaller the
k k
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for the initial condition
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From the solution (2) it follows that the dynamics of

the system evolves on two time scales: 1) fast elongation

dynamics on the time scale ≈ 1/k3; and 2) relatively slow

translation initiation dynamics with the relaxation time

t rel k k
 

1
1 2

. The protein synthesis rate formula (3)

does not include the k3 rate, since it is neglected with

respect to k1, k2 values. From (3) we can extract the for-

mula for the protein synthesis steady-state rate Prsynth

(multiplier before the parentheses) and the relaxation

time trel for it (inverse of the exponent power):

Prsynth
S

k k

t
k k

rel





[ ]
,

40 0
1

1

1

2

1

1 2 (5)

Now let us consider two experimental situations: 1)

the rates of the two translation initiation steps are com-

parable k1 ≈ k2; 2) the cap-dependent rate k1 is limiting:

k1 <<k2. Accordingly to [41], the second situation can

correspond to modified mRNA with an alternative cap-

structure, which is much less efficient for the assembly

of the initiation factors, 40S ribosomal subunit and

polyA binding proteins.

For these two experimental systems (let us call them

“wild-type” and “modified” correspondingly), let us study

the effect of microRNA action. We will model the

microRNA action by diminishing the value of a kinetic

rate coefficient for the reaction representing the step on

which the microRNA is acting. Let us assume that there

are two alternative mechanisms: 1) microRNA acts in a

cap-dependent manner (thus, reducing the k1 constant)

and 2) microRNA acts in a cap-independent manner,

for example, through interfering with 60S subunit join-

ing (thus, reducing the k2 constant). The dependence of

the steady rate of protein synthesis
Prsynth

k k

~ 1
1
1

1
2



and the relaxation time t rel k k
 

1
1 2

on the efficiency of

the microRNA action (i.e., how much it is capable to

diminish a rate coefficient) is shown on Fig. 3.

Interestingly, experiments with cap structure replace-

ment were made and the effect of microRNA action on

the translation was measured [22,23]. No change in the

protein rate synthesis after applying microRNA was
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observed. From this it was concluded that microRNA in

this system should act through a cap-dependent mechan-

ism (i.e., the normal “wild-type” cap is required for

microRNA recruitment). It was argued that this could be

a misinterpretation [41] since in the “modified” system,

cap-dependent translation initiation is a rate limiting

process (k1 <<k2), hence, even if microRNA acts in the

cap-independent manner (inhibiting k2), it will have no

effect on the final steady state protein synthesis rate. This

was confirmed this by the graph similar to the Fig. 3a.

From the analytical solution (2) we can further

develop this idea and claim that it is possible to detect

the action of microRNA in the “modified” system if one

measures the protein synthesis relaxation time: if it sig-

nificantly increases then microRNA probably acts in the

cap-independent manner despite the fact that the steady

state rate of the protein synthesis does not change (see

the Fig. 3b). This is a simple consequence of the fact that

the relaxation time in a cycle of biochemical reactions is

limited by the second slowest reaction (see [42] or the

“Dominant system for a simple irreversible catalytic

cycle with limiting step” section in Methods). If the

relaxation time is not changed in the presence of micro-

RNA then we can conclude that none of the two alter-

native mechanisms of microRNA-based translation

repression is activated in the system, hence, microRNA

action is dependent on the structure of the “wild-type”

transcript cap.

The observations from the Fig. 3 are recapitulated in

the Table 1. This analysis (of course, over-simplified in

many aspects) provides us with an important lesson:

observed dynamical features of the translation process

with and without presence of microRNA can give clues

on the mechanisms of microRNA action and help to

distinguish them in a particular experimental situation.

Theoretical analysis of the translation dynamics high-

lights what are the important characteristics of the

dynamics which should be measured in order to infer

the possible microRNA mechanism.

This conclusion suggests the notion of a kinetic sig-

nature of microRNA action mechanism which we

define as the set of measurable characteristics of the

translational machinery dynamics (features of time series

for protein, mRNA, ribosomal subunits concentrations)
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Figure 3 Predicted change in the steady-state rate of protein synthesis and its relaxation time. Graphs illustrating the predicted change

in the steady-state rate of protein synthesis (left), and its relaxation time, i.e., the time needed to recover from a perturbation to the steady state

value (right). Four curves are presented. The black ones are for the wild-type cap structure, which is modeled by k1 = k2. The red ones are for

the modified structure, when k1 <<k2. The main conclusion from the left graph is that if microRNA acts on a late initiation step, diminishing k2,

then its effect is not measurable unless k2 is very strongly suppressed (as reported in [41]). The main conclusion from the right graph is that the

effect of microRNA can be measurable in this case if one looks at dynamical features such the relaxation time.

Table 1 Modeling two mechanisms of microRNA action in the simplest linear model

Observable value Initiation(k1) Step after initiation, cap-independent(k2) Elongation (k3)

Wild-type cap

Steady-state rate decreases decreases no change

Relaxation time increases slightly increases slightly no change

A-cap

Steady-state rate decreases no change no change

Relaxation time no change increases drastically no change

MicroRNA action effect is described for the protein synthesis steady rate and the relaxation time. It is assumed that the ribosome assembly+elongation step in

protein translation, described by the k3 rate constant, is not rate limiting.
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and the predicted tendencies of their changes as a

response to microRNA action through a particular bio-

chemical mechanism.

The non-linear protein translation model

To explain the effect of microRNA interference with

translation initiation factors, a non-linear version of the

translation model was proposed [41] which explicitly

takes into account recycling of initiation factors (eIF4F)

and ribosomal subunits (40S and 60S).

The model contains the following list of chemical spe-

cies (see also Fig. 4):

1. 40S, free 40S ribosomal subunit.

2. 60S, free 60S ribosomal subunit.

3. eIF4F, free initiation factor.

4. mRNA:40S, formed initiation complex (containing

40S and the initiation factors), bound to the initiation

site of mRNA.

5. AUG, initiation complex bound to the start codon

of mRNA.

6. 80S, fully assembled ribosome translating protein.

There are four reactions in the model, all considered

to be irreversible:

1. 40S + eIF4F ® mRNA:40S, assembly of the initia-

tion complex (rate k1).

2. mRNA:40S ® AUG, some late and cap-indepen-

dent initiation steps, such as scanning the 5’UTR by for

the start codon AUG recognition (rate k2).

3. AUG ® 80S, assembly of ribosomes and protein

translation (rate k3).

4. 80S ® 60S+40S, recycling of ribosomal subunits

(rate k4).

The model is described by the following system of

equations [41]:

d S

dt
k S eIF F k S

d eIF F

dt
k S eIF F

[ ]
[ ][ ] [ ]

[ ]
[ ][ ]
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40 4 80

4
40 4

1 4

1

  

  

 



k mRNA S

d mRNA S

dt
k S eIF F

k mRNA S

d

2

1
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40
40 4
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[ : ]

[ : ]
[ ][ ]

[ : ]

[AAUG

dt
k mRNA S k AUG S

d S

dt
k AUG S k

]
[ : ] [ ][ ]
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60 [[ ]

[ ]
[ ][ ] [ ]
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3

S

d S

dt
k AUG S k S

Prsynth t k AUG S

 




























(6)

where [40S] and [60S] are the concentrations of free

40S and 60S ribosomal subunits, [eIF4F] is a concentra-

tion of free translation initiation factors, [mRNA : 40S]

is the concentration of 40S subunit bound to the initia-

tion site of mRNA, [AUG] is the concentration of the

initiation complex bound to the start codon, [80S] is the

concentration of ribosomes translating protein, and

Prsynth is the rate of protein synthesis.

