B. Curtis and W. Catterall, Purification of the calcium antagonist receptor of the voltage-sensitive calcium channel from skeletal muscle transverse tubules, Biochemistry, vol.23, issue.10, pp.2113-2118, 1984.
DOI : 10.1021/bi00305a001

M. Fosset, E. Jaimovich, E. Delpont, and M. Lazdunski, [3H]nitrendipine receptors in skeletal muscle, J Biol Chem, vol.258, pp.6086-6092, 1983.

M. Inui, A. Saito, and S. Fleischer, Isolation of the ryanodine receptor from cardiac sarcoplasmic reticulum and identity with the feet structures, J Biol Chem, vol.262, pp.15637-15642, 1987.

D. Maclennan and P. Wong, Isolation of a Calcium-Sequestering Protein from Sarcoplasmic Reticulum, Proceedings of the National Academy of Sciences, vol.68, issue.6, pp.1231-1235, 1971.
DOI : 10.1073/pnas.68.6.1231

S. Chen, L. Zhang, and D. Maclennan, Asymmetrical blockade of the Ca2+ release channel (ryanodine receptor) by 12-kDa FK506 binding protein., Proceedings of the National Academy of Sciences, vol.91, issue.25, pp.11953-11957, 1994.
DOI : 10.1073/pnas.91.25.11953

A. Tripathy, L. Xu, G. Mann, and G. Meissner, Calmodulin activation and inhibition of skeletal muscle Ca2+ release channel (ryanodine receptor), Biophysical Journal, vol.69, issue.1
DOI : 10.1016/S0006-3495(95)79880-0

D. Maclennan, C. Brandl, B. Korczak, and N. Green, Amino-acid sequence of a Ca2+ + Mg2+ -dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence, Nature, vol.174, issue.6030, pp.696-700, 1985.
DOI : 10.1038/316696a0

M. Fill and J. Copello, Ryanodine Receptor Calcium Release Channels, Physiological Reviews, vol.82, issue.4, pp.893-922, 2002.
DOI : 10.1152/physrev.00013.2002

S. Krolenko, W. Amos, S. Brown, M. Tarunina, and J. Lucy, Accessibility of Ttubule vacuoles to extracellular dextran and DNA: mechanism and potential application of vacuolation, J Muscle Res Cell Motil, vol.19, pp.603-611, 1998.

S. Krolenko and J. Lucy, Reversible vacuolation of T-tubules in skeletal muscle: Mechanisms and implications for cell biology, Int Rev Cytol, vol.202, pp.243-298, 2001.
DOI : 10.1016/S0074-7696(01)02006-X

S. Krolenko and S. Adamian, Stereologic analysis of vacuolization of the Tsystem of frog muscle fibers, detected using confocal fluorescence microscopy], Tsitologiia, vol.42, pp.1125-1133, 2000.

S. Krolenko and J. Lucy, VACUOLATION IN T-TUBULES AS A MODEL FOR TUBULAR-VESICULAR TRANSFORMATIONS IN BIOMEMBRANE SYSTEMS, Cell Biology International, vol.26, issue.10, pp.893-904, 2002.
DOI : 10.1006/cbir.2002.0945

J. Lannergren, J. Bruton, and H. Westerblad, Vacuole formation in fatigued single muscle fibres from frog and mouse, Journal of Muscle Research & Cell Motility, vol.20, issue.1, pp.19-32, 1999.
DOI : 10.1023/A:1005412216794

W. Kilarski and M. Jakubowska, An electron microscope study of myofibril formation in embryonic rabbit skeletal muscle, Z Mikrosk Anat Forsch, vol.93, pp.1159-1181, 1979.

