A. Ashkenazi, P. Holland, and S. Eckhardt, Ligand-based targeting of apoptosis in cancer: The potential of recombinant human apoptosis ligand 2/Tumor necrosis factor-related apoptosis-inducing ligand (rhApo2L/TRAIL) H Is TRAIL the holy grail of cancer therapy?, J Clin Oncol Apoptosis, vol.2623, issue.144, pp.3621-3651, 2008.

Y. M. Angell, A. Bhandari, J. Green, P. J. Schatz, and C. P. Holmes, Compounds and peptides that bind the trail receptor, p.20090131317, 2009.

A. Ashkenazi, Apo-2LI and APO-3 polypeptides, p.6469144, 2002.

A. Ashkenazi, R. F. Kelley, M. P. O-'connell, R. M. Pitti, and R. A. Schwall, Substitutional variants of APO-2 ligand, p.6740739, 2004.

A. Ashkenazi, M. Benyunes, and R. Schwall, APO-2L receptor agonist and CPT-11 synergism, p.20070026000, 2007.

M. Nagane, W. Cavenee, and S. Huang, Compositions of trail and DNA damaging drugs and uses thereof, p.6444640, 2002.

J. Ni, C. A. Rosen, J. G. Pan, R. L. Gentz, and V. M. Dixit, Death domain containing receptor 4, p.20050244857, 2005.

J. Ni, R. L. Gentz, G. Yu, and C. A. Rosen, Death domain containing receptor 5, p.20050233958, 2005.

S. R. Wiley and R. G. Goodwin, Use of TRAIL polypeptides to induce apoptosis, p.7736637, 2010.

A. Chuntharapai and K. J. Kim, Human dr4 antibodies and uses thereof, p.20040147725, 2004.

R. P. Kimberly, W. J. Koopman, A. F. Lobuglio, T. Zhou, D. J. Buchsbaum et al., Combinations of antibodies selective for a tumor necrosis factor-related apoptosisinducing ligand receptor and other therapeutic agents, p.20090022707, 2009.

B. Li and S. S. Sidhu, Dr5 antibodies and uses thereof, p.20080248037, 2008.

D. H. Lynch, Bispecific antibodies that bind TRAIL-R1 and TRAIL-R2, p.20020155109, 2002.

J. Ni, C. A. Rosen, J. G. Pan, R. L. Gentz, and V. M. Dixit, Death domain containing receptor-4 antibodies, p.6461823, 2002.

J. Ni, R. L. Gentz, G. Yu, and C. A. Rosen, Death domain containing receptor 5 antibodies, p.6872568, 2005.

T. Salcedo, S. M. Ruben, C. A. Rosen, V. R. Albert, C. Dobson et al., Antibodies that immunospecifically bind to trail receptors, p.7064189, 2006.

S. R. Wiley and R. G. Goodwin, Antibodies directed against trail, p.6521228, 2003.

T. Zhou, K. Ichikawa, R. P. Kimberly, W. J. Koopman, J. Ohsumi et al., Combinations of antibodies selective for DR5 and other theurapeutic agents, p.7704502, 2010.

T. S. Griffith and T. Ratliff, Method of inducing tumor cell apoptosis using trail/APO-2 ligand gene transfer, p.6900185, 2005.

J. Soria, E. Smit, D. Khayat, B. Besse, X. Yang et al., non-squamous non-small-cell lung cancer Tumor Necrosis Factor-related apoptosis-inducing ligand (TRAIL) Receptor-1 and Receptor-2 agonists for cancer therapy Differential inhibition of TRAIL-mediated DR5-DISC formation by decoy receptors 1 and 2 A novel domain within the 55 kd TNF receptor signals cell death APP binds DR6 to trigger axon pruning and neuron death via distinct caspases The molecular architecture of the TNF superfamily Conversion of membrane-bound Fas(CD95) ligand to its soluble form is associated with downregulation of its proapoptotic activity and loss of liver toxicity Differential activation of TRAIL-R1 and -2 by soluble and membrane TRAIL allows selective surface antigendirected activation of TRAIL-R2 by a soluble TRAIL derivative Production of recombinant TRAIL and TRAIL receptor: Fc chimeric proteins LARD: a new lymphoid-specific death domain containing receptor regulated by alternative pre-mRNA splicing The 55-kD tumor necrosis factor receptor and CD95 independently signal murine hepatocyte apoptosis and subsequent liver failure, Phase 1b study of dulanermin (recombinant human APO2L, pp.1527-1560, 1993.

