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Abstract. The segmentation of the surgical workflow might be helpful for 
providing context-sensitive user interfaces, or generating automatic report. Our 
approach focused on the automatic recognition of surgical phases by 
microscope image classification. Our workflow, including images features 
extraction, image database labelisation, Principal Component Analysis (PCA) 
transformation and 10-fold cross-validation studies was performed on a specific 
type of neurosurgical intervention, the pituitary surgery. Six phases were 
defined by an expert for this type of intervention. We thus assessed machine 
learning algorithms along with the data dimension reduction. We finally kept 40 
features from the PCA and found a best correct classification rate of the 
surgical phases of 82% with the multiclass Support Vector Machine. 
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1   Introduction 

With the increased number of technological tools incorporate in the OR, the need for 
new computer-assisted systems has emerged [1]. Moreover, surgeons have to deal 
with adverse events during operations, coming from the patient itself but also from 
the operation management. The idea is to limit and be aware of these difficulties, and 
to better handle risks situations as well as to relieve surgeon’s responsibilities. The 
purpose of recent works is not to substitute medical staff in the OR but to increase 
medical safety and support decision making. One solution is to assist surgeries 
through the understanding of operating room activities, which could be introduce in 
current surgical management systems. It could be useful for OR management 
optimization, providing context-sensitive user interfaces or generating automatic 
reports. Thus, surgical workflow recovery as well as surgical process modelling has 
gained much interest during the past decade. 



Neumuth et al. [2] defined Surgical Process (SP) as a set of one or more linked 
procedures or activities that realize a surgical objective. Surgical Process Models 
(SPMs) are simply defined by models of surgical interventions. A detailed SPM may 
help in understanding the procedure by giving specific information of the intervention 
course. Applications of SPMs are the evaluation of surgeons (training and learning), 
system comparison, procedures documentations and surgical feedbacks. As Jannin et 
al. [3] mentioned, the modeling must address behavioral, anatomical, pathological 
aspects and surgical instruments. They also defined surgical workflow, which relates 
to the performance of a SP with support of a workflow management system.  

Teams have understood the necessity of real-time information extraction for the 
creation of complex surgeries models. The difference in the level of granularity for 
the extraction process allows deriving complementary numeric models for workflow 
recovery. Thus, data extraction is performed either from a human sight or from sensor 
devices. In this context, different methods have been recently used for data 
acquisition: patient specific procedures description [2-4], interview of the surgeons 
[5], sensor-based methods [6-16], using fixed protocols created by expert surgeons 
[17], or combination between them [18]. 

Within sensor-based approaches, Padoy et al. [6] segmented the surgical workflow 
into phases based on temporal synchronization of multidimensional state vectors, 
using Dynamic Time Warping (DTW) and Hidden Markov Models (HMMs). These 
algorithms permit to recognize patterns and extract knowledge. Signals recorded were 
binary vectors indicating the instrument presence.  

At a lower level, the force/torque signals of the laparoscopic instruments recorded 
during a suturing task can be learned with HMMs [7]. Close to this work, Lin et al. 
[8] also trained HMMs to automatically segment motion data during a suturing task 
perform with the Da Vinci robot. With the same robot, Voros and Hager [9] used 
kinematic and visual features to classify tool/tissue interactions in real-time. Their 
work was a first step towards intelligent intraoperative surgical system. Recent work 
of Ahmadi et al. [10] used accelerometers placed on the operator along with motif 
discovery technique to identify alphabets of surgical activity. Models of gestures 
relied on tools only and motions may not be well segmented with rare movements. 

Using others data extraction techniques, Bhatia et al. [11] analyzed OR global view 
videos for better management, whereas Xiao et al. [12] implemented a system that 
record patient vital signs in order to situate the intervention process. James et al. [13] 
installed an eye-gaze tracking system on the surgeon combined with visual features to 
detect one important phase. Nara et al. [14] introduced an ultrasonic location aware 
system that continuously tracks 3-D positions of the surgical staff. Results on 
identifying key surgical events were presented. For the construction of a context-
aware system, Speidel et al. [15] used laparoscopic videos to create a situation 
recognition process. In their work, they focused on risk situation for surgical 
assistance. Finally, Sanchez-Gonzales et al. [16] extracted useful information from 
videos such as 3D map to help surgeons performing operating techniques.  

Our project is based on the extraction of information from digital microscope 
videos. It permits not only to avoid the installation of supplementary materials in the 
OR, but also to have a source of information that has not to be controlled by human. 
Computer vision techniques bring processing algorithms to transform images and 
videos into a new representation that can be further used for machine learning 



techniques (supervised or non-supervised classification). We decided in a first phase 
to use image from videos (called frames) in a static way without taking into account 
the motion. The problem is thus reduced to an image classification problem. Even 
with this restriction, technical possibilities remain very large. We focused on the 
automatic recognition of surgical phases and validated our methodology with a 
specific type of neurosurgical interventions.  