The model (6) contains three independent conserva-

tions laws:

[ : ] [ ] [ ] [ ] [ ] ,mRNA S S AUG S S40 40 80 40 0    (7)

[ : ] [ ] [ ] ,mRNA S eIF F eIF F40 4 4 0  (8)

[ ] [ ] [ ] ,60 80 60 0S S S  (9)

Figure 4 Non-linear model of microRNA action on the protein translation. Non-linear model of microRNA action on the protein translation,

represented with use of Systems Biology Graphical Notation (a) and schematically with the condition on the constants (b). The difference from

the simplest model (Fig. 2) is in the explicit description of initiation factors eIF4F, and ribosomal subunits 40S and 60S recycling.
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The following assumptions on the model parameters

were suggested in [41]:

k k k k k k k

eIF F S eIF F S

4 1 2 3 3 1 2

0 0 0 04 40 4 60 40

 
  

, , ; ,

[ ] [ ] ;[ ] [ ] [ SS]0

(10)

with the following justification: “...The amount 40S ribo-

somal subunit was set arbitrarily high ... as it is thought to

generally not be a limiting factor for translation initiation.

In contrast, the level of eIF4F, as the canonical limiting

factor, was set significantly lower so translation would be

dependent on its concentration as observed experimen-

tally... Finally, the amount of subunit joining factors for

the 60S large ribosomal subunit were estimated to be

more abundant than eIF4F but still substoichiometric

when compared to 40S levels, consistent with in vivo

levels... The k4 rate is relatively slower than the other rates

in the model; nevertheless, the simulation’s overall protein

production was not altered by changes of several orders of

magnitude around its value...” [41].

Notice that further in our paper we show that the last

statement about the value of k4 is needed to be made

more precise: in the model by Nissan and Parker, k4 is a

critical parameter (see “Asymptotology and dynamical

limitation theory for biochemical reaction networks”

section in Methods). It does not affect the steady state

protein synthesis rate only in one of the possible scenar-

ios (inefficient initiation, deficit of the initiation factors).

Steady state solution

The final steady state of the system can be calculated

from the conservation laws and the balance equations

among all the reaction fluxes:

k mRNA S k AUG S

k S k S eIF

s s s

s s

2 3

4 1

40 60

80 40 4

    
    

[ : ] [ ] [ ]

[ ] [ ] [ FF s]
(11)

where “s” index stands for the steady state value. Let

us designate a fraction of the free [60S] ribosomal subu-

nit in the steady state as x
S s
S

 [ ]
[ ]
60
60 0

. Then we have

[ : ] [ ] ( )

[ ] ,

[ ]

mRNA S
k

k
S x

AUG
k

k

x

x
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s

s

s

40 4

2
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4

3
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4

0 

 
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2
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60 60 80 60 1
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 

   )),

[ ] [ ] [ ] ( )( )40 40 60 1 1 4
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0 0S S S x
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k

k

k

x

x

s     

 





(12)

and the equation to determine x, in which we have

neglected the terms of smaller order of magnitude,

based on conditions (10):

x x

x

k

k S

3 2 1 1

1 1 1 0

2

1 60

     
       



( ( ) ( ))

( ( )( )) ( ) ,

[

  
    


]]

,
[ ]

[ ]
,

[ ]
,

[ ]

[ ]
.

0

4 0 2
60 0 4

4

3 60 0

40 0
60 0

 


 



eIF F k

S k

k

k S

S

S

(13)

From the inequalities on the parameters of the model,

we have δ > 1, g << 1 and, if k1 >>k4/[eIF4F]0 then

a << b. From these remarks it follows that the constant

term g(1 -b) of the equation (13) should be much smal-

ler than the other polynomial coefficients, and the equa-

tion (13) should have one solution close to zero and

two others:

x
k

k S S

x
eIF F k

S k

0

1

4

3 40 0 60 0

1 1
4 0 2

60 0 4


 

  


  



([ ] [ ]
,

[ ]

[ ]
 

 
kk eIF F

k k S eIF F k

S k

x
S

2
2 4 0

1 4 40 0

1

1
4 0 2

40 0 4

1
40 0
60

2

[ ]

[ ] [ ]

[ ]

,

[ ]

[



 
SS]

,
0

(14)

provided that a << |1 - δ| or a << |1 - b|. In the

expression for x1 we cannot neglect the term propor-

tional to a, to avoid zero values in (13).

The solution x2 is always negative, which means that

one can have one positive solution x0 << 1 if

[ ]
[ ]
eIF F k

S k

4 0 2
60 0 4

1 and two positive solutions x0 and x1 if

[ ]
[ ]
eIF F k

S k

4 0 2
60 0 4

1 . However, from (12), (14) and (10) it is

easy to check that if x1 > 0 then x0 does not correspond

to a positive value of [eIF4F]s. This means that for a

given combination of parameters satisfying (10) we can

have only one steady state (either x0 or x1).

The two values x = x0 and x = x1 correspond to two

different modes of translation. When, for example, the

amount of the initiation factors [eIF4F]0 is not enough

to provide efficient initiation ( [ ]
[ ]

eIF F
k

S k
4 0

2
60 0 4

 ,

x = x1) then most of the 40S and 60S subunits remain

in the free form, the initiation factor [eIF4F] being

always the limiting factor. If the initiation is efficient
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enough ([ ]
[ ]

)eIF F
k

S k
4 0

2
60 0 4

 , then we have x = x0 << 1

when almost all 60S ribosomal subunits are engaged in

the protein elongation, and [eIF4F] being a limiting factor

at the early stage, however, is liberated after and riboso-

mal subunits recycling becomes limiting in the initiation

(see the next section for the analysis of the dynamics).

Let us notice that the steady state protein synthesis

rate under these assumptions is

Prsynth k S x

k S if
eIF F k

S k

k

   


 

4 0

4 0

60 1

60
4 0 2

60 0 4
1

[ ] ( )

[ ] ,
[ ]

[ ]
 

22 04





 [ ] ,

.

eIF F else 

(15)

This explains the numerical results obtained in [41]:

with low concentrations of [eIF4F]0 microRNA action

would be efficient only if it affects k2 or if it competes

with eIF4F for binding to the mRNA cap structure

(thus, effectively further reducing the level [eIF4F]0)

With higher concentrations of [eIF4F]0, other limiting

factors become dominant: [60S]0 (availability of the

heavy ribosomal subunit) and k4 (speed of ribosomal

subunits recycling which is the slowest reaction rate in

the system). Interestingly, in any situation the protein

translation rate does not depend on the value of k1
directly (of course, unless it does not become “glob-

ally” rate limiting), but only through competing with

eIF4F (which makes the difference with the simplest

linear protein translation model).

Equation (15) explains also some experimental results

reported in [22]: increasing the concentration of [eIF4F]

translation initiation factor enhances protein synthesis

but its effect is abruptly saturated above a certain level.

It would be interesting to make some conclusions on

the shift of the polysomal profile from the steady state

solutions (14). In this model, the number of ribosomes

sitting on mRNA Npolysome is defined by

N polysome
S

mRNA
 [ ]

[ ]
,

80
where [mRNA] is the concentration

of mRNA. However, [mRNA] is not an explicit dynami-

cal variable in the model, it is implicitly included in

other model constants, such as k1, together with the

effective volume of cytoplasmic space considered in the

model. Nevertheless, the model can predict the relative

shift of the polysome profile. In the steady state

N x

k S if
eIF F k

S k

k eIF F

polysome ~

[ ] ,
[ ]

[ ]

[ ]

1

60
4 0 2

60 0 4
1

4 0

4 0

2

 


 

 ,, else









(16)

and Npolysome changes in the same way as the protein

synthesis steady state value.

Analysis of the dynamics

It was proposed to use the following model parameters

in [41]: k1 = k2 = 2, k3 = 5, k4 = 1, [40S]0 = 100, [60S]0
= 25, [eIF4F]0 = 6. As we have shown in the previous

section, there are two scenarios of translation possible

in the Nissan and Parker’s model which we called “effi-

cient” and “inefficient” initiation. The choice between

these two scenarios is determined by the critical combi-

nation of parameters   [ ]
[ ]
eIF F k

S k

4 0 2
60 0 4

. For the original

parameters from [41], b = 0.48 < 1 and this corresponds

to the simpler one-stage “inefficient” initiation scenario.

To illustrate the alternative situation, we changed the

value of k4 parameter, putting it to 0.1, which makes b

= 4.8 > 1. The latter case corresponds to the “efficient”

initiation scenario, the dynamics is more complex and

goes in three stages (see below).

