A. Mantovani, T. Schioppa, C. Porta, P. Allavena, and A. Sica, Role of tumor-associated macrophages in tumor progression and invasion, Cancer and Metastasis Reviews, vol.11, issue.3, pp.315-322, 2006.
DOI : 10.1007/s10555-006-9001-7

E. Gottfried, S. Faust, J. Fritsche, L. Kunz-schughart, R. Andreesen et al., Identification of genes expressed in tumor-associated macrophages, Immunobiology, vol.207, issue.5, pp.351-359, 2003.
DOI : 10.1078/0171-2985-00246

C. Bailey, R. Negus, A. Morris, P. Ziprin, R. Goldin et al., Chemokine expression is associated with the accumulation of tumour associated macrophages (TAMs) and progression in human colorectal cancer, Clinical & Experimental Metastasis, vol.7, issue.2, pp.121-130, 2007.
DOI : 10.1007/s10585-007-9060-3

E. Lin, A. Nguyen, R. Russell, and J. Pollard, Colony-Stimulating Factor 1 Promotes Progression of Mammary Tumors to Malignancy, The Journal of Experimental Medicine, vol.112, issue.6, pp.727-740, 2001.
DOI : 10.1038/sj.onc.1201869

H. Saji, M. Koike, T. Yamori, S. Saji, M. Seiki et al., Significant correlation of monocyte chemoattractant protein-1 expression with neovascularization and progression of breast carcinoma, Cancer, vol.57, issue.5, pp.1085-1091, 2001.
DOI : 10.1002/1097-0142(20010901)92:5<1085::AID-CNCR1424>3.0.CO;2-K

C. Brigati, D. Noonan, A. Albini, and R. Benelli, Tumors and inflammatory infiltrates: friends or foes? Clin Exp Metastasis, pp.247-258, 2002.

A. Mantovani, S. Sozzani, M. Locati, P. Allavena, and A. Sica, Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes, Trends in Immunology, vol.23, issue.11, pp.549-555, 2002.
DOI : 10.1016/S1471-4906(02)02302-5

Y. Luo, H. Zhou, J. Krueger, C. Kaplan, S. Lee et al., Targeting tumor-associated macrophages as a novel strategy against breast cancer, Journal of Clinical Investigation, vol.116, issue.8, pp.1162132-2141, 2006.
DOI : 10.1172/JCI27648DS1

A. Sica, T. Schioppa, A. Mantovani, and P. Allavena, Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: Potential targets of anti-cancer therapy, European Journal of Cancer, vol.42, issue.6, pp.42717-727, 2006.
DOI : 10.1016/j.ejca.2006.01.003

A. Welm, J. Sneddon, C. Taylor, D. Nuyten, M. Van-de-vijver et al., The macrophage-stimulating protein pathway promotes metastasis in a mouse model for breast cancer and predicts poor prognosis in humans, Proceedings of the National Academy of Sciences, vol.104, issue.18, pp.1047570-7575, 2007.
DOI : 10.1073/pnas.0702095104

E. Lin, J. Li, L. Gnatovskiy, Y. Deng, L. Zhu et al., Macrophages Regulate the Angiogenic Switch in a Mouse Model of Breast Cancer, Cancer Research, vol.66, issue.23, pp.6611238-11246, 2006.
DOI : 10.1158/0008-5472.CAN-06-1278

T. Ueno, M. Toi, H. Saji, M. Muta, H. Bando et al., Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer, Clin Cancer Res, vol.6, issue.8, pp.3282-3289, 2000.

C. Colpaert, P. Vermeulen, I. Benoy, A. Soubry, F. Van-roy et al., Inflammatory breast cancer shows angiogenesis with high endothelial proliferation rate and strong E-cadherin expression, British Journal of Cancer, vol.88, issue.5, pp.718-725, 2003.
DOI : 10.1038/sj.bjc.6600807

S. Tsutsui, K. Yasuda, K. Suzuki, K. Tahara, H. Higashi et al., Macrophage infiltration and its prognostic implications in breast cancer: The relationship with VEGF expression and microvessel density, Oncology Reports, vol.14, issue.2, pp.425-431, 2005.
DOI : 10.3892/or.14.2.425

R. Leek, C. Lewis, R. Whitehouse, M. Greenall, C. J. Harris et al., Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma, Cancer Res, issue.20, pp.564625-4629, 1996.