A. Luff and H. Atwood, CHANGES IN THE SARCOPLASMIC RETICULUM AND TRANSVERSE TUBULAR SYSTEM OF FAST AND SLOW SKELETAL MUSCLES OF THE MOUSE DURING POSTNATAL DEVELOPMENT, The Journal of Cell Biology, vol.51, issue.2, pp.369-383, 1971.
DOI : 10.1083/jcb.51.2.369

D. Rossi, V. Barone, E. Giacomello, V. Cusimano, and V. Sorrentino, The Sarcoplasmic Reticulum: An Organized Patchwork of Specialized Domains, Traffic, vol.583, issue.7, pp.1044-1049, 2008.
DOI : 10.1242/jcs.001016

H. Takekura, B. Flucher, and C. Franzini-armstrong, Sequential Docking, Molecular Differentiation, and Positioning of T-Tubule/SR Junctions in Developing Mouse Skeletal Muscle, Developmental Biology, vol.239, issue.2, pp.204-214, 2001.
DOI : 10.1006/dbio.2001.0437

B. Flucher, H. Takekura, and C. Franzini-armstrong, Development of the Excitation-Contraction Coupling Apparatus in Skeletal Muscle: Association of Sarcoplasmic Reticulum and Transverse Tubules with Myofibrils, Developmental Biology, vol.160, issue.1, pp.135-147, 1993.
DOI : 10.1006/dbio.1993.1292

V. Cusimano, F. Pampinella, E. Giacomello, and V. Sorrentino, Assembly and dynamics of proteins of the longitudinal and junctional sarcoplasmic reticulum in skeletal muscle cells, Proceedings of the National Academy of Sciences, vol.106, issue.12, pp.4695-4700, 2009.
DOI : 10.1073/pnas.0810243106

C. Franzini-armstrong, Simultaneous maturation of transverse tubules and sarcoplasmic reticulum during muscle differentiation in the mouse, Developmental Biology, vol.146, issue.2, pp.353-363, 1991.
DOI : 10.1016/0012-1606(91)90237-W

M. Lisanti, P. Scherer, Z. Tang, and M. Sargiacomo, Caveolae, caveolin and caveolin-rich membrane domains: a signalling hypothesis, Trends in Cell Biology, vol.4, issue.7, pp.231-235, 1994.
DOI : 10.1016/0962-8924(94)90114-7

E. Smart, G. Graf, M. Mcniven, W. Sessa, J. Engelman et al., Caveolins, Liquid-Ordered Domains, and Signal Transduction, Molecular and Cellular Biology, vol.19, issue.11, pp.7289-7304, 1999.
DOI : 10.1128/MCB.19.11.7289

P. Scherer, T. Okamoto, M. Chun, I. Nishimoto, H. Lodish et al., Identification, sequence, and expression of caveolin-2 defines a caveolin gene family., Proceedings of the National Academy of Sciences, vol.93, issue.1, pp.131-135, 1996.
DOI : 10.1073/pnas.93.1.131

Z. Tang, P. Scherer, T. Okamoto, K. Song, C. Chu et al., Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle, J Biol Chem, vol.271, pp.2255-2261, 1996.

K. Song, S. Li, T. Okamoto, L. Quilliam, M. Sargiacomo et al., Copurification and direct interaction of Ras with caveolin, an integral membrane protein of caveolae microdomains. Detergent-free purification of caveolae microdomains, J Biol Chem, vol.271, pp.9690-9697, 1996.

R. Parton, M. Way, N. Zorzi, and E. Stang, Caveolin-3 Associates with Developing T-tubules during Muscle Differentiation, The Journal of Cell Biology, vol.8, issue.1, pp.137-154, 1997.
DOI : 10.1083/jcb.64.3.734

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2132459

C. Minetti, F. Sotgia, C. Bruno, P. Scartezzini, P. Broda et al., Mutations in the caveolin-3 gene cause autosomal dominant limb-girdle muscular dystrophy, Nature Genetics, vol.44, issue.4, pp.365-368, 1998.
DOI : 10.1007/s004390050377

R. Betz, B. Schoser, D. Kasper, K. Ricker, A. Ramirez et al., Mutations in CAV3 cause mechanical hyperirritability of skeletal muscle in rippling muscle disease, Nature Genetics, vol.28, issue.3, pp.218-219, 2001.
DOI : 10.1038/90050

T. Hayashi, T. Arimura, K. Ueda, H. Shibata, S. Hohda et al., Identification and functional analysis of a caveolin-3 mutation associated with familial hypertrophic cardiomyopathy, Biochemical and Biophysical Research Communications, vol.313, issue.1, pp.178-184, 2004.
DOI : 10.1016/j.bbrc.2003.11.101