Simulations of the protein translation model with

these parameters and the initial conditions
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(17)

are shown on the Fig. 5. The system shows non-trivial

relaxation process which takes place in several epochs.

Qualitatively we can distinguish the following stages:

1) Stage 1: Relatively fast relaxation with conditions

[40S] >> [eIF4F], [60S] >> [AUG]. During this stage, the

two non-linear reactions 40S + eIF4F ® mRNA : 40S and

AUG + 60S ® 80S can be considered as pseudo-mono-

molecular ones: eIF4F ® mRNA : 40S and AUG ® 80S

with rate constants dependent on [40S] and [60S] respec-

tively. This stage is characterized by rapidly establishing

quasiequilibrium of three first reactions (R1, R2 and R3

with k1, k2 and k3 constants). Biologically, this stage cor-

responds to assembling of the translation initiation

machinery, scanning for the start codon and assembly of

the first full ribosome at the start codon position.

2) Transition between Stage 1 and Stage 2.

3) Stage 2: Relaxation with the conditions [40S] >>

[eIF4F], [60S] << [AUG]. During this stage, the reactions

40S + eIF4F ® mRNA : 40S and AUG + 60S ® 80S can

be considered as pseudo-monomolecular eIF4F ®

mRNA : 40S and 60S ® 80S. This stage is characterized

by two local quasi-steady states established in the two

network reaction cycles (formed from R1-R2 and R3-R4
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reactions). Biologically, this stage corresponds to the

first round of elongation, when first ribosomes moves

along the coding region of mRNA. The small ribosomal

subunit 40S is still in excess which keeps the initiation

stage (reaction R1-R2 fluxes) relatively fast.

4) Transition between Stage 2 and Stage 3.

5) Stage 3: Relaxation with the conditions [40S] <<

[eIF4F], [60S] << [AUG]. During this stage, the reactions

40S + eIF4F ® mRNA : 40S and AUG + 60S ® 80S can

be considered as pseudo-monomolecular 40S ® mRNA :

40S and 60S ® 80S. During this stage all reaction fluxes

are balanced. Biologically, this stage corresponds to the

stable production of the protein with constant recycling

of the ribosomal subunits. Most of ribosomal subunits

40S are involved in protein elongation, so the initiation

process should wait the end of elongation for that they

would be recycled.

Stages 1-3 can be associated with the corresponding

dominant systems [42] which are shown on Fig. 6.

Below we give a more detailed analysis of stages 1-3 and

transitions between them.

Stage 1: translation initiation and assembly of the first

ribosome at the start codon

The dominant system of the Stage 1 (Fig. 6a) can be

modeled as a linear system of equations (notice that it is

not equivalent to the system of equations that would

correspond to fully monomolecular reaction network

because the reaction R2 is still bimolecular despite the

fact that the products of this reaction do not interact,

which leads to the linear description):

d eIF F

dt
k eIF F k mRNA S

d mRNA S

dt
k eIF F
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(18)

where k1 = k1 · [40S], k3 = k3 · [60S] and we con-

sider that at this stage the changes of 40S and 60S are
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Figure 5 Simulation of the non-linear protein translation model. Simulation of the non-linear protein translation model with parameters k1
= 2, k2 = 2, k3 = 5, k4 = 0.1, [40S]0 = 100, [60S]0 = 25, [eIF4F]0 = 6. a) and b) chemical species concentrations at logarithmic and linear scales; c)

and d) reaction fluxes at logarithmic and linear scales. By the dashed line several stages are delimited during which the dynamics can be

considered as (pseudo-)linear. To determine where “>>“ and “<<” conditions are violated, we arbitrarily consider “much bigger” or “much

smaller” as difference in one order of magnitude (by factor 10).
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relatively slow. This system has simple approximate

solution, taking into account constraints on the para-

meters k2 << k1 , k3 ; k4 << k1 , k3 , k2, also assuming k2

<< | k1 - k3 |, and for the initial condition
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From this solution, one can conclude that the relaxa-

tion of this model goes at several time scales (very rapid

~ min(1/ k3 , 1/ k1 ) and slow ~1/k4) and that when

eIF4F, mRNA:40S and AUG already reached their qua-

siequilibrium values, [80S] continues to grow. This cor-

responds to the quasiequilibrium approximation

asymptotics (see the “Quasi steady-state and quasiequili-

brium asymptotics” section of the Methods). At some

point 80S will reach such a value that it would be not

possible to consider 60S constant: otherwise the conser-

vation law (9) will be violated. This will happen

when [80S] << [60S] condition is not satisfied anymore,

i.e., following our convention to consider “much smal-

ler” as difference in one order of magnitude, at

  t
S

eIF F k
~

[ ]
[ ]

60 0
10 4 0 2

. The same consideration is applicable

for another conservation law (7) in which [80S] is

included, but from the time point   
t

S

eIF F

k
~

[ ]

[ ]

40 0
10 4 0

1

2

.

From [40S]0 >> [eIF4F]0 and [40S]0 > [60S]0 we have

min(t’, t”) = t’. This means that the parameters [40S],

[60S] of the (local) steady states for [eIF4F] and [AUG]

should slowly (at the same rate as [80S]) change from

the time point t’ (variable [mRNA: 40S] does not change

because its local steady state does not depend on [40S],

[60S]). In other words, after t = t’ the Stage 1 solution

(20) should be prolonged as

[ ]( )
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,
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00 0 80S S t] [ ]( ))

.


(21)

From these equations, one can determine the effective

duration of the Stage 1: by definition, it will be finished

when one of the two conditions ([40S] >> [eIF4F], [60S]

>> [AUG]) will be violated, which happens at times ~

[ ]
[ ]
40 0

2 4 0

S

k eIF F and ~
[ ]
[ ]
60 0

2 4 0

S

k eIF F correspondingly, hence,

the second condition will be violated first (from [60S]0 <

[40S]0).

Stage 2: first stage of protein elongation, initiation

is still rapid

The Stage 2 is characterized by conditions [eIF4F] <<

[40S], [60S] << [AUG]. This fact can be used for deriv-

ing the quasi-steady state approximation: we assume

Figure 6 Dominant systems for three stages of relaxation. Dominant systems for three stages of relaxation of the model (6). Stage 1) The

dominant system is a pseudo-linear network of reactions. Stage 2) The dominant system is a quasi-steady state approximation, where one

supposes that the fluxes in two network cycles are balanced. Stage 3) The dominant system is a pseudo-linear network of reactions.
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that the reaction fluxes in two network cycles (R1-R2

and R3-R4) are independently balanced:

k S eIF F k mRNA S

k AUG S k S

1 2

3 4

40 4 40

60 80

[ ] [ ] [ : ],

[ ] [ ].

 
 

(22)

Then (6) is simplified and, using the conservation

laws, we have a single equation on [40S]:

d S t

dt

k eIF F S t

k

k
S t

k S A[ ]( ) [ ] [ ]( )

[ ]( )

[ ] ( [40 2 4 0 40

2

1
40

4 60 0  


  440

4

3
40

S t

k

k
A S t

]( ))

[ ]( )
,

  (23)

where A = [40S](t) + [AUG](t) is a constant quantity

conserved accordingly to the quasi-steady state approxima-

tion (see “Quasi steady-state and quasiequilibrium asymp-

totics” section of Methods). Equation (23) can be already

integrated but let us further simplify it for our analysis.

Having in mind k4 <<k3 and assuming that at the beginning

of the Stage 2 [AUG] >>
k

k
4
3
, we can simplify (23) to

d S t

dt

k eIF F S t

k

k
S t

k S
[ ]( ) [ ] [ ]( )

[ ]( )
[ ] ,

40 2 4 0 40

2

1
40

4 60 0  




(24)

and, further, assuming that at the beginning of the Stage

2 we have [40S] >> [AUG] let us approximate the right-

hand side of the equation by a piecewise-linear function

d S t

dt

k eIF F

k

k
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S t t
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where [40S]|t=t” is the amount of 40S at the beginning

of the Stage 2. Then the descent of [40S](t) can be sepa-

rated into linear and exponential phases:
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where K1, K2 are linear and exponential slopes and [40S]

s2 is the quasi-steady state value of [40S] at the end of the

Stage 2:
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Other dynamic variables are expressed through [40S]

(t) as
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At some point, the amount of free small ribosomal

subunit 40S, which is abundant at the beginning of

the Stage 2, will not be sufficient to support rapid trans-

lation initiation. Then the initiation factor eIF4F will

not be the limiting factor in the initiation and the con-

dition [40S] >> [eIF4F] will be violated. We can esti-

mate this time as   t
S

k eIF F

[ ]
[ ]
40 0

2 4 0
.