2   Materials and Methods 

We evaluated our algorithm on pituitary adenoma surgeries [19]. It's tumors that 
occur in the pituitary gland and which are representing around ten percent of all intra-
cranial tumour removals. Neurosurgeons mostly use a direct transnasal approach, 
where an incision is made in the back wall of the nose. Rarely, a craniotomy is 
required. In this work all surgeries were performed according to the first approach.  

2.1   Data 

Our project is currently composed of 16 entire pituitary surgeries (mean time of 
surgeries: 50min), all performed in Rennes by three expert surgeons. Videos were 
recorded using the surgical microscope OPMI Pentero (Carl Zeiss). The initial video 
resolution was 768 x 576 pixels at 33 frames per second. Recordings were obtained 
from nasal incision until compress installation (corresponding to the microscope use). 
From these videos, we randomly extracted 400 images which were supposed to 
correctly represent the six phases of an usual pituitary surgery. These phases, which 
were validated by an expert surgeon, are: nasal incision, nose retractors installation, 
access to the tumor along with tumor removal, column of nose replacement, suturing 
and nose compress installation (Fig. 1). Each image of the database was manually 
labeled with its corresponding surgical phase.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. Example of typical digital microscope images for the six phases: 1) nasal incision, 2) 
nose retractors installation, 3) access to the tumor along with tumor removal, 4) column of nose 
replacement, 5) suturing, 6) nose compress installation. 



2.2   Feature extraction 

We defined for each image a feature vector that represented a signature. Images 
signatures are composed of three main information that usually describe an image: the 
color, the texture and the form.  

The color has been extracted with two complementary spaces [20]: RGB space (3 x 
16 bins) along with Hue (30 bins) and Saturation (32 bins) from HSV space. 

The texture has been extracted with the co-occurrence matrix along with Haralick 
descriptors [21]. The co-occurrence matrix is used to describe the patterns of 
neighboring pixels in an image I at a given distance. Mathematically, the matrixC is 
defined over an imagen xm and an offset: 
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Four such matrices are needed for different orientations (horizontal, vertical and 
two diagonal directions). A kind of invariance was achieved by taking into account 
the four matrices. Haralick descriptors were then used by computing the contrast, the 
correlation, the angular second moment, the variance of the sum of squares, the 
moment of the inverse difference, the sum average, the sum variance, the sum 
entropy, the difference of variance, the difference of entropy, and the maximum 
correlation coefficient of the co-occurrence matrix. 

The form was represented with spatial moments [22], which describe the spatial 
distribution of values. For a grayscale image the moments ji,M are calculated by:  
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The 10 first moments were included in the signatures. 
We then computed the Discrete Cosine Transform (DCT) [23] coefficients 

pqB that reflect the compact energy of different frequencies. DCT is calculated by: 
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The pqB coefficients of upper left corner represent visual information of lower 
intensities, whereas the higher frequency information is gathered at right lower corner 
of the block. Most of the energy is located in the low frequency area, that's why we 
took the 25 features of the upper left corner.  

Each signature was finally composed of 185 complementary features.  



2.3   Data reduction 

Original frames were first downsampled by a factor of 8 with a 5-by-5 Gaussian 
kernel (internal studies have shown that until this downsampling rate, it had no impact 
on the classification process). After features extraction, we performed a statistical 
normalization. On each feature value we subtracted the mean and divided by the 
variance. After normalization, data closely followed a normal distribution (mean=0 
and standard deviation=1) and were more easily used for data variations comparisons. 

In order to decrease the data dimension, and knowing that too many features can 
decrease the correct classification rate, we also performed a Principal Component 
Analysis (PCA) [24]. PCA is a statistical method used to decrease the data dimension 
while retaining as much as possible of the variation present in the data set to process 
the data faster and effective. Fig. 3 shows the extracted cumulative variance. 

2.4   Cross-validation 

With the image data-base we are now able to train models by using machine learning 
techniques. We performed a study to find the most appropriate algorithm. We tested 
multiclass Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Neural 
Networks (NN), decision tree and Linear Discriminant Analysis (LDA).   