H. Torisu, M. Ono, H. Kiryu, M. Furue, Y. Ohmoto et al., Macrophage infiltration correlates with tumor stage and angiogenesis in human malignant melanoma: Possible involvement of TNF?? and IL-1??, International Journal of Cancer, vol.85, issue.2, pp.182-188, 2000.
DOI : 10.1002/(SICI)1097-0215(20000115)85:2%3C182::AID-IJC6%3E3.0.CO;2-M

E. Blot, W. Chen, M. Vasse, J. Paysant, C. Denoyelle et al., Cooperation between monocytes and breast cancer cells promotes factors involved in cancer aggressiveness, British Journal of Cancer, vol.88, issue.8, pp.881207-1212, 2003.
DOI : 10.1038/sj.bjc.6600872

S. Gordon, Alternative activation of macrophages, Nature Reviews Immunology, vol.3, issue.1, pp.23-35, 2003.
DOI : 10.1038/nri978

URL : https://hal.archives-ouvertes.fr/hal-00474829

F. Martinez, A. Sica, A. Mantovani, and M. Locati, Macrophage activation and polarization, Frontiers in Bioscience, vol.13, issue.13, pp.453-461, 2008.
DOI : 10.2741/2692

T. Hagemann, J. Wilson, H. Kulbe, N. Li, D. Leinster et al., Macrophages Induce Invasiveness of Epithelial Cancer Cells Via NF-??B and JNK, The Journal of Immunology, vol.175, issue.2, pp.1197-1205, 2005.
DOI : 10.4049/jimmunol.175.2.1197

T. Hagemann, T. Lawrence, I. Mcneish, K. Charles, H. Kulbe et al., ???Re-educating??? tumor-associated macrophages by targeting NF-??B, The Journal of Experimental Medicine, vol.162, issue.6, pp.1261-1268, 2008.
DOI : 10.1136/ard.59.suppl_1.i54

F. Greten, L. Eckmann, T. Greten, J. Park, Z. Li et al., IKK?? Links Inflammation and Tumorigenesis in a Mouse Model of Colitis-Associated Cancer, Cell, vol.118, issue.3, pp.285-296, 2004.
DOI : 10.1016/j.cell.2004.07.013

A. Saccani, T. Schioppa, C. Porta, S. Biswas, M. Nebuloni et al., nuclear factor-kappaB overexpression in tumor-associated macrophages inhibits M1 inflammatory responses and antitumor resistance, Cancer Res, issue.23, pp.50-6611432, 2006.

J. Bohuslav, V. Kravchenko, G. Parry, J. Erlich, S. Gerondakis et al., Regulation of an essential innate immune response by the p50 subunit of NF-kappaB., Journal of Clinical Investigation, vol.102, issue.9, pp.1645-1652, 1998.
DOI : 10.1172/JCI3877

H. Pass, G. Brewer, R. Dick, M. Carbone, and S. Merajver, A Phase II Trial of Tetrathiomolybdate After Surgery for Malignant Mesothelioma: Final Results, The Annals of Thoracic Surgery, vol.86, issue.2, pp.383-389, 2008.
DOI : 10.1016/j.athoracsur.2008.03.016

F. Donate, J. Juarez, M. Burnett, M. Manuia, X. Guan et al., Identification of biomarkers for the antiangiogenic and antitumour activity of the superoxide dismutase 1 (SOD1) inhibitor tetrathiomolybdate (ATN-224), British Journal of Cancer, vol.115, issue.4, pp.776-783, 2008.
DOI : 10.1182/blood-2004-06-2101

G. Brewer, Copper Lowering Therapy With Tetrathiomolybdate as an Antiangiogenic Strategy in Cancer, Current Cancer Drug Targets, vol.5, issue.3, pp.195-202, 2005.
DOI : 10.2174/1568009053765807

V. Knethen, A. Brune, and B. , Delayed activation of PPARgamma by LPS and IFN-gamma attenuates the oxidative burst in macrophages, The FASEB Journal, vol.15, issue.2, pp.535-544, 2001.
DOI : 10.1096/fj.00-0187com

E. Helinski, K. Bielat, G. Ovak, and J. Pauly, Long-term cultivation of functional human macrophages in Teflon dishes with serum-free media, J Leukoc Biol, vol.44, issue.2, pp.111-121, 1988.