A. Ashkenazi, R. Pai, S. Fong, S. Leung, D. Lawrence et al., Safety and antitumor activity of recombinant soluble Apo2 ligand A phase I safety and pharmacokinetic (PK) study of recombinant Apo2L/TRAIL, an apoptosis-inducing protein in patients with advanced cancer, J Clin Invest J Clinl Oncol, vol.1043334, issue.2418S, pp.155-62, 1999.

S. Hotte, H. Hirte, E. Chen, L. Siu, L. Le et al., A Phase 1 Study of Mapatumumab (Fully Human Monoclonal Antibody to TRAIL-R1) in Patients with Advanced Solid Malignancies, Clinical Cancer Research, vol.14, issue.11, pp.3450-3455, 2008.
DOI : 10.1158/1078-0432.CCR-07-1416

K. Takeda, Y. Hayakawa, M. Smyth, N. Kayagaki, N. Yamaguchi et al., Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells Increased susceptibility to tumor initiation and metastasis in TNF-related apoptosis-inducing ligand-deficient mice TRAIL-R deficiency in mice enhances lymph node metastasis without affecting primary tumor development Oncogenic Ras sensitizes normal human cells to tumor necrosis factor-alpharelated apoptosis-inducing ligand-induced apoptosis, Phase I and pharmacokinetic study of lexatumumab (HGS-ETR2) given every 2 weeks in patients with advanced solid tumors, pp.376-81, 2001.

Y. Wang, K. Quon, D. Knee, A. Nesterov, A. Kraft et al., RAS, MYC, and sensitivity to tumor necrosis factor-alpha-related apoptosisinducing ligand-induced apoptosis Chemotherapy and TRAIL-mediated colon cancer cell death: The roles of p53, TRAIL receptors, and c-FLIP, Cancer Res Mol Cancer Ther, vol.65743, issue.412, pp.1615-1621, 2005.

G. Wu, T. Burns, E. Mcdonald, R. Meng, G. Kao et al., Induction of the TRAIL receptor KILLER/DR5 in p53-dependent apoptosis but not growth arrest, Oncogene, vol.18, issue.47, pp.6411-6419, 1999.
DOI : 10.1038/sj.onc.1203025

M. Sheikh, Y. Huang, E. Fernandez-salas, W. El-deiry, H. Friess et al., The antiapoptotic decoy receptor TRID/TRAIL-R3 is a p53-regulated DNA damage-inducible gene that is overexpressed in primary tumors of the gastrointestinal tract El- Deiry WS. The TRAIL decoy receptor TRUNDD (DcR2, TRAIL- R4) is induced by adenovirus-p53 overexpression and can delay TRAIL-, p53-, and KILLER/DR5-dependent colon cancer apoptosis, Oncogene Mol Ther, vol.184546, issue.12, pp.4153-4162, 1999.

M. Tomasetti, A. L. Alleva, R. Borghi, B. Neuzil, J. Procopio et al., Alpha-tocopheryl succinate induces DR4 and DR5 expression by a p53-dependent route: Implication for sensitisation of resistant cancer cells to TRAIL apoptosis, FEBS Lett, vol.58047, issue.8, pp.1925-1956, 2006.

H. Hu, C. Jiang, T. Schuster, G. Li, P. Daniel et al., Inorganic selenium sensitizes prostate cancer cells to TRAIL-induced apoptosis through superoxide/p53/Bax-mediated activation of mitochondrial pathway Reactive oxygen species up-regulate p53 and Puma; a possible mechanism for apoptosis during combined treatment with TRAIL and wogonin Triptolide sensitizes AML cells to TRAILinduced apoptosis via decrease of XIAP and p53-mediated increase of DR5 TNFSF10 (TRAIL), a p53 target gene that mediates p53- dependent cell death P53-mediated upregulation of DcR1 impairs oxaliplatin/TRAIL-induced synergistic anti-tumour potential in colon cancer cells Chemotherapy overcomes TRAIL-R4-mediated TRAIL resistance at the DISC level, TRAIL in cancer therapy: Present and future challenges, pp.1873-82, 2006.

O. Micheau, F. Cellular, O. Micheau, E. Solary, A. Hammann et al., An attractive therapeutic target? Dimanche-Boitrel MT Sