R. Klein, T. Peto, A. Bird, and M. Vannewkirk, The epidemiology of age-related macular degeneration, American Journal of Ophthalmology, vol.137, issue.3, pp.486-495, 2004.
DOI : 10.1016/j.ajo.2003.11.069

S. Sarks, Ageing and degeneration in the macular region: a clinico-pathological study., British Journal of Ophthalmology, vol.60, issue.5, pp.324-341, 1976.
DOI : 10.1136/bjo.60.5.324

A. Bird, N. Bressler, S. Bressler, I. Chisholm, G. Coscas et al., An international classification and grading system for age-related maculopathy and age-related macular degeneration, Survey of Ophthalmology, vol.39, issue.5, pp.367-374, 1995.
DOI : 10.1016/S0039-6257(05)80092-X

T. Farkas, V. Sylvester, and D. Archer, The Ultrastructure of Drusen, American Journal of Ophthalmology, vol.71, issue.6, pp.1196-1205, 1971.
DOI : 10.1016/0002-9394(71)90963-9

G. Hageman, P. Luthert, V. Chong, N. Johnson, L. Anderson et al., An Integrated Hypothesis That Considers Drusen as Biomarkers of Immune-Mediated Processes at the RPE-Bruch's Membrane Interface in Aging and Age-Related Macular Degeneration, Progress in Retinal and Eye Research, vol.20, issue.6, pp.705-732, 2001.
DOI : 10.1016/S1350-9462(01)00010-6

R. Klein, B. Klein, M. Knudtson, S. Meuer, M. Swift et al., Fifteen-Year Cumulative Incidence of Age-Related Macular Degeneration, Ophthalmology, vol.114, issue.2, pp.253-262, 2007.
DOI : 10.1016/j.ophtha.2006.10.040

R. Van-leeuwen, C. Klaver, J. Vingerling, A. Hofman, and P. De-jong, The Risk and Natural Course of Age-Related Maculopathy, Archives of Ophthalmology, vol.121, issue.4, pp.519-526, 2003.
DOI : 10.1001/archopht.121.4.519

H. Ramkumar, J. Zhang, and C. Chan, Retinal ultrastructure of murine models of dry age-related macular degeneration (AMD), Progress in Retinal and Eye Research, vol.29, issue.3, pp.169-190, 2010.
DOI : 10.1016/j.preteyeres.2010.02.002

T. Van-der-schaft, C. Mooy, W. De-bruijn, and P. De-jong, Early stages of age-related macular degeneration: an immunofluorescence and electron microscopy study., British Journal of Ophthalmology, vol.77, issue.10, pp.657-661, 1993.
DOI : 10.1136/bjo.77.10.657

R. Mullins, S. Russell, D. Anderson, and G. Hageman, Drusen associated with aging and age-related macular degeneration contain proteins common to extracellular deposits associated with atherosclerosis, elastosis, amyloidosis, and dense deposit disease, FASEB J, vol.14, pp.835-846, 2000.

V. Luibl, J. Isas, R. Kayed, C. Glabe, R. Langen et al., Drusen deposits associated with aging and age-related macular degeneration contain nonfibrillar amyloid oligomers, Journal of Clinical Investigation, vol.116, issue.2, pp.378-385, 2006.
DOI : 10.1172/JCI25843

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1359048

L. Johnson, W. Leitner, M. Staples, and D. Anderson, Complement Activation and Inflammatory Processes in Drusen Formation and Age Related Macular Degeneration, Experimental Eye Research, vol.73, issue.6, pp.887-896, 2001.
DOI : 10.1006/exer.2001.1094

A. Edwards, R. Ritter, K. Abel, A. Manning, C. Panhuysen et al., Complement Factor H Polymorphism and Age-Related Macular Degeneration, Science, vol.308, issue.5720, pp.421-424, 2005.
DOI : 10.1126/science.1110189

J. Haines, M. Hauser, S. Schmidt, W. Scott, L. Olson et al., Complement Factor H Variant Increases the Risk of Age-Related Macular Degeneration, Science, vol.308, issue.5720, pp.419-421, 2005.
DOI : 10.1126/science.1110359

R. Klein, C. Zeiss, E. Chew, J. Tsai, R. Sackler et al., Complement Factor H Polymorphism in Age-Related Macular Degeneration, Science, vol.308, issue.5720, pp.385-389, 2005.
DOI : 10.1126/science.1109557