D. Ribatti, A. Gualandris, M. Bastaki, A. Vacca, M. Iurlaro et al., New Model for the Study of Angiogenesis and Antiangiogenesis in the Chick Embryo Chorioallantoic Membrane: The Gelatin Sponge/ Chorioallantoic Membrane Assay, Journal of Vascular Research, vol.34, issue.6, pp.34455-463, 1997.
DOI : 10.1159/000159256

S. Badylak, J. Valentin, A. Ravindra, G. Mccabe, and A. Stewart-akers, Macrophage Phenotype as a Determinant of Biologic Scaffold Remodeling, Tissue Engineering Part A, vol.14, issue.11, pp.1835-1842, 2008.
DOI : 10.1089/ten.tea.2007.0264

N. Romani, S. Gruner, D. Brang, E. Kampgen, A. Lenz et al., Proliferating dendritic cell progenitors in human blood, Journal of Experimental Medicine, vol.180, issue.1, pp.83-93, 1994.
DOI : 10.1084/jem.180.1.83

F. Sallusto and A. Lanzavecchia, Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha, Journal of Experimental Medicine, vol.179, issue.4, pp.1109-1118, 1994.
DOI : 10.1084/jem.179.4.1109

B. Jacobs, M. Wuttke, C. Papewalis, J. Seissler, and M. Schott, Generation of Dendritic Cells, Hormone and Metabolic Research, vol.40, issue.2, pp.99-107, 2008.
DOI : 10.1055/s-2007-1022561

N. Romani, D. Reider, M. Heuer, S. Ebner, E. Kampgen et al., Generation of mature dendritic cells from human blood An improved method with special regard to clinical applicability, Journal of Immunological Methods, vol.196, issue.2, pp.137-151, 1996.
DOI : 10.1016/0022-1759(96)00078-6

P. Chomarat, J. Banchereau, J. Davoust, and A. Palucka, IL-6 switches the differentiation of monocytes from dendritic cells to macrophages, Nature Immunology, vol.1, issue.6, pp.510-514, 2000.
DOI : 10.1038/82763

D. Foss, M. Zilliox, and M. Murtaugh, Differential regulation of macrophage interleukin-1 (IL-1), IL-12, and CD80-CD86 by two bacterial toxins, Infect Immun, issue.10, pp.675275-5281, 1999.

R. Strieter, P. Polverini, S. Kunkel, D. Arenberg, M. Burdick et al., The Functional Role of the ELR Motif in CXC Chemokine-mediated Angiogenesis, Journal of Biological Chemistry, vol.270, issue.45, pp.27027348-27357, 1995.
DOI : 10.1074/jbc.270.45.27348

D. Arenberg, S. Kunkel, P. Polverini, M. Glass, M. Burdick et al., Inhibition of interleukin-8 reduces tumorigenesis of human non-small cell lung cancer in SCID mice., Journal of Clinical Investigation, vol.97, issue.12, pp.972792-2802, 1996.
DOI : 10.1172/JCI118734

D. Arenberg, P. Polverini, S. Kunkel, A. Shanafelt, J. Hesselgesser et al., The role of CXC chemokines in the regulation of angiogenesis in non-small cell lung cancer, J Leukoc Biol, vol.62, issue.5, pp.554-562, 1997.

D. Arenberg, M. Keane, B. Digiovine, S. Kunkel, S. Morris et al., Epithelial-neutrophil activating peptide (ENA-78) is an important angiogenic factor in non-small cell lung cancer., Journal of Clinical Investigation, vol.102, issue.3, pp.465-472, 1998.
DOI : 10.1172/JCI3145

. Joimel, http://www.biomedcentral.com/1471-2407/10/375 cell lung cancer: the role of CC chemokines, BMC Cancer Cancer Immunol Immunother, vol.10, issue.492, pp.37563-70, 2000.

H. Haghnegahdar, J. Du, D. Wang, R. Strieter, M. Burdick et al., The tumorigenic and angiogenic effects of MGSA/GRO proteins in melanoma, J Leukoc Biol, vol.67, issue.1, pp.53-62, 2000.

M. Keane, J. Belperio, Y. Xue, M. Burdick, and R. Strieter, Depletion of CXCR2 Inhibits Tumor Growth and Angiogenesis in a Murine Model of Lung Cancer, The Journal of Immunology, vol.172, issue.5, pp.2853-2860, 2004.
DOI : 10.4049/jimmunol.172.5.2853

R. Strieter, P. Polverini, D. Arenberg, A. Walz, G. Opdenakker et al., Role of C-X-C chemokines as regulators of angiogenesis in lung cancer, J Leukoc Biol, vol.57, issue.5, pp.752-762, 1995.