M. Vatta, M. Ackerman, B. Ye, J. Makielski, E. Ughanze et al., Mutant Caveolin-3 Induces Persistent Late Sodium Current and Is Associated With Long-QT Syndrome, Circulation, vol.114, issue.20, pp.2104-2112, 2006.
DOI : 10.1161/CIRCULATIONAHA.106.635268

P. Vaghy, J. Fang, W. Wu, and L. Vaghy, Increased caveolin-3 levels in mdx mouse muscles, FEBS Letters, vol.90, issue.1, pp.125-127, 1998.
DOI : 10.1016/S0014-5793(98)00738-8

F. Galbiati, J. Engelman, D. Volonte, X. Zhang, C. Minetti et al., Caveolin-3 Null Mice Show a Loss of Caveolae, Changes in the Microdomain Distribution of the Dystrophin-Glycoprotein Complex, and T-tubule Abnormalities, Journal of Biological Chemistry, vol.276, issue.24, pp.21425-21433, 2001.
DOI : 10.1074/jbc.M100828200

F. Galbiati, D. Volonte, J. Chu, M. Li, S. Fine et al., Transgenic overexpression of caveolin-3 in skeletal muscle fibers induces a Duchenne-like muscular dystrophy phenotype, Proceedings of the National Academy of Sciences, vol.97, issue.17, pp.9689-9694, 2000.
DOI : 10.1073/pnas.160249097

A. Carozzi, E. Ikonen, M. Lindsay, and R. Parton, Role of Cholesterol in Developing T-Tubules: Analogous Mechanisms for T-Tubule and Caveolae Biogenesis, Traffic, vol.392, issue.4, pp.326-341, 2000.
DOI : 10.1034/j.1600-0854.2000.010406.x

M. Rosemblatt, C. Hidalgo, C. Vergara, and N. Ikemoto, Immunological and biochemical properties of transverse tubule membranes isolated from rabbit skeletal muscle, J Biol Chem, vol.256, pp.8140-8148, 1981.

A. Nicot, A. Toussaint, V. Tosch, C. Kretz, C. Wallgren-pettersson et al., Mutations in amphiphysin 2 (BIN1) disrupt interaction with dynamin 2 and cause autosomal recessive centronuclear myopathy, Mutations in amphiphysin 2 (BIN1) disrupt interaction with dynamin 2 and cause autosomal recessive centronuclear myopathy, pp.1134-1139, 2007.
DOI : 10.1093/nar/16.1.369

URL : https://hal.archives-ouvertes.fr/hal-00189145

E. Lee, M. Marcucci, L. Daniell, M. Pypaert, O. Weisz et al., Amphiphysin 2 (Bin1) and T-Tubule Biogenesis in Muscle, Science, vol.297, issue.5584, pp.1193-1196, 2002.
DOI : 10.1126/science.1071362

A. Ramjaun and P. Mcpherson, Multiple Amphiphysin II Splice Variants Display Differential Clathrin Binding: Identification of Two Distinct Clathrin-Binding Sites, Journal of Neurochemistry, vol.70, issue.6, pp.2369-2376, 1998.
DOI : 10.1046/j.1471-4159.1998.70062369.x

R. Wechsler-reya, K. Elliott, and G. Prendergast, A Role for the Putative Tumor Suppressor Bin1 in Muscle Cell Differentiation, Molecular and Cellular Biology, vol.18, issue.1, pp.566-575, 1998.
DOI : 10.1128/MCB.18.1.566

M. Bitoun, S. Maugenre, P. Jeannet, E. Lacene, X. Ferrer et al., Mutations in dynamin 2 cause dominant centronuclear myopathy, Mutations in dynamin 2 cause dominant centronuclear myopathy, pp.1207-1209, 2005.
DOI : 10.1083/jcb.100.1.35

URL : https://hal.archives-ouvertes.fr/hal-00187451

K. Takei, V. Slepnev, V. Haucke, D. Camilli, and P. , Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis, Nat Cell Biol, vol.1, pp.33-39, 1999.