R. Ormsby, S. Ranganathan, J. Tong, K. Griggs, D. Dimasi et al., Functional and Structural Implications of the Complement Factor H Y402H Polymorphism Associated with Age-Related Macular Degeneration, Investigative Opthalmology & Visual Science, vol.49, issue.5, pp.1763-1770, 2008.
DOI : 10.1167/iovs.07-1297

S. Hakobyan, C. Harris, C. Van-den-berg, M. Fernandez-alonso, E. De-jorge et al., Complement Factor H Binds to Denatured Rather than to Native Pentameric C-reactive Protein, Journal of Biological Chemistry, vol.283, issue.45, pp.30451-30460, 2008.
DOI : 10.1074/jbc.M803648200

H. Xu, M. Chen, and J. Forrester, Para-inflammation in the aging retina, Progress in Retinal and Eye Research, vol.28, issue.5, pp.348-368, 2009.
DOI : 10.1016/j.preteyeres.2009.06.001

C. Combadiere, C. Feumi, R. W. Keller, N. Rodero, M. Pezard et al., CX3CR1-dependent subretinal microglia cell accumulation is associated with cardinal features of age-related macular degeneration, Journal of Clinical Investigation, vol.117, issue.10, pp.2920-2928, 2007.
DOI : 10.1172/JCI31692DS1

URL : https://hal.archives-ouvertes.fr/inserm-00176389

P. Penfold, S. Liew, M. Madigan, and J. Provis, Modulation of major histocompatibility complex class II expression in retinas with age-related macular degeneration, Invest Ophthalmol Vis Sci, vol.38, pp.2125-2133, 1997.

N. Gupta, K. Brown, and A. Milam, Activated microglia in human retinitis pigmentosa, late-onset retinal degeneration, and age-related macular degeneration, Experimental Eye Research, vol.76, issue.4, pp.463-471, 2003.
DOI : 10.1016/S0014-4835(02)00332-9

M. Nozaki, B. Raisler, E. Sakurai, J. Sarma, S. Barnum et al., Drusen complement components C3a and C5a promote choroidal neovascularization, Proceedings of the National Academy of Sciences, vol.103, issue.7, pp.2328-2333, 2006.
DOI : 10.1073/pnas.0408835103

T. Nakazawa, T. Hisatomi, C. Nakazawa, K. Noda, K. Maruyama et al., Monocyte chemoattractant protein 1 mediates retinal detachment-induced photoreceptor apoptosis, Proceedings of the National Academy of Sciences, vol.104, issue.7, pp.2425-2430, 2007.
DOI : 10.1073/pnas.0608167104

D. Espinosa-heidmann, I. Suner, E. Hernandez, D. Monroy, K. Csaky et al., Macrophage Depletion Diminishes Lesion Size and Severity in Experimental Choroidal Neovascularization, Investigative Opthalmology & Visual Science, vol.44, issue.8, pp.3586-3592, 2003.
DOI : 10.1167/iovs.03-0038

J. Ambati, A. Anand, S. Fernandez, E. Sakurai, B. Lynn et al., An animal model of age-related macular degeneration in senescent Ccl-2- or Ccr-2-deficient mice, Nature Medicine, vol.9, issue.11, pp.1390-1397, 2003.
DOI : 10.1038/nm950

X. Yi, N. Ogata, M. Komada, C. Yamamoto, K. Takahashi et al., Vascular endothelial growth factor expression in choroidal neovascularization in rats, Graefe's Archive for Clinical and Experimental Ophthalmology, vol.34, issue.5, pp.313-319, 1997.
DOI : 10.1007/BF01739641

T. Ishibashi, Y. Hata, H. Yoshikawa, K. Nakagawa, K. Sueishi et al., Expression of vascular endothelial growth factor in experimental choroidal neovascularization, Graefe's Archive for Clinical and Experimental Ophthalmology, vol.80, issue.3, pp.159-167, 1997.
DOI : 10.1007/BF00941723

C. Combadiere, S. Potteaux, M. Rodero, T. Simon, A. Pezard et al., Combined Inhibition of CCL2, CX3CR1, and CCR5 Abrogates Ly6Chi and Ly6Clo Monocytosis and Almost Abolishes Atherosclerosis in Hypercholesterolemic Mice, Circulation, vol.117, issue.13, pp.1649-1657, 2008.
DOI : 10.1161/CIRCULATIONAHA.107.745091