Stage 3: steady protein elongation, speed of initiation

equals to speed of elongation

During the Stage 3 all fluxes in the network become

balanced and the translation arrives at the steady state.

From Fig. 6 it is clear that the relaxation goes indepen-

dently in the cycle R3 - R4, where the relaxation equa-

tions are simply
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e

s t t s

k k AUG t

   


 

   tt t t

S t S S t

)( ),

[ ]( ) [ ] [ ] ( ).

 

 80 60 600 0

(29)
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where t"’ is the time when the Stage 3 of the relaxa-

tion starts. This relaxation goes relatively fast, since k3
[AUG]|t=t’’’ is relatively big. So, during the Stage 3, one

can consider the cycle R1 - R4 equilibrated, with [80S] =

[80]s, [60S] = [60]s values.

Hence, the relaxation during the Stage 3 consists in

redistributing concentrations of 40S and mRNA:40S to

their steady states in a linear chain of reactions R1 - R2

(the value of [AUG] is relatively big and can be adjusted

from the conservation law (7)). Using the pseudo-linear

approximation of this stage (see Fig. 6), we can easily

write down the corresponding approximate relaxation

equations:
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where B = (1 -
k

k eIF F
2

1 4[ ] ) ([40]s- [40S]|t = t′′). [40]s
and [mRNA : 40S]s are the steady-state values of the

corresponding variables, see (12). The values [60S]|t = t′′,

[eIF4F]|t = t′′, [AUG]|t = t′′ and [mRNA : 40S]|t = t″′ can

be estimated from (28), using the [40S]|t = t′′ value. The

relaxation time at this stage equals

 3
1

1 4

1

2

1

4 3


    
max(

[ ]|
, ,

[ ]|
)

k eIF F t t k k k AUG t t

The solution for the Stage 3 can be further simplified

if k2 <<k1[eIF4F]|t = t′′ or k2 >>k1 [eIF4F]|t = t′′′.

Transitions between stages

Along the trajectory of the dynamical system (6) there are

three dominant system each one transforming into

another. At the transition between stages, two neighbor

dominant systems are united and then split. Theoreti-

cally, there might be situations when the system can stay

in these transition zones for long periods of time, even

infinitely. However, in the model (6) this is not the case:

the trajectory rapidly passes through the transition stages

and jumps into the next dominant system approximation.

Three dominant approximations can be glued, using

the concentration values at the times of the switching of

dominant approximation as initial values for the next

stage. Note that the Stage 2 has essentially one degree

of freedom since it can be approximated by a single

equation (23). Hence, one should only know one initial

value [40S]|t = t′′ to glue the Stages 1 and 2. The same is

applied to the gluing of Stages 2 and 3, since in the end

of Stage 2 all variable values are determined by the

value of [40S]|t = t′′.

Case of always limiting initiation

As it follows from our analysis, the most critical para-

meter of the non-linear protein translation model is the

ratio   k eIF F

k S
2 4 0
4 60 0

[ ]
[ ]

. Above we have considered the

case b > 1 which is characterized by a switch of the lim-

iting factor in the initiation (from eIF4F at the Stages 1

and 2 to 40S at the Stage 3).

In the case b < 1 the dynamics becomes simpler and

consists of one single stage: relaxation accordingly to

(20) and further with correction (21) with the relaxation

time ~ 1
4k (the quasiequilibrium approximation corre-

sponding to the Stage 1 works well for the whole trans-

lation process). The reason for this is that if the

initiation is not efficient then the system is never in the

situation of the Stage 2 conditions when the cycle R1-

R2 is balanced with much bigger flux than the cycle R3-

R4. This approximation is the more exact the smaller

b value, however, the value of b should not be necessary

very small. For example, for the default parameter values

of the model b = 0.48, and it well reproduces the

dynamics (see Fig. 7c-d). From numerical experiments

one can see that even for b = 0.95 the dynamics is qua-

litatively well reproduced. To model the A-cap structure

effect with very weak capacity for initiation (assembly of

the initiation factors and 40S subunit), we should also

consider the case

k k k k1 4 2 3   (31)

for which the solution derived above is not directly

applicable. However, the analytical calculations in this case

can be performed in the same fashion as above. The

detailed derivation of the solution is given in Additional file

1. The effect of putting k1 very small on the steady state

protein synthesis and the relaxation time is shown on Fig. 7.

In a similar way all possible solutions of the equations

(6) with very strong inhibitory effect of microRNA on a

particular translation step can be derived. These solu-

tions will describe the situation when the effect of micro-

RNA is so strong that it changes the dominant system

(limiting place of the network) by violating the initial

constraints (10) on the parameters (for example, by mak-

ing k3 smaller than other kis). Such possibility exists,

however, it can require too strong (non-physiological)

effect of microRNA-dependent translation inhibition.

Effect of microRNA on the translation dynamics

Our analysis of the non-linear Nissan and Parker’s

model showed that the protein translation machinery

can function in two qualitatively different modes, deter-

mined by the ratio   k eIF F

k S
2 4 0
4 60 0

[ ]
[ ]

. We call these two

modes “efficient initiation” (b > 1) and “inefficient initia-

tion” (b < 1) scenarios. Very roughly, this ratio
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determines the balance between the overall speeds of

initiation and elongation processes. In the case of “effi-

cient initiation” the rate of protein synthesis is limited

by the speed of recycling of the ribosomal components

(60S). In the case of “inefficient initiation” the rate of

protein synthesis is limited by the speed of recycling of

the initiation factors (eIF4F). Switching between two

modes of translation can be achieved by changing the

availability of the corresponding molecules ([60S]0 or

[eIF4F]0) or by changing the critical kinetic parameters

(k2 or k4). For example, changing k4 from 1 (Fig. 7c) to

0.1 (Fig. 7a), performs such a switch for the original

parameter values from [41].

As a result of the dynamical analysis, we can assemble

an approximate solution of the non-linear system under

assumptions (10) about the parameters. An example of

the approximate solution is given on Fig. 7. The advan-

tage of such a semi-analytical solution is that one can

predict the effect of changing the system parameters.

For example, on Fig. 7b the solution is compared to an

exact numerical one, where the parameters have been

changed but still obey the initial constraints (10).

One of the obvious predictions is that the dynamics of

the system is not sensitive to variations of k3, so if

microRNA acts on the translation stage controlled by k3

then no microRNA effect could be observed looking at

the system dynamics (being the fastest one, k3 is not a

critical parameter in any scenario).

If microRNA acts on the translation stage controlled

by k4 (for example, by ribosome stalling mechanism)

then we should consider two cases of efficient (b > 1)

and inefficient (b < 1) initiation. In the first case the

steady state protein synthesis rate is controlled by k4 (as

the slowest, limiting step) and any effect on k4 would

lead to the proportional change in the steady state of

protein production. By contrast, in the case of inefficient

initiation, the steady state protein synthesis is not

affected by k4. Instead, the relaxation time is affected,

being ~ 1
4k . However, diminishing k4 increases the b

parameter, hence, this changes “inefficient initiation”

scenario for the opposite, hence, making k4 critical for

the steady state protein synthesis anyway when k4

becomes smaller than
k eIF F

S
2 4 0

60 0

[ ]
[ ]

. For example, for the

default parameters of the model, decreasing k4 value

firstly leads to no change in the steady state rate of pro-

tein synthesis, whereas the relaxation time increases

and, secondly, after the threshold value
k eIF F

S
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Figure 7 Comparison of the numerical and approximate analytical solutions of the non-linear protein translation model. Examples of

the exact numerical (circles) and approximate analytical (solid lines) solutions of the non-linear protein translation model. a) For the set of

parameters k1 = 2, k2 = 2, k3 = 5, k4 = 0.1; b) For parameters k1 = 1, k2 = 5, k3 = 50, k4 = 0.01; c) For the set of parameters from [41], k1 = 2, k2 =

2, k3 = 5, k4 = 1; d) Reaction fluxes for the set of parameters c). Dashed black vertical lines denote evaluated transition points between the

dynamics stages. Dashed red vertical points denote the time points where [40S](t) = 10·[eIF4F](t) and [40S](t) = [eIF4F](t)/10 respectively.
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to affect the steady state protein synthesis rate directly

(see Fig. 8A, B). This is in contradiction to the message

from [41] that the change in k4 by several orders of

magnitude does not change the steady state rate of pro-

tein synthesis.