C. Kojima, A. Hashimoto, I. Yabuta, M. Hirose, S. Hashimoto et al., Regulation of Bin1 SH3 domain binding by phosphoinositides, The EMBO Journal, vol.18, issue.22, pp.4413-4422, 2004.
DOI : 10.1128/MCB.20.11.3906-3917.2000

A. Razzaq, I. Robinson, H. Mcmahon, J. Skepper, Y. Su et al., Amphiphysin is necessary for organization of the excitation-contraction coupling machinery of muscles, but not for synaptic vesicle endocytosis in Drosophila, Genes & Development, vol.15, issue.22, pp.2967-2979, 2001.
DOI : 10.1101/gad.207801

A. Toussaint, B. Cowling, K. Hnia, M. Mohr, A. Oldfors et al., Defects in amphiphysin 2 (BIN1) and triads in several forms of centronuclear myopathies, Acta Neuropathologica, vol.18, issue.2, pp.253-266, 2011.
DOI : 10.1007/s00401-010-0754-2

A. Muller, J. Baker, J. Duhadaway, K. Ge, G. Farmer et al., Targeted Disruption of the Murine Bin1/Amphiphysin II Gene Does Not Disable Endocytosis but Results in Embryonic Cardiomyopathy with Aberrant Myofibril Formation, Molecular and Cellular Biology, vol.23, issue.12, pp.4295-4306, 2003.
DOI : 10.1128/MCB.23.12.4295-4306.2003

R. Bashir, S. Britton, T. Strachan, S. Keers, E. Vafiadaki et al., A gene related to Caenorhabditis elegans spermatogenesis factor fer-1 is mutated in limb-girdle muscular dystrophy type 2B, Nat Genet, vol.20, pp.37-42, 1998.

J. Liu, M. Aoki, I. Illa, C. Wu, M. Fardeau et al., Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy, Nat Genet, vol.20, pp.31-36, 1998.

I. Illa, C. Serrano-munuera, E. Gallardo, A. Lasa, R. Rojas-garcia et al., Distal anterior compartment myopathy: A dysferlin mutation causing a new muscular dystrophy phenotype, Annals of Neurology, vol.10, issue.1, pp.130-134, 2001.
DOI : 10.1002/1531-8249(200101)49:1<130::AID-ANA22>3.0.CO;2-0

D. Bansal, K. Miyake, S. Vogel, S. Groh, C. Chen et al., Defective membrane repair in dysferlin-deficient muscular dystrophy, Nature, vol.5, issue.6936, pp.168-172, 2003.
DOI : 10.1083/jcb.137.3.685

L. Klinge, S. Laval, S. Keers, F. Haldane, V. Straub et al., From T-tubule to sarcolemma: damage-induced dysferlin translocation in early myogenesis, The FASEB Journal, vol.21, issue.8, pp.1768-1776, 2007.
DOI : 10.1096/fj.06-7659com

L. Klinge, J. Harris, C. Sewry, R. Charlton, L. Anderson et al., Dysferlin associates with the developing T-tubule system in rodent and human skeletal muscle, Muscle & Nerve, vol.62, issue.2, pp.166-173, 2010.
DOI : 10.1002/mus.21166

R. Bittner, L. Anderson, E. Burkhardt, R. Bashir, E. Vafiadaki et al., Dysferlin deletion in SJL mice (SJL-Dysf) defines a natural model for limb girdle muscular dystrophy 2B, Nature Genetics, vol.23, issue.2, pp.141-142, 1999.
DOI : 10.1038/13770

L. Glover, K. Newton, G. Krishnan, R. Bronson, A. Boyle et al., Dysferlin overexpression in skeletal muscle produces a progressive myopathy, Annals of Neurology, vol.67, pp.384-393, 2010.
DOI : 10.1002/ana.21926

R. Han, D. Bansal, K. Miyake, V. Muniz, R. Weiss et al., Dysferlin-mediated membrane repair protects the heart from stress-induced left ventricular injury, Journal of Clinical Investigation, vol.117, issue.7, pp.1805-1813, 2007.
DOI : 10.1172/JCI30848DS1