C. Combadiere, S. Potteaux, J. Gao, B. Esposito, S. Casanova et al., Decreased Atherosclerotic Lesion Formation in CX3CR1/Apolipoprotein E Double Knockout Mice, Circulation, vol.107, issue.7, pp.1009-1016, 2003.
DOI : 10.1161/01.CIR.0000057548.68243.42

F. Geissmann, S. Jung, and D. Littman, Blood Monocytes Consist of Two Principal Subsets with Distinct Migratory Properties, Immunity, vol.19, issue.1, pp.71-82, 2003.
DOI : 10.1016/S1074-7613(03)00174-2

J. Bazan, K. Bacon, G. Hardiman, W. Wang, K. Soo et al., A new class of membrane-bound chemokine with a CX3C motif, Nature, vol.385, issue.6617, pp.640-644, 1997.
DOI : 10.1038/385640a0

R. Ransohoff, Chemokines and Chemokine Receptors: Standing at the Crossroads of Immunobiology and Neurobiology, Immunity, vol.31, issue.5, pp.711-721, 2009.
DOI : 10.1016/j.immuni.2009.09.010

M. Silverman, D. Zamora, Y. Pan, P. Texeira, S. Baek et al., Constitutive and Inflammatory Mediator-Regulated Fractalkine Expression in Human Ocular Tissues and Cultured Cells, Investigative Opthalmology & Visual Science, vol.44, issue.4, pp.1608-1615, 2003.
DOI : 10.1167/iovs.02-0233

D. Checchin, F. Sennlaub, E. Levavasseur, M. Leduc, and S. Chemtob, Potential Role of Microglia in Retinal Blood Vessel Formation, Investigative Opthalmology & Visual Science, vol.47, issue.8, pp.3595-3602, 2006.
DOI : 10.1167/iovs.05-1522

S. Jung, J. Aliberti, P. Graemmel, M. Sunshine, G. Kreutzberg et al., Analysis of Fractalkine Receptor CX3CR1 Function by Targeted Deletion and Green Fluorescent Protein Reporter Gene Insertion, Molecular and Cellular Biology, vol.20, issue.11, pp.4106-4114, 2000.
DOI : 10.1128/MCB.20.11.4106-4114.2000

J. Tuo, B. Smith, C. Bojanowski, A. Meleth, I. Gery et al., The involvement of sequence variation and expression of CX3CR1 in the pathogenesis of age-related macular degeneration, The FASEB Journal, vol.18, pp.1297-1299, 2004.
DOI : 10.1096/fj.04-1862fje

H. Chen, B. Liu, T. Lukas, and A. Neufeld, The Aged Retinal Pigment Epithelium/Choroid: A Potential Substratum for the Pathogenesis of Age-Related Macular Degeneration, PLoS ONE, vol.98, issue.6, p.2339, 2008.
DOI : 10.1371/journal.pone.0002339.s003

A. De-vos, V. Klaren, and A. Kijlstra, Expression of multiple cytokines and IL- 1RA in the uvea and retina during endotoxin-induced uveitis in the rat, Invest Ophthalmol Vis Sci, vol.35, pp.3873-3883, 1994.

K. Yamada, E. Sakurai, M. Itaya, S. Yamasaki, and Y. Ogura, Inhibition of Laser-Induced Choroidal Neovascularization by Atorvastatin by Downregulation of Monocyte Chemotactic Protein-1 Synthesis in Mice, Investigative Opthalmology & Visual Science, vol.48, issue.4, pp.1839-1843, 2007.
DOI : 10.1167/iovs.06-1085

G. Higgins, J. Wang, P. Dockery, P. Cleary, and H. Redmond, Induction of Angiogenic Cytokine Expression in Cultured RPE by Ingestion of Oxidized Photoreceptor Outer Segments, Investigative Opthalmology & Visual Science, vol.44, issue.4, pp.1775-1782, 2003.
DOI : 10.1167/iovs.02-0742

W. Ma, L. Zhao, A. Fontainhas, R. Fariss, and W. Wong, Microglia in the Mouse Retina Alter the Structure and Function of Retinal Pigmented Epithelial Cells: A Potential Cellular Interaction Relevant to AMD, PLoS ONE, vol.4, issue.11, p.7945, 2009.
DOI : 10.1371/journal.pone.0007945.t001