Analogously, decreasing the value of k2 can convert

the “efficient” initiation scenario into the opposite after

the threshold value
k S

eIF F
4 60 0

4 0

[ ]
[ ]

. We can recapitulate the

effect of decreasing k2 in the following way. 1) in the

case of “efficient” initiation k2 does not affect the steady

state protein synthesis rate up to the threshold value

after which it affects it in a proportional way. The

relaxation time drastically increases, because decreasing

k2 leads to elongation of all dynamical stages duration

(for example, we have estimated the time of the end of

the dynamical Stage 2 as   t
S

k eIF F

[ ]
[ ]
40 0

2 4 0
). However,

after the threshold value the relaxation time decreases

together with k2, quickly dropping to its unperturbed

value (see Fig. 8C-D). 2) in the case of “inefficient”

initiation the steady state protein synthesis rate depends

proportionally on the value of k2 (15), while the relaxa-

tion time is not affected (see Fig. 8A-B).

MicroRNA action on k1 directly does not produce any

strong effect neither on the relaxation time nor on the

steady state protein synthesis rate. This is why in the

original work [41] cap-dependent mechanism of micro-

RNA action was taken into account through effective

change of the [eIF4F]0 value (total concentration of the

translation initiation factors), which is a critical para-

meter of the model (see 15).

The effect of microRNA on various mechanism and

in various experimental settings (excess or deficit of

eIF4F, normal cap or A-cap) is recapitulated in Table

2. The conclusion that can be made from this table is

that all four mechanisms show clearly different pat-

terns of behavior in various experimental settings.

From the simulations one can make a conclusion that

it is still not possible to distinguish between the situa-

tion when microRNA does not have any effect on

protein translation and the situation when it acts on

the step which is neither rate limiting nor “second rate

limiting” in any experimental setting (k3 in our case).

Nevertheless, if any change in the steady-state protein

synthesis or the relaxation time is observed, theoreti-

cally, it will be possible to specify the mechanism

responsible for it.

Figure 8 Effect of mimicking different mechanisms of miRNA action on translation. Effect of decreasing some model parameters

mimicking different mechanisms of miRNA action on translation. Relaxation time here is defined as the latest time at which any chemical

species in the model differs from its final steady state by 10% A) and B) correspond to the scenario with “inefficient” initiation, with use of the

model parameters proposed in [41] (k1 = k2 = 2, k3 = 5, k4 = 1, [eIF4F]0 = 6, [60S]0 = 25, [40S]0 = 100), which gives b = 0.48 < 1. C) and D)

correspond to the scenario with “efficient” initiation, with parameters (k1 = 2, k2 = 3, k3 = 50, k4 = 0.1, [eIF4F]0 = 6, [60S]0 = 25, [40S]0 = 100),

which gives b = 7.2 > 1. The absciss value indicates the degree of inhibition (decreasing) of a parameter. E-H) same as A-D) but for a modified

cap structure, modeled by reduced k1 parameter: k1 = 0.01 for these curves, the other parameters are the same as on A-D) correspondingly.
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Available experimental data and possible experimental

validation

It is important to underline that the Nissan and Parker’s

models analyzed in this paper are qualitative descrip-

tions of the protein translation machinery. The para-

meter values used represent rough order-of-magnitude

estimations or real kinetic rates. Moreover, these values

should be considered as relative and unitless since they

do not match any experimental time scale (see below).

Nevertheless, such qualitative description already allows

to make predictions on the relative changes of the

steady states and relaxation times (see the Table 2), and

in principle these predictions can be verified experimen-

tally. Let us imagine an experiment in which it would be

possible to verify such predictions. In this experiment,

two time series should be compared: 1) one measured

in a system in which microRNA acts on a normal “wild-

type” protein translation machinery and 2) another sys-

tem almost fully identical to the first one but in which

one of the translation stages is modified (made slow and

rate-limiting, or, opposite, very rapid). There are multi-

ple possibilities to modify the rate of this or that transla-

tion stage. The initiation can be affected by changing

the concentration of the initiation factors such as eIF4F

as in [22]. The scanning stage can be affected by intro-

ducing various signals in the 5’UTR sequence of mRNA

such as in-frame AUG codons (see, for example, [43]).

In principle, the elongation stage can be modified by

introducing slow synonymous codons in the coding

sequence (there even exist mathematical models of their

effect [33,35,37] that can be used for the optimal experi-

ment design). The stage of elongation termination can

be influenced by varying the concentration of the corre-

sponding release factors (ETF1 or ETF2), at least in

vitro. The two time series measured after activation or

introduction of microRNA should be characterized for

the relative changes of steady state values and relaxation

times of protein and mRNA concentrations, and, if pos-

sible, the number of ribosomes in the polysome. Also,

ideally, it is desired to construct several experimental

systems in which the amount of inhibition by micro-

RNA can be gradually changed (for example, by chan-

ging the number of the corresponding seed sequences in

the 3’UTR region).

To the best of our knowledge, there is no such a data-

set published until so far, even partially. In several recent

papers, one can find published time series of protein and

mRNA concentrations or their relative changes measured

after introducing microRNA. For example, the deadeny-

lation time course is shown in [25]: translation decreases

after 20 min and stops at 30 min, deadenylation begin at

30 min, goes around 1 h. In [44], the authors study the

kinetics of degradation of mRNA. After adding micro-

RNA to the system, the amount and the length of the tar-

geted mRNA starts to decrease at around 3-5 hours, and

decreases by 90% at 8 hours. In [45], the authors study

the global change of protein after transfection of a micro-

RNA. They described a small change at the mRNA level

at 8 h after miRNA transfection, and the considerable

decrease appeared only after 32 hours while the protein

concentration change was apparent at the time-course

between 8 hours and 32 hours. In the in vitro system

used in [22], at 15 min after incubation with microRNA

there was already a 25% decrease of translation, indicat-

ing that the translational inhibition can be a relatively

rapid mechanism.

These data on protein translation kinetics show that

the relaxation time range could vary from several

Table 2 Modeling of four mechanisms of microRNA action in the non-linear protein translation model

Observable
value

Initiation(k1) Step after initiation(k2) Ribosome assembly
(k3)

Elongation (k4)

Wild-type cap, inefficient initiation

Steady-state rate slightly decreases decreases no change decreases after threshold

Relaxation time no change no change no change goes up and down

Wild-type cap, efficient initiation

Steady-state rate no change slightly decreases after strong inhibition no change decreases

Relaxation time no change goes up and down no change no change

A-cap, inefficient initiation

Steady-state rate decreases decreases no change slightly decreases after strong
inhibition

Relaxation time no change no change no change goes up and down

A-cap, efficient initiation

Steady-state rate decreases after threshold slightly decreases after strong inhibition no change decreases

Relaxation time goes up and down goes up and down no change increases

MicroRNA action effect is described for the protein synthesis steady rate and the relaxation time (see also Fig. 8). “Efficient initiation” and “inefficient initiation”

correspond to two qualitatively different solution types of Nissan and Parker’s model (see the beginning of “Effect of microRNA on the translation dynamics”

section). The effect of A-cap structure is modeled by making the cap-dependent initiation step very slow (by making the k1 parameter very small). It is assumed

that the ribosome assembly step in protein translation, described by the k3 rate constant, is not rate limiting.
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minutes to several hours and even tens of hours

depending on the critical step affected, on various

mRNA properties and on the whole biological system

taken for the experiment (for example, the presence or

absence of different effectors influencing different steps

of the translation process). These data should be taken

into account when constructing more realistic and

quantitative models of microRNA action on protein

translation.

Discussion

The role of microRNA in gene expression regulation is

discovered and confirmed since ten years, however,

there is still a lot of controversial results regarding the

role of concrete mechanisms of microRNA-mediated

protein synthesis repression. Some authors argue that it

is possible that the different modes of microRNA action

reflect different interpretations and experimental

approaches, but the possibility that microRNAs do

indeed silence gene expression via multiple mechanisms

also exists. Finally, microRNAs might silence gene

expression by a common and unique mechanism; and

the multiple modes of action represent secondary effects

of this primary event [1-3].

The main reason for accepting a possible experimental

bias could be the studies in vitro, where conditions are

strongly different from situation in vivo. Indeed, inside

the cell, mRNAs (microRNA targets) exist as ribonu-

cleoprotein particles or mRNPs, and second, all proteins

normally associated with mRNAs transcribed in vivo are

absent or at least much different from that bound to the

same mRNA in an in vitro system or following the

microRNAs transfection into cultured cells. The fact

that RNA-binding proteins strongly influence the final

outcome of microRNA regulation is proved now by

several studies [19,46,47]. The mathematical results

provided in this paper suggests a complementary view

on the co-existence of multiple microRNA-mediated

mechanisms of translation repression. Mathematical

modeling suggests to us to ask a question: if multiple

mechanisms act simultaneously, would all of them

equally contribute to the final observable repression of

protein synthesis or its dynamics? The dynamical limita-

tion theory gives an answer: the effect of microRNA

action will be observable and measurable in two cases:

1) if it affects the dominant system of the protein trans-

lationary machinery, or 2) if the effect of microRNA

action is so strong that it changes the limiting place (the

dominant system).

In a limited sense, this means, in particular, that the

protein synthesis steady rate is determined by the limit-

ing step in the translation process and any effect of

microRNA will be measurable only if it affects the limit-

ing step in translation, as it was demonstrated in [41].

Due to the variety of external conditions, cellular con-

texts and experimental systems the limiting step in prin-

ciple can be any in the sequence of events in protein

translation, hence, this or that microRNA mechanism

can become dominant in a concrete environment. How-

ever, when put on the language of equations, the

previous statement already becomes non-trivial in the

case of non-linear dynamical models of translation (and

even linear reaction networks with non-trivial network

structure). Our analysis demonstrates that the limiting

step in translation can change with time, depends on the

initial conditions and is not represented by a single reac-

tion rate constant but rather by some combination of

several model parameters. Methodology of dynamical

limitation theory that we had developed [42,48], allows to

deal with these situations on a solid theoretical ground.

Furthermore, in the dynamical limitation theory, we

generalize the notion of the limiting step to the notion

of dominant system, and this gives us a possibility to

consider not only the steady state rate but also some

dynamical features of the system under study. One of

the simplest measurable dynamical feature is the protein

synthesis relaxation time, i.e. the time needed for protein

synthesis to achieve its steady state rate. The general

idea of “relaxation spectrometry” goes back to the works

of Manfred Eigen, a Nobel laureate [49] and is still

underestimated in systems biology. Calculation of the

relaxation time (or times) requires careful analysis of

time scales in the dynamical system, which is greatly

facilitated by the recipes proposed in [42,50]. As we

have demonstrated in our semi-analytical solutions,

measuring the steady state rate and relaxation time at

the same time allows to detect which step is possibly

affected by the action of microRNA (resulting in effec-

tive slowing down of this step). To our knowledge, this

idea was never considered before in the studies of

microRNA-dependent expression regulation. The Table

2 recapitulates predictions allowing to discriminate a

particular mechanism of microRNA action.

Conclusions

The analysis of the transient dynamics gives enough

information to verify or reject a hypothesis about a parti-

cular molecular mechanism of microRNA action on pro-

tein translation. For multiscale systems only that action

of microRNA is distinguishable which affects the para-

meters of dominant system (critical parameters), or

changes the dominant system itself. Dominant systems

generalize and further develop the old and very popular

idea of limiting step. Algorithms for identifying dominant

systems in multiscale kinetic models are straightforward

but not trivial and depend only on the ordering of the

model parameters but not on their concrete values.

Asymptotic approach to kinetic models of biological
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networks suggests new directions of thinking on a biolo-

gical problem, making the mathematical model a useful

tool accompanying biological reasoning and allowing to

put in order diverse experimental observations.

However, to convert the methodological ideas

presented in this paper into a working tool for

experimental identification of the mechanisms of micro-

RNA-dependent protein translation inhibition, requires

special efforts. Firstly, we need to construct a model

which would include all known mechanisms of micro-

RNA action. Secondly, realistic estimations on the para-

meter value intervals should be made. Thirdly, careful

analysis of qualitatively different system behaviors

should be performed and associated with the molecular

mechanisms. Fourthly, a critical analysis of available

quantitative information existing in the literature should

be made. Lastly, the experimental protocols (sketched in

the previous section) for measuring dynamical features

such as the relaxation time should be developed. All

these efforts makes a subject of a separate study which

is an ongoing work.

Methods

Asymptotology and dynamical limitation theory for

biochemical reaction networks

Most of mathematical models that really work are sim-

plifications of the basic theoretical models and use in

the backgrounds an assumption that some terms are

big, and some other terms are small enough to neglect

or almost neglect them. The closer consideration shows

that such a simple separation on “small” and “big” terms

should be used with precautions, and special culture

was developed. The name “asymptotology” for this

direction of science was proposed by [51] defined as

“the art of handling applied mathematical systems in

limiting cases”.

In chemical kinetics three fundamental ideas were

developed for model simplification: quasiequilibrium

asymptotic (QE), quasi steady-state asymptotic (QSS)

and the idea of limiting step.

In the IUPAC Compendium of Chemical Terminology

(2007) one can find a definition of limiting step [52]:

“A rate-controlling (rate-determining or rate-limiting)

step in a reaction occurring by a composite reaction

sequence is an elementary reaction the rate constant for

which exerts a strong effect -stronger than that of any

other rate constant - on the overall rate.”

Usually when people are talking about limiting step

they expect significantly more: there exists a rate con-

stant which exerts such a strong effect on the overall

rate that the effect of all other rate constants together is

significantly smaller. For the IUPAC Compendium defi-

nition a rate-controlling step always exists, because

among the control functions generically exists the

biggest one. On the contrary, for the notion of limiting

step that is used in practice, there exists a difference

between systems with limiting step and systems without

limiting step.

During XX century, the concept of the limiting step was

revised several times. First simple idea of a “narrow place”

(the least conductive step) could be applied without adap-

tation only to a simple cycle or a chain of irreversible steps

that are of the first order (see Chap. 16 of the book [53] or

[54] or the section “Dominant system for a simple irrever-

sible catalytic cycle with limiting step” of this paper).

When researchers try to apply this idea in more general

situations they meet various difficulties.

Recently, we proposed a new theory of dynamic and

static limitation in multiscale reaction networks [42,48].

This approach allows to find the simplest network

which can substitute a multiscale reaction network such

that the dynamics of the complex network can be

approximated by the simpler one. Following the asymp-

totology terminology [55], we call this simple network

the dominant system (DS). In the simplest cases, the

dominant system is a subsystem of the original model.

However, in the general case, it also includes new reac-

tions with kinetic rates expressed through the para-

meters of the original model, and rates of some

reactions are renormalized: hence, in general, the domi-

nant system is not a subsystem of the original model.

The dominant systems can be used for direct compu-

tation of steady states and relaxation dynamics,

especially when kinetic information is incomplete, for

design of experiments and mining of experimental data,

and could serve as a robust first approximation in

perturbation theory or for preconditioning.

Dominant systems serve as correct generalization of the

limiting step notion in the case of complex multiscale

networks. They can be used to answer an important

question: given a network model, which are its critical

parameters? Many of the parameters of the initial model

are no longer present in the dominant system: these

parameters are non-critical. Parameters of dominant

systems (critical parameters) indicate putative targets

to change the behavior of the large network.