M. Ho, C. Post, L. Donahue, H. Lidov, R. Bronson et al., Disruption of muscle membrane and phenotype divergence in two novel mouse models of dysferlin deficiency, Human Molecular Genetics, vol.13, issue.18, pp.1999-2010, 2004.
DOI : 10.1093/hmg/ddh212

B. Ampong, M. Imamura, T. Matsumiya, M. Yoshida, and S. Takeda, Intracellular localization of dysferlin and its association with the dihydropyridine receptor, Acta Myol, vol.24, pp.134-144, 2005.

D. Hernandez-deviez, S. Martin, S. Laval, H. Lo, S. Cooper et al., Aberrant dysferlin trafficking in cells lacking caveolin or expressing dystrophy mutants of caveolin-3, Human Molecular Genetics, vol.15, issue.1, pp.129-142, 2006.
DOI : 10.1093/hmg/ddi434

D. Selcen, G. Stilling, and A. Engel, The earliest pathologic alterations in dysferlinopathy, Neurology, vol.56, issue.11, pp.1472-1481, 2001.
DOI : 10.1212/WNL.56.11.1472

S. Komazaki, M. Nishi, K. Kangawa, and H. Takeshima, Immunolocalization of mitsugumin29 in developing skeletal muscle and effects of the protein expressed in amphibian embryonic cells, Developmental Dynamics, vol.272, issue.2, pp.87-95, 1999.
DOI : 10.1002/(SICI)1097-0177(199906)215:2<87::AID-DVDY1>3.0.CO;2-Y

S. Komazaki, M. Nishi, H. Takeshima, and H. Nakamura, Abnormal formation of sarcoplasmic reticulum networks and triads during early development of skeletal muscle cells in mitsugumin29-deficient mice, Development, Growth and Differentiation, vol.9, issue.6, pp.717-723, 2001.
DOI : 10.1074/jbc.271.4.2193

M. Nishi, S. Komazaki, N. Kurebayashi, Y. Ogawa, T. Noda et al., Abnormal Features in Skeletal Muscle from Mice Lacking Mitsugumin29, The Journal of Cell Biology, vol.72, issue.7, pp.1473-1480, 1999.
DOI : 10.1073/pnas.87.24.9918

M. Brotto, R. Nagaraj, L. Brotto, H. Takeshima, J. Ma et al., Defective maintenance of intracellular Ca2+ homeostasis is linked to increased muscle fatigability in the MG29 null mice, Cell Research, vol.275, issue.1, pp.373-378, 2004.
DOI : 10.1007/s004240050744

Z. Pan, D. Yang, R. Nagaraj, T. Nosek, M. Nishi et al., Dysfunction of store-operated calcium channel in muscle cells lacking mg29, Nature Cell Biology, vol.4, issue.5, pp.379-383, 2002.
DOI : 10.1038/ncb788

C. Cai, H. Masumiya, N. Weisleder, N. Matsuda, M. Nishi et al., nucleates assembly of cell membrane repair machinery, Nat Cell Biol, vol.11, pp.5356-64, 2009.

X. Wang, W. Xie, Y. Zhang, P. Lin, L. Han et al., Cardioprotection of Ischemia/Reperfusion Injury by Cholesterol-Dependent MG53-Mediated Membrane Repair, Circulation Research, vol.107, issue.1, pp.76-83, 2010.
DOI : 10.1161/CIRCRESAHA.109.215822

C. Cai, N. Weisleder, J. Ko, S. Komazaki, Y. Sunada et al., Membrane Repair Defects in Muscular Dystrophy Are Linked to Altered Interaction between MG53, Caveolin-3, and Dysferlin, Journal of Biological Chemistry, vol.284, issue.23, pp.15894-15902, 2009.
DOI : 10.1074/jbc.M109.009589

H. Takeshima, S. Komazaki, M. Nishi, M. Iino, and K. Kangawa, Junctophilins: a novel family of junctional membrane complex proteins, Mol Cell, vol.6, pp.11-22, 2000.