I. Charo, S. Myers, A. Herman, C. Franci, A. Connolly et al., Molecular cloning and functional expression of two monocyte chemoattractant protein 1 receptors reveals alternative splicing of the carboxyl-terminal tails., Proceedings of the National Academy of Sciences, vol.91, issue.7, pp.2752-2756, 1994.
DOI : 10.1073/pnas.91.7.2752

C. Tsutsumi, K. Sonoda, K. Egashira, H. Qiao, T. Hisatomi et al., The critical role of ocular-infiltrating macrophages in the development of choroidal neovascularization, Journal of Leukocyte Biology, vol.74, issue.1, pp.25-32, 2003.
DOI : 10.1189/jlb.0902436

U. Luhmann, R. S. Munro, P. Barker, S. Duran, Y. Luong et al., -Knockout Mice Is Caused by an Accelerated Accumulation of Swollen Autofluorescent Subretinal Macrophages, Investigative Opthalmology & Visual Science, vol.50, issue.12, pp.5934-5943, 2009.
DOI : 10.1167/iovs.09-3462

URL : https://hal.archives-ouvertes.fr/hal-00504927

S. Eltayeb, A. Berg, H. Lassmann, E. Wallstrom, M. Nilsson et al., Temporal expression and cellular origin of CC chemokine receptors CCR1, CCR2 and CCR5 in the central nervous system: insight into mechanisms of MOG-induced EAE, Journal of Neuroinflammation, vol.4, issue.1, p.14, 2007.
DOI : 10.1186/1742-2094-4-14

J. Jonas, Y. Tao, M. Neumaier, and P. Findeisen, Monocyte Chemoattractant Protein 1, Intercellular Adhesion Molecule 1, and Vascular Cell Adhesion Molecule 1 in Exudative Age-Related Macular Degeneration, Archives of Ophthalmology, vol.128, issue.10, pp.1281-1286, 2010.
DOI : 10.1001/archophthalmol.2010.227

X. Yang, J. Hu, J. Zhang, and H. Guan, Polymorphisms in CFH, HTRA1 and CX3CR1 confer risk to exudative age-related macular degeneration in Han Chinese, British Journal of Ophthalmology, vol.94, issue.9
DOI : 10.1136/bjo.2009.165811

D. Mcdermott, A. Fong, Q. Yang, J. Sechler, L. Cupples et al., Chemokine receptor mutant CX3CR1-M280 has impaired adhesive function and correlates with protection from cardiovascular disease in humans, Journal of Clinical Investigation, vol.111, issue.8, pp.1241-1250, 2003.
DOI : 10.1172/JCI16790

M. Daoudi, E. Lavergne, A. Garin, N. Tarantino, P. Debre et al., Variant of the Chemokine Receptor CX3CR1, Journal of Biological Chemistry, vol.279, issue.19, pp.19649-19657, 2004.
DOI : 10.1074/jbc.M313457200

D. Despriet, A. Bergen, J. Merriam, J. Zernant, G. Barile et al., in Age-Related Macular Degeneration, Investigative Opthalmology & Visual Science, vol.49, issue.1, pp.364-371, 2008.
DOI : 10.1167/iovs.07-0656

K. Liang, J. Lee, Y. Wang, W. Ma, A. Fontainhas et al., Regulation of Dynamic Behavior of Retinal Microglia by CX3CR1 Signaling, Investigative Opthalmology & Visual Science, vol.50, issue.9, pp.4444-4451, 2009.
DOI : 10.1167/iovs.08-3357

W. Raoul, N. Keller, M. Rodero, F. Behar-cohen, F. Sennlaub et al., Role of the chemokine receptor CX3CR1 in the mobilization of phagocytic retinal microglial cells, Journal of Neuroimmunology, vol.198, issue.1-2, pp.56-61, 2008.
DOI : 10.1016/j.jneuroim.2008.04.014

URL : https://hal.archives-ouvertes.fr/inserm-00311574

H. Xu, M. Chen, A. Manivannan, N. Lois, and J. Forrester, Age-dependent accumulation of lipofuscin in perivascular and subretinal microglia in experimental mice, Aging Cell, vol.11, issue.1, pp.58-68, 2008.
DOI : 10.1111/j.1474-9726.2007.00351.x

T. Ng and J. Streilein, Light-induced migration of retinal microglia into the subretinal space, Invest Ophthalmol Vis Sci, vol.42, pp.3301-3310, 2001.