Most of reaction networks are nonlinear, it is never-

theless useful to have an efficient algorithm for solving

linear problems. First, nonlinear systems often include

linear subsystems, containing reactions that are

(pseudo)monomolecular with respect to species inter-

nal to the subsystem (at most one internal species is

reactant and at most one is product). Second, for bin-

ary reactions A + B ® ..., if concentrations of species

A and B (cA, cB) are well separated, say cA >>cB then

we can consider this reaction as B ® ... with rate con-

stant proportional to cA which is practically constant,

because its relative changes are small in comparison to
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relative changes of cB. We can assume that this condi-

tion is satisfied for all but a small fraction of genuinely

non-linear reactions (the set of non-linear reactions

changes in time but remains small). Under such an

assumption, non-linear behavior can be approximated

as a sequence of such systems, followed one each

other in a sequence of “phase transitions”. In these

transitions, the order relation between some of species

concentrations changes. Some applications of this

approach to systems biology are presented by [50].

The idea of controllable linearization “by excess” of

some reagents is in the background of the efficient

experimental technique of Temporal Analysis of Pro-

ducts (TAP), which allows to decipher detailed

mechanisms of catalytic reactions [56].

Below we give some details on the approaches used in

this paper to analyze the models by Nissan and Parker [41].

Notations

To define a chemical reaction network, we have to

introduce:

• a list of components (species);

• a list of elementary reactions;

• a kinetic law of elementary reactions.

The list of components is just a list of symbols (labels)

A1,...An. Each elementary reaction is represented by its

stoichiometric equation

 si i

si

i i

si

A A  , (32)

where s enumerates the elementary reactions, and the

non-negative integers asi, bsi are the stoichiometric coef-

ficients. A stoichiometric vector gs with coordinates. gsi
= bsi- asi is associated with each elementary reaction.

A non-negative real extensive variable Ni ≥ 0, amount

of Ai, is associated with each component Ai. It measures

“the number of particles of that species” (in particles, or

in moles). The concentration of Ai is an intensive vari-

able: ci = Ni/V, where V is volume. In this paper we

consider the volume (of cytoplasm) to be constant.

Then the kinetic equations have the following form

d

d

c

t
w c T vs s

s

  ( , ) , (33)

where T is the temperature, ws is the rate of the reac-

tion s, v is the vector of external fluxes normalized to

unite volume. It may be useful to represent external

fluxes as elementary reactions by introduction of new

component Ø together with income and outgoing reac-

tions Ø ® Ai and Ai ® Ø.

The most popular kinetic law of elementary reactions

is the mass action law for perfect systems:

w c T k cs s i
si( , ) ,   (34)

where ks is a “kinetic constant” of the reaction s.

Quasi steady-state and quasiequilibrium asymptotics

Quasiequilibrium approximation uses the assumption

that a group of reactions is much faster than other and

goes fast to its equilibrium. We use below superscripts

‘
f
’ and ‘

s
’ to distinguish fast and slow reactions. A small

parameter appears in the following form

d

d
s s

slow

f f

fast

c

t
w c T w c Ts s

s

  ( , ) ( , ) ,

, ,

   


1
(35)

To separate variables, we have to study the spaces of

linear conservation law of the initial system (35) and of

the fast subsystem

d

d
f f

fast

c

t
w c T 1

  


( , )

,

If they coincide, then the fast subsystem just domi-

nates, and there is no fast-slow separation for variables

(all variables are either fast or constant). But if there

exist additional linearly independent linear conservation

laws for the fast system, then let us introduce new vari-

ables: linear functions b1(c),...bn(c), where b1(c),...bm(c) is

the basis of the linear conservation laws for the initial

system, and b1(c),...bm+l(c) is the basis of the linear con-

servation laws for the fast subsystem. Then bm+l+1(c),...

bn(c) are fast variables, bm+1(c),...bm+l(c) are slow

variables, and b1(c),...bm(c) are constant. The quasiequili-

brium manifold is given by the equations

w c T  f f( , )  0 and for small ε it serves as an

approximation to a slow manifold.

The quasi steady-state (or pseudo steady state)

assumption was invented in chemistry for description of

systems with radicals or catalysts. In the most usual ver-

sion the species are split in two groups with concentra-

tion vectors cs (“slow” or basic components) and cf (“fast

intermediates”). For catalytic reactions there is addi-

tional balance for cf, amount of catalyst, usually it is just

a sum b c iif
f The amount of the fast intermediates

is assumed much smaller than the amount of the basic

components, but the reaction rates are of the same

order, or even the same (both intermediates and slow

components participate in the same reactions). This is

the source of a small parameter in the system. Let us
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scale the concentrations cf and cs to the compatible

amounts. After that, the fast and slow time appear and

we could write ċ
s = Ws(cs, cf), c W c cf f s f 1 ( , ) , where

ε is small parameter, and functions Ws, Wf are bounded

and have bounded derivatives (are “of the same order”).

We can apply the standard singular perturbation techni-

ques. If dynamics of fast components under given values

of slow concentrations is stable, then the slow attractive

manifold exists, and its zero approximation is given by

the system of equations Wf(cs, cf) = 0.

The QE approximation is also extremely popular and

useful. It has simpler dynamical properties (respects

thermodynamics, for example, and gives no critical

effects in fast subsystems of closed systems).

Nevertheless, neither radicals in combustion, nor

intermediates in catalytic kinetics are, in general, close

to quasiequilibrium. They are just present in much

smaller amount, and when this amount grows, then the

QSS approximation fails.

The simplest demonstration of these two approxima-

tion gives the simple reaction: S + E ↔ SE ® P + E

with reaction rate constants k1
 and k2. The only possi-

ble quasiequilibrium appears when the first equilibrium

is fast: k1
 = �

±/ε. The corresponding slow variable is Cs

= cS + cSE, bE = cE + cSE = const.

For the QE manifold we get a quadratic equation

k

k
c c c C c b cSE S E

s
SE E SE

1

1



    ( )( ) . This equation

gives the explicit dependence CSE(C
s), and the slow

equation reads Ċs = -k2cSE(Cs), C
s + cP = bS = const.

For the QSS approximation of this reaction kinetics,

under assumption bE<<bS, we have fast intermediates E

and SE. For the QSS manifold there is a linear equation

k c c k c k cS E SE SE1 1 2 0    , which gives us the explicit

expression for cSE(cS): c k c b k c k kSE S E S    
1 1 1 2/ ( )

(the standard Michaelis-Menten formula). The slow

kinetics reads c k c b c c k c cS S E SE S SE S    
1 1( ( )) ( ) .

The difference between the QSS and the QE in this

example is obvious.

The terminology is not rigorous, and often QSS is

used for all singular perturbed systems, and QE is

applied only for the thermodynamic exclusion of fast

variables by the maximum entropy (or minimum of free

energy, or extremum of another relevant thermody-

namic function) principle (MaxEnt). This terminological

convention may be convenient. Nevertheless, without

any relation to terminology, the difference between

these two types of introduction of a small parameter is

huge. There exists plenty of generalizations of these

approaches, which aim to construct a slow and (almost)

invariant manifold, and to approximate fast motion as

well. The following references can give a first impression

about these methods: Method of Invariant Manifolds

(MIM) ([57,58], Method of Invariant Grids (MIG), a dis-

crete analogue of invariant manifolds ([59]), Computa-

tional Singular Perturbations (CSP) ([60-62]) Intrinsic

Low-Dimensional Manifolds (ILDM) by [63], developed

further in series of works by [64]), methods based on

the Lyapunov auxiliary theorem ([65]).

Multiscale monomolecular reaction networks

A monomolecular reaction is such that it has at most

one reactant and at most one product. Let us consider a

general network of monomolecular reactions. This net-

work is represented as a directed graph (digraph) [66]:

vertices correspond to components Ai, edges correspond

to reactions Ai ® Aj with kinetic constants kji > 0. For

each vertex, Ai, a positive real variable ci (concentration)

is defined.