The goal of SVM is to find the optimal hyperplane that separates the data into two 
categories. The multiclass SVMs [25] extends it into a K-class problem, by 
constructing K binary linear SVMs. The KNN algorithm (used with the Euclidean 
distance) is the simplest method for classification. Each point in the space is assigned 
to the class C if it is the most frequent class label among the k-nearest training 
samples. NN [26] are non-linear statistical methods based on biological neural 
networks. They are often used to model complex relationships between inputs and 
outputs. We used it in a supervised way with a back-propagation neural network. The 
decision tree is a quick classification algorithm where each internal node tests an 
attribute. It is specially used when data are noised and classes are discrete. Finally, the 
LDA is based on a Fisher analysis. It is a linear combination of features that best 
separate two or more classes. 

Algorithms were evaluated with a random 10-fold cross-validation study [27]. The 
data-set was divided into 10 random subsets. Nine were used for training while the 
prediction is made on the 10th subset. This procedure was repeated 10 times and 
correct classification rates were averaged. In addition, the cross-validation study 
allows computing the sensitivity and the specificity. The specificity is defined by: 

FP+TN
TN=Spe  and the sensitivity is defined by 

FN+TP
TP=Sen , where FP is 

False Positive, TP is True Positive, FN is false Negative and TN is True Negative. 
The cross-validation was computed for each algorithm but also for each number of 

principal components used in order to keep the best classification algorithm and to 
decide how many principal components we had to take.  



3   Results 

Fig. 2 shows the cross-validation study. Multiclass SVMs and LDA give best results. 
For both algorithms the correct classification rate increase until 40 principal 
components and then LDA decreases while SVMs stays at a higher recognition rate. 
From 30 principal components, correct classification rates of the NN and KNN are 
almost unchanging, but their best scores are significantly lower than for SVM and 
LDA. Finally, the decision tree gives the worst results compare to other classifiers. 
 

 
 
Fig. 2. Correct classification rate of the surgical phases with five different algorithms, 
according to the number of principal components. 
 
We decided to keep 40 principal components, which represent 91.5% of the energy of 
all the data set (Fig. 3). With these features we obtained accurate statistical results:  

Table 1.  Correct classification rate (accuracy), sensitivity and specificity of classification 
algorithms. Image signatures are composed of the 40 first principal components.  

Algorithms Accuracy Sensitivity Specificity 
Multiclass SVMs 82.2% 78.7% 98.1% 
KNN 74.7% 66.0% 95.4% 
Neural Network 71.3% 65.1% 92.8% 
Decision tree 66.2% 52.3% 94.0% 
LDA 81.5% 77.0% 97.6% 

 
We can see from Tab. 1 that specificity is always upper than sensitivity for all 

algorithms. Not surprisingly, multiclass SVMs obtained best sensitivity (78.7%) and 
specificity (98.1%) whereas the decision tree shows its limits (specificity: 52.3%).  



The computation time of the classification process of one image (feature extraction 
+ data transformation + classification) was less than 0.5s. We didn't take into account 
the computation time of the learning database, considering that it was done off-line. 

 

 
 

Fig. 3. Cumulative variance of the Principal Component Analysis. 

4   Discussion 

Our global workflow, including image database labelisation, features extraction, PCA, 
and cross-validation studies make possible the extraction of discriminant image 
features for each phase. After experiments, we finally kept 40 principal components 
for a best correct classification rate of the surgical phases of 82% with SVMs. 

4.1   Images database 

The performance is strongly linked to the diversity and the power of discrimination of 
the database. We can easily imagine that accuracy may sorely decrease if images are 
not efficiently representing all phases or all scene possibilities within phases. 

There are other limitations to this type of study. The image database may not be 
adaptable to other neurosurgery departments, due to the difference of materials and 
equipment in each department. For instance, the color of surgical tissue in Rennes 
may be different elsewhere and the corresponding features would completely affect 
the training process. The solution would be to train specific image databases for each 
department which would be well adapted to the surgical environment. The idea would 
also be to have several databases for each type of procedure with specific phases. For 
other departments and/or surgeries, discriminant images features may differ, which 
would require adapting the feature extraction process by launching identical studies. 



Other factors of variability within the data-set can affect the recognition. For instance, 
differences can be found in the way that surgeons are working or in patient specific 
surgery. Ideally, one database should be created for each department, associated with 
each type of surgery and each surgeon. 

4.2   Explanation of classification errors 

We decided to fuse the initial possible phases “access to the tumor” and “tumor 
removal” because for this type of surgical procedure it's currently hard to distinguish 
them only with image features. The transition between both is not clearly defined due 
to similar tools and same microscope zooms used while performing these tasks.  