S. Minamisawa, J. Oshikawa, H. Takeshima, M. Hoshijima, Y. Wang et al., Junctophilin type 2 is associated with caveolin-3 and is down-regulated in the hypertrophic and dilated cardiomyopathies, Biochemical and Biophysical Research Communications, vol.325, issue.3, pp.852-856, 2004.
DOI : 10.1016/j.bbrc.2004.10.107

S. Wei, A. Guo, B. Chen, W. Kutschke, Y. Xie et al., T-Tubule Remodeling During Transition From Hypertrophy to Heart Failure, Circulation Research, vol.107, issue.4, pp.520-531, 2010.
DOI : 10.1161/CIRCRESAHA.109.212324

S. Holmes, O. Hearn, E. Rosenblatt, A. Callahan, C. Hwang et al., A repeat expansion in the gene encoding junctophilin-3 is associated with Huntington disease-like 2, Nature Genetics, vol.29, issue.4, pp.377-378, 2001.
DOI : 10.1038/ng760

M. Nishi, H. Sakagami, S. Komazaki, H. Kondo, and H. Takeshima, Coexpression of junctophilin type 3 and type 4 in brain, Molecular Brain Research, vol.118, issue.1-2, pp.102-110, 2003.
DOI : 10.1016/S0169-328X(03)00341-3

K. Ito, S. Komazaki, K. Sasamoto, M. Yoshida, M. Nishi et al., Deficiency of triad junction and contraction in mutant skeletal muscle lacking junctophilin type 1, The Journal of Cell Biology, vol.331, issue.5, pp.1059-1067, 2001.
DOI : 10.1038/366742a0

S. Komazaki, K. Ito, H. Takeshima, and H. Nakamura, Deficiency of triad formation in developing skeletal muscle cells lacking junctophilin type 1, FEBS Letters, vol.17, issue.1-3, pp.225-229, 2002.
DOI : 10.1016/S0014-5793(02)03042-9

J. Laporte, F. Bedez, A. Bolino, and J. Mandel, Myotubularins, a large disease-associated family of cooperating catalytically active and inactive phosphoinositides phosphatases, Human Molecular Genetics, vol.12, issue.suppl 2, pp.285-292, 2003.
DOI : 10.1093/hmg/ddg273

J. Laporte, L. Hu, C. Kretz, J. Mandel, P. Kioschis et al., A gene mutated in X???linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast, Nature Genetics, vol.269, issue.2, pp.175-182, 1996.
DOI : 10.1146/annurev.physiol.53.1.201

F. Blondeau, J. Laporte, S. Bodin, G. Superti-furga, B. Payrastre et al., Myotubularin, a phosphatase deficient in myotubular myopathy, acts on phosphatidylinositol 3-kinase and phosphatidylinositol 3-phosphate pathway, Human Molecular Genetics, vol.9, issue.15, pp.2223-2229, 2000.
DOI : 10.1093/oxfordjournals.hmg.a018913

J. Schaletzky, S. Dove, B. Short, O. Lorenzo, M. Clague et al., Phosphatidylinositol-5-Phosphate Activation and Conserved Substrate Specificity of the Myotubularin Phosphatidylinositol 3-Phosphatases, Current Biology, vol.13, issue.6, pp.504-509, 2003.
DOI : 10.1016/S0960-9822(03)00132-5

G. Taylor, T. Maehama, and J. Dixon, Myotubularin, a protein tyrosine phosphatase mutated in myotubular myopathy, dephosphorylates the lipid second messenger, phosphatidylinositol 3-phosphate, Proceedings of the National Academy of Sciences, vol.97, issue.16, pp.8910-8915, 2000.
DOI : 10.1073/pnas.160255697

H. Tronchere, J. Laporte, C. Pendaries, C. Chaussade, L. Liaubet et al., Production of Phosphatidylinositol 5-Phosphate by the Phosphoinositide 3-Phosphatase Myotubularin in Mammalian Cells, Journal of Biological Chemistry, vol.279, issue.8, pp.7304-7312, 2004.
DOI : 10.1074/jbc.M311071200