R. Strieter, M. Burdick, J. Mestas, B. Gomperts, M. Keane et al., Cancer CXC chemokine networks and tumour angiogenesis, European Journal of Cancer, vol.42, issue.6, pp.768-778, 2006.
DOI : 10.1016/j.ejca.2006.01.006

D. Smith, E. Galkina, K. Ley, and Y. Huo, GRO family chemokines are specialized for monocyte arrest from flow, AJP: Heart and Circulatory Physiology, vol.289, issue.5, pp.1976-1984, 2005.
DOI : 10.1152/ajpheart.00153.2005

N. Lukacs, C. Hogaboam, S. Kunkel, S. Chensue, M. Burdick et al., Mast cells produce ENA-78, which can function as a potent neutrophil chemoattractant during allergic airway inflammation, J Leukoc Biol, issue.6, pp.63746-751, 1998.

M. Remedi, A. Donadio, and G. Chiabrando, Polymorphonuclear cells stimulate the migration and metastatic potential of rat sarcoma cells, International Journal of Experimental Pathology, vol.61, issue.1, pp.44-51, 2009.
DOI : 10.1111/j.1365-2613.2008.00628.x

Y. Li, L. Hsieh, R. Tang, S. Liao, and K. Yeh, Interleukin-6 (IL-6) released by macrophages induces IL-6 secretion in the human colon cancer HT-29 cell line, Human Immunology, vol.70, issue.3, pp.151-158, 2009.
DOI : 10.1016/j.humimm.2009.01.004

F. Martinez, S. Gordon, M. Locati, and A. Mantovani, Transcriptional Profiling of the Human Monocyte-to-Macrophage Differentiation and Polarization: New Molecules and Patterns of Gene Expression, The Journal of Immunology, vol.177, issue.10, pp.7303-7311, 2006.
DOI : 10.4049/jimmunol.177.10.7303

Q. Pan, L. Bao, and S. Merajver, Tetrathiomolybdate inhibits angiogenesis and metastasis through suppression of the NFkappaB signaling cascade, Mol Cancer Res, vol.1, issue.10, pp.701-706, 2003.

M. Sproull, M. Brechbiel, and K. Camphausen, Antiangiogenic therapy through copper chelation, Expert Opinion on Therapeutic Targets, vol.4, issue.3, pp.405-409, 2003.
DOI : 10.7326/0003-4819-99-3-314

G. Brewer and S. Merajver, Cancer Therapy With Tetrathiomolybdate: Antiangiogenesis by Lowering Body Copper???A Review, Integrative Cancer Therapies, vol.94, issue.2, pp.327-337, 2002.
DOI : 10.1177/1534735402238185

V. Goodman, G. Brewer, and S. Merajver, Copper deficiency as an anti-cancer strategy, Endocrine Related Cancer, vol.11, issue.2, pp.255-263, 2004.
DOI : 10.1677/erc.0.0110255

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.320.704

S. Lowndes and A. Harris, The Role of Copper in Tumour Angiogenesis, Journal of Mammary Gland Biology and Neoplasia, vol.440, issue.3, pp.299-310, 2005.
DOI : 10.1007/s10911-006-9003-7

B. Hassouneh, M. Islam, T. Nagel, Q. Pan, S. Merajver et al., Tetrathiomolybdate promotes tumor necrosis and prevents distant metastases by suppressing angiogenesis in head and neck cancer, Molecular Cancer Therapeutics, vol.6, issue.3, pp.1039-1045, 2007.
DOI : 10.1158/1535-7163.MCT-06-0524

A. Carpenter, A. Rassam, M. Jennings, S. Robinson-jackson, and J. Alexander, Erkuran-Yilmaz C: Effects of ammonium tetrathiomolybdate, an oncolytic/ angiolytic drug on the viability and proliferation of endothelial and tumor cells, Inflamm Res, issue.12, pp.56515-519, 2007.

J. Juarez, O. Betancourt, S. Pirie-shepherd, X. Guan, M. Price et al., Donate F: Copper binding by tetrathiomolybdate attenuates angiogenesis and tumor cell proliferation through the inhibition of superoxide dismutase 1, Clin Cancer Res, issue.16, pp.124974-4982, 2006.