The correct classification rate includes the results of the cross-validation study for 
the six phases. From these results, we noticed frequent confusions mainly between 
phase n°3 and n°4, and also between n°1 and n°5. These errors are explained by the 
very close image features of these phases. Same microscope zooms, along with 
similar colors and same surgical instruments make the recognition task very difficult. 
One solution of this issue would be to integrate one other signal: the surgery time. 
This information would for instance permit to correctly recognize an image originally 
identified as part of phase n°5 or part of phase n°1. On the other hand it would still be 
hard to separate consecutive phases. 

4.3   Classification algorithms 

In this study (Fig. 2), multiclass SVMs and LDA gave the best correct classification 
rates. SVMs have been used in a linear way and are known to have good 
generalization properties that permit to outperform classical algorithms. LDA, used as 
a classifier, is like many others optimal when the features have a normal distribution 
(true in our case after normalization). On the opposite, the decision tree, NN and 
KNN gave worse results. Decision trees are often instable, especially with small 
changes in the training samples. Our data-set was probably too variable (in color, 
texture...) and not enough discriminant to train accurate models with decision trees. 
While KNN is generally outperformed by other classifiers, it may be well interesting 
because of its simplicity and flexibility. Nevertheless, our results showed that it was 
not suitable for our data-set. Concerning NNs, it was quite surprising regarding their 
capabilities to improve their performances when the amount of data increases. Non-
linear algorithms are generally more suitable for complex systems, which is not the 
case here. On the opposite, linear ones are more straightforward and easy to use, that's 
why it seems that they are more adaptable for our system.  

The correct classification rates for SVMs, KNN and NN are almost constant until 
185 features, whereas accuracy of the decision tree and especially LDA decrease. 
This is due to the high dimension of inputs which usually decreases results of 
classifiers. It's also the reason why we only kept 40 features for images signatures. If 
PCA would not have been performed, we would only have obtained an accuracy of 
78% (with KNN), which demonstrated the usefulness of this step in our workflow. 



According to Tab. 1, most of the difference between classifiers is made by 
sensitivities, which are lower than specificities. A high specificity is due to the 
absence of FP (image belonging to phase x not identified as part of phase x), whereas 
a low sensitivity is due to a high FN rate (image not belonging to phase x identified as 
part of phase x). Thus the challenge in the future would be to increase FN rates.  

In presence of unexpected events, such as bleeding or brutal microscope move, the 
specificity sensibly decreases and thus affects global accuracy. Such situations, as 
being unpredictable, are a high limitation to the classification from static images only. 
One solution of this issue, not implemented yet, would be to detect such images 
(containing features that are very different from the others, and therefore easily 
detectable) and to take into account the recognized phase of the precedent image. 

4.4  Applications 

The idea is to assist surgeries through the understanding of operating room activities. 
This work could be integrated in an intelligent architecture that extracts microscope 
images and transform it in a decision making process. The purpose would be to bring 
a plus-value to the OR management (as in [10]) and to the surgery (as in [14]). For 
now, even with a low on-line computation time (< 0.5s), the best obtained correct 
classification rate is certainly not accurate enough to be included in such systems. For 
intra-operative clinical applications, accuracy must definitively be higher than our 
results before establishing on-line surgical phases detection. 

However, with the present methodology, the system could be introduced in the 
surgical routine as an help for post-operative indexation of videos. Surgical videos are 
very useful for learning and teaching purposes, but surgeons often don't use them 
because of the huge amount of surgical videos, the lack of data organization and 
storage. The created video data-base would contain relevant surgical phases of each 
procedure for easy browsing. Moreover, we could imagine the creation of post-
operative reports, automatically pre-filled by recognized events that will have to be 
further completed by surgeons themselves. For such clinical applications, even with 
few errors, the automatic indexation would be relevant, as there is no need of perfect 
detection and it has no impact on the surgery itself.  

We deliberately remain at a high level of granularity with the recognition of global 
phases. The recognition of lower level information, such as surgical gestures, is very 
difficult (almost impossible) only with images. Other computer vision techniques 
(such as tracking) or specific video processing methods (such as spatio-temporal 
features extraction) will have to be inserted and mixed for dynamic information 
extraction.  

5   Conclusion 

With this large labeled images database, we are now able to recognize surgical phases 
of every unknown image, by computing his signature and then simulating with 
machine learning techniques. We have validated our methodology with a specific type 
of neurosurgery, but it can easily be extended to other type of interventions. With this 



recognition process, it's a first step toward the construction of a context-aware 
surgical system. Currently this work could be used for post-operative video 
indexation as a help for surgeons. Image features will have to be mixed with other 
type of information to generate a more robust and accurate recognition system. Other 
methods usually used by the computer vision community (segmentation, tracking) 
could also be integrated in future works in order to bring complementary features. 
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