“Pseudo-species” (labeled Ø) can be defined to collect

all degraded products, and degradation reactions can be

written as Ai ® Ø with constants k0i. Production reac-

tions can be represented as Ø ® Ai with rates ki0. The

kinetic equation for the system is

d

d

ci
t

k k c k ci ij j ji i

jj

  

0

01

, (36)

or in vector form: ċ = K0 + Kc. Solution of this system

can be reduced to a linear algebra problem: let us find

all left (li) and right (ri) eigenvectors of K, i.e.:

Kr r l K li
i

i i
i

i  , , (37)

with the normalization (li, ri) = δij, where δij is Kro-

necker’s delta. Then the solution of (36) is

c t c r l c c ts k k s
k

k

n

( ) ( , ( ) )exp( ),   

 0

1

 (38)

where cs is the steady state of the system (36), i.e.

when all d
d
ci
t

= 0, and c(0) is the initial condition.

If all reaction constants kij would be known with pre-

cision then the eigenvalues and the eigenvectors of the

kinetic matrix can be easily calculated by standard

numerical techniques. Furthermore, Singular Value

Decomposition (SVD) can be used for model reduction.

But in systems biology models often one has only

approximate or relative values of the constants (infor-

mation on which constant is bigger or smaller than

another one). Let us consider the simplest case: when all
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kinetic constants are very different (separated), i.e. for

any two different pairs of indices I = (i, j), J = (i′, j′) we

have either kI >>kJ or kJ <<kI. In this case we say that

the system is hierarchical with timescales (inverses of

constants kij, j ≠ 0) totally separated.

Linear network with totally separated constants can be

represented as a digraph and a set of orders (integer

numbers) associated to each arc (reaction). The lower

the order, the more rapid is the reaction. It happens

that in this case the special structure of the matrix K

(originated from a reaction graph) allows us to exploit

the strong relation between the dynamics (36) and the

topological properties of the digraph. In this case, possi-

ble values of li k are 0, 1 and the possible values of ri
are -1, 0, 1 with high precision. In previous works, we

provided an algorithm for finding non-zero components

of li, ri, based on the network topology and the con-

stants ordering, which gives a good approximation to

the problem solution [42,48,50].

Dominant system for a simple irreversible catalytic cycle

with limiting step

A linear chain of reactions, A1 ® A2 ® ...An, with reac-

tion rate constants ki (for Ai ® Ai+1), gives the first

example of limiting steps. Let the reaction rate constant

kq be the smallest one. Then we expect the following

behavior of the reaction chain in time scale ≳1/kq: all

the components A1,...Aq-1 transform fast into Aq, and all

the components Aq+1,...An-1 transform fast into An, only

two components, Aq and An are present (concentrations

of other components are small), and the whole dynamics

in this time scale can be represented by a single reaction

Aq ® An with reaction rate constant kq. This picture

becomes more exact when kq becomes smaller with

respect to other constants.

The kinetic equation for the linear chain is

c k c k ci i i i i  1 1 , (39)

The coefficient matrix K of these equations is very

simple. It has nonzero elements only on the main diago-

nal, and one position below. The eigenvalues of K are -ki
(i = 1,...n - 1) and 0. The left and right eigenvectors for

0 eigenvalue, l0 and r0, are:

l r0 01 1 1 0 0 0 1 ( , , ), ( , , , ),  (40)

all coordinates of l0 are equal to 1, the only nonzero

coordinate of r0 is rn
0 and we represent vector-column

r0 in row.

The catalytic cycle is one of the most important

substructures that we study in reaction networks. In the

reduced form the catalytic cycle is a set of linear

reactions:

A A A An1 2 1   .

Reduced form means that in reality some of these

reaction are not monomolecular and include some other

components (not from the list A1,... An). But in the

study of the isolated cycle dynamics, concentrations of

these components are taken as constant and are

included into kinetic constants of the cycle linear

reactions.

For the constant of elementary reaction Ai ® we use

the simplified notation ki because the product of this ele-

mentary reaction is known, it is Ai+1 for i <n and A1 for i

= n. The elementary reaction rate is wi = kici, where ci is

the concentration of Ai. The kinetic equation is:

c k c k ci i i i i  1 1 , (41)

where by definition c0 = cn, k0 = kn, and w0 = wn. In the

stationary state (ċi = 0), all the wi are equal: wi = w. This

common rate w we call the cycle stationary rate, and

w
b

k kn

c
w

ki
i




1

1

1
; , 

(42)

where b = ∑ici is the conserved quantity for reactions

in constant volume. Let one of the constants, kmin, be

much smaller than others (let it be kmin = kn):

k k i ni  min . if (43)

In this case, in linear approximation

c b
kn
ki

c b
kn
ki

w k bn

i n

i n 












 

1 , , . (44)

The simplest zero order approximation for the steady

state gives

c b c i nn i  , ( ).0 (45)

This is trivial: all the concentration is collected at the

starting point of the “narrow place”, but may be useful

as an origin point for various approximation procedures.

So, the stationary rate of a cycle is determined by the

smallest constant, kmin, if it is much smaller than the

constants of all other reactions (43):

w k b min . (46)

In that case we say that the cycle has a limiting step

with constant kmin.

There is significant difference between the examples

of limiting steps for the chain of reactions and for
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irreversible cycle. For the chain, the steady state does

not depend on nonzero rate constants. It is just cn = b,

c1 = c2 =... = cn-1 = 0. The smallest rate constant kq
gives the smallest positive eigenvalue, the relaxation

time is τ = 1/kq. The corresponding approximation of

eigenmode (right eigenvector) r1 has coordinates:

r r r r r rq q q n n1
1

1
1 1

1
1

1
10 1 0 1           , , , . This

exactly corresponds to the statement that the

whole dynamics in the time scale ≳1/kq can be

represented by a single reaction Aq ® An with

reaction rate constant kq. The left eigenvector for eigen-

value kq has approximation l1 with coordinates

l l l l lq q n1
1

2
1 1

1
1 11 0       , . This vector pro-

vides the almost exact lumping on time scale ≳1/kq. Let

us introduce a new variable clump = ∑ilici, i.e. clump =

c1 + c2 +... + cq. For the time scale ≳1/kqwe can write

clump + cn ≈ b, dclump/dt ≈ -kqclump, dcn/dt ≈ kqclump.

In the example of a cycle, we approximate the steady

state, that is, the right eigenvector r0 for zero eigenvalue

(the left eigenvector is known and corresponds to the

main linear balance b: li
0
≡ 1). In the zero-order

approximation, this eigenvector has coordinates

r r rn n1
0

1
0 00 1    , .

If kn/ki is small for all i <n, then the kinetic behavior

of the cycle is determined by a linear chain of n - 1

reactions A1 ® A2 ® ...An, which we obtain after cut-

ting the limiting step. The characteristic equation for an

irreversible cycle, ( )   
  k ki ii

n

i

n
0

11
, tends to

the characteristic equation for the linear chain,

 ( ) 

 kii

n
0

1

1
, when kn ® 0.

The characteristic equation for a cycle with limiting

step (kn/ki << 1) has one simple zero eigenvalue that

corresponds to the conservation law ∑ci = b and n - 1

nonzero eigenvalues

 i i ik i n   ( ). (47)

where δi ® 0 when
kn
kii n

 0 .

A cycle with limiting step (41) has real eigenspectrum

and demonstrates monotonic relaxation without damped

oscillations. Of course, without limitation such oscilla-

tions could exist, for example, when all ki ≡ k > 0, (i =

1,...n).

The relaxation time of a stable linear system (41) is,

by definition, τ = 1/min{Re(-li)} (l ≠ 0). For small kn,

τ ≈ 1/kτ, kτ = min{ki}, (i = 1,...n - 1). In other words, for

a cycle with limiting step, kτ is the second slowest rate

constant: kmin <<kτ ≤ ....

Additional file 1: Analytical analysis of the case of very inefficient

cap structure. In this text we derive an asymptotical solution for the

case when k1 is very small corresponding to the case of very inefficient

translation initiation (for example, in the case of A-cap structure

replacement experiment)

Click here for file
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