A. Buj-bello, F. Fougerousse, Y. Schwab, N. Messaddeq, D. Spehner et al., AAV-mediated intramuscular delivery of myotubularin corrects the myotubular myopathy phenotype in targeted murine muscle and suggests a function in plasma membrane homeostasis, Human Molecular Genetics, vol.17, issue.14, pp.2132-2143, 2008.
DOI : 10.1093/hmg/ddn112

URL : https://hal.archives-ouvertes.fr/inserm-00311078

A. Buj-bello, V. Laugel, N. Messaddeq, H. Zahreddine, J. Laporte et al., The lipid phosphatase myotubularin is essential for skeletal muscle maintenance but not for myogenesis in mice, Proceedings of the National Academy of Sciences, vol.99, issue.23, pp.15060-15065, 2002.
DOI : 10.1073/pnas.212498399

L. Al-qusairi, N. Weiss, A. Toussaint, C. Berbey, N. Messaddeq et al., T-tubule disorganization and defective excitation-contraction coupling in muscle fibers lacking myotubularin lipid phosphatase, Proceedings of the National Academy of Sciences, vol.106, issue.44, pp.18763-18768, 2009.
DOI : 10.1073/pnas.0900705106

J. Dowling, A. Vreede, S. Low, E. Gibbs, J. Kuwada et al., Loss of Myotubularin Function Results in T-Tubule Disorganization in Zebrafish and Human Myotubular Myopathy, PLoS Genetics, vol.9, issue.2, p.1000372, 2009.
DOI : 10.1371/journal.pgen.1000372.s009

I. Ribeiro, L. Yuan, G. Tanentzapf, J. Dowling, and A. Kiger, Phosphoinositide Regulation of Integrin Trafficking Required for Muscle Attachment and Maintenance, PLoS Genetics, vol.19, issue.2, p.1001295, 2011.
DOI : 10.1371/journal.pgen.1001295.s006

J. Fujii, K. Otsu, F. Zorzato, S. De-leon, V. Khanna et al., Identification of a mutation in porcine ryanodine receptor associated with malignant hyperthermia, Science, vol.253, issue.5018, pp.448-451, 1991.
DOI : 10.1126/science.1862346

K. Otsu, V. Khanna, A. Archibald, and D. Maclennan, Cosegregation of porcine malignant hyperthermia and a probable causal mutation in the skeletal muscle ryanodine receptor gene in backcross families, Genomics, vol.11, issue.3, pp.744-750, 1991.
DOI : 10.1016/0888-7543(91)90083-Q

K. Quane, J. Healy, K. Keating, B. Manning, F. Couch et al., Mutations in the ryanodine receptor gene in central core disease and malignant hyperthermia, Nature Genetics, vol.19, issue.1, pp.51-55, 1993.
DOI : 10.1006/abio.1987.9999

Y. Zhang, H. Chen, V. Khanna, D. Leon, S. Phillips et al., A mutation in the human ryanodine receptor gene associated with central core disease, Nature Genetics, vol.28, issue.1, pp.46-50, 1993.
DOI : 10.1006/abio.1987.9999

N. Monnier, A. Ferreiro, I. Marty, A. Labarre-vila, P. Mezin et al., A homozygous splicing mutation causing a depletion of skeletal muscle RYR1 is associated with multi-minicore disease congenital myopathy with ophthalmoplegia, Human Molecular Genetics, vol.12, issue.10, pp.1171-1178, 2003.
DOI : 10.1093/hmg/ddg121

N. Clarke, L. Waddell, S. Cooper, M. Perry, R. Smith et al., Recessive mutations in RYR1 are a common cause of congenital fiber type disproportion, Human Mutation, vol.31, issue.7, pp.1544-1550, 2010.
DOI : 10.1002/humu.21278

URL : https://hal.archives-ouvertes.fr/inserm-00588144

I. Sato, S. Wu, M. Ibarra, Y. Hayashi, H. Fujita et al., Congenital neuromuscular disease with uniform type 1 fiber and RYR1 mutation, Neurology, vol.70, issue.2, pp.114-122, 2008.
DOI : 10.1212/01.wnl.0000269792.63927.86