W. Raoul, C. Feumi, N. Keller, S. Lavalette, M. Houssier et al., Lipid-Bloated Subretinal Microglial Cells Are at the Origin of Drusen Appearance in CX3CR1-Deficient Mice, Ophthalmic Research, vol.40, issue.3-4, pp.115-119, 2008.
DOI : 10.1159/000119860

URL : https://hal.archives-ouvertes.fr/inserm-00315944

M. Rudolf, G. Malek, J. Messinger, M. Clark, L. Wang et al., Sub-retinal drusenoid deposits in human retina: Organization and composition, Experimental Eye Research, vol.87, issue.5, pp.402-408, 2008.
DOI : 10.1016/j.exer.2008.07.010

S. Zweifel, Y. Imamura, T. Spaide, T. Fujiwara, and R. Spaide, Prevalence and Significance of Subretinal Drusenoid Deposits (Reticular Pseudodrusen) in Age-Related Macular Degeneration, Ophthalmology, vol.117, issue.9, 2010.
DOI : 10.1016/j.ophtha.2010.01.027

S. Cohen, L. Dubois, R. Tadayoni, C. Delahaye-mazza, C. Debibie et al., Prevalence of reticular pseudodrusen in age-related macular degeneration with newly diagnosed choroidal neovascularisation, British Journal of Ophthalmology, vol.91, issue.3, pp.354-359, 2007.
DOI : 10.1136/bjo.2006.101022

Q. Xu, A. Bernardo, D. Walker, T. Kanegawa, R. Mahley et al., Profile and Regulation of Apolipoprotein E (ApoE) Expression in the CNS in Mice with Targeting of Green Fluorescent Protein Gene to the ApoE Locus, Journal of Neuroscience, vol.26, issue.19, pp.4985-4994, 2006.
DOI : 10.1523/JNEUROSCI.5476-05.2006

B. Bellander, O. Bendel, V. Euler, G. Ohlsson, M. Svensson et al., Activation of Microglial Cells and Complement following Traumatic Injury in Rat Entorhinal-Hippocampal Slice Cultures, Journal of Neurotrauma, vol.21, issue.5, pp.605-615, 2004.
DOI : 10.1089/089771504774129937

T. Matsubara, G. Pararajasegaram, G. Wu, and N. Rao, Retinal microglia differentially express phenotypic markers of antigen-presenting cells in vitro, Invest Ophthalmol Vis Sci, vol.40, pp.3186-3193, 1999.

S. Joly, M. Francke, E. Ulbricht, S. Beck, M. Seeliger et al., Cooperative Phagocytes, The American Journal of Pathology, vol.174, issue.6, pp.2310-2323, 2009.
DOI : 10.2353/ajpath.2009.090023

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2684195

R. Roque, A. Rosales, L. Jingjing, N. Agarwal, and M. Ubaidi, Retina-derived microglial cells induce photoreceptor cell death in vitro, Brain Research, vol.836, issue.1-2, pp.110-119, 1999.
DOI : 10.1016/S0006-8993(99)01625-X

A. Cardona, E. Pioro, M. Sasse, V. Kostenko, S. Cardona et al., Control of microglial neurotoxicity by the fractalkine receptor, Nature Neuroscience, vol.24, issue.7, pp.917-924, 2006.
DOI : 10.1038/nn1715

E. Sakurai, A. Anand, B. Ambati, N. Van-rooijen, and J. Ambati, Macrophage Depletion Inhibits Experimental Choroidal Neovascularization, Investigative Opthalmology & Visual Science, vol.44, issue.8, pp.3578-3585, 2003.
DOI : 10.1167/iovs.03-0097

J. Tuo, C. Bojanowski, M. Zhou, D. Shen, R. Ross et al., Deficiency Results in Retinal Lesions Mimicking Human Age-Related Macular Degeneration, Investigative Opthalmology & Visual Science, vol.48, issue.8, pp.3827-3836, 2007.
DOI : 10.1167/iovs.07-0051

C. Chan, R. Ross, D. Shen, X. Ding, Z. Majumdar et al., <i>Ccl2/Cx3cr1-</i>Deficient Mice: An Animal Model for Age-Related Macular Degeneration, Ophthalmic Research, vol.40, issue.3-4, pp.124-128, 2008.
DOI : 10.1159/000119862