J. Bevilacqua, N. Monnier, M. Bitoun, B. Eymard, A. Ferreiro et al., Recessive RYR1 mutations cause unusual congenital myopathy with prominent nuclear internalization and large areas of myofibrillar disorganization, Neuropathology and Applied Neurobiology, vol.19, issue.3, pp.271-284, 2011.
DOI : 10.1111/j.1365-2990.2010.01149.x

URL : https://hal.archives-ouvertes.fr/inserm-00639292

J. Wilmshurst, S. Lillis, H. Zhou, K. Pillay, H. Henderson et al., RYR1 mutations are a common cause of congenital myopathies with central nuclei, Annals of Neurology, vol.11, issue.Spec No 2, pp.1717-726, 2010.
DOI : 10.1002/ana.22119

S. Yuan, W. Arnold, and A. Jorgensen, Biogenesis of transverse tubules and triads: immunolocalization of the 1,4-dihydropyridine receptor, TS28, and the ryanodine receptor in rabbit skeletal muscle developing in situ, The Journal of Cell Biology, vol.112, issue.2, pp.289-301, 1991.
DOI : 10.1083/jcb.112.2.289

N. Chaudhari, A single nucleotide deletion in the skeletal muscle-specific calcium channel transcript of muscular dysgenesis (mdg) mice, J Biol Chem, vol.267, pp.25636-25639, 1992.

E. Felder, F. Protasi, R. Hirsch, C. Franzini-armstrong, and P. Allen, Morphology and Molecular Composition of Sarcoplasmic Reticulum Surface Junctions in the Absence of DHPR and RyR in Mouse Skeletal Muscle, Biophysical Journal, vol.82, issue.6, pp.3144-3149, 2002.
DOI : 10.1016/S0006-3495(02)75656-7

C. Franzini-armstrong, M. Pincon-raymond, and F. Rieger, Muscle fibers from dysgenic mouse in vivo lack a surface component of peripheral couplings, Developmental Biology, vol.146, issue.2, pp.364-376, 1991.
DOI : 10.1016/0012-1606(91)90238-X

J. Powell, L. Petherbridge, and B. Flucher, Formation of triads without the dihydropyridine receptor alpha subunits in cell lines from dysgenic skeletal muscle, The Journal of Cell Biology, vol.134, issue.2, pp.375-387, 1996.
DOI : 10.1083/jcb.134.2.375

H. Takekura and C. Franzini-armstrong, Correct targeting of dihydropyridine receptors and triadin in dyspedic mouse skeletal muscle in vivo, Developmental Dynamics, vol.272, issue.4, pp.372-380, 1999.
DOI : 10.1002/(SICI)1097-0177(199904)214:4<372::AID-AJA9>3.0.CO;2-Q

C. Knudson, N. Chaudhari, A. Sharp, J. Powell, K. Beam et al., Specific absence of the alpha 1 subunit of the dihydropyridine receptor in mice with muscular dysgenesis, J Biol Chem, vol.264, pp.1345-1348, 1989.

I. Marty, J. Faure, A. Fourest-lieuvin, S. Vassilopoulos, S. Oddoux et al., Triadin: what possible function 20 years later?, The Journal of Physiology, vol.45, issue.13, pp.3117-3121, 2009.
DOI : 10.1113/jphysiol.2009.171892

URL : https://hal.archives-ouvertes.fr/inserm-00410303

X. Shen, C. Franzini-armstrong, J. Lopez, L. Jones, Y. Kobayashi et al., Triadins Modulate Intracellular Ca2+ Homeostasis but Are Not Essential for Excitation-Contraction Coupling in Skeletal Muscle, Journal of Biological Chemistry, vol.282, issue.52, pp.37864-37874, 2007.
DOI : 10.1074/jbc.M705702200

R. Zhang, J. Yang, J. Zhu, and X. Xu, Depletion of zebrafish Tcap leads to muscular dystrophy via disrupting sarcomere-membrane interaction, not sarcomere assembly, Human Molecular Genetics, vol.18, issue.21, pp.4130-4140, 2009.
DOI : 10.1093/hmg/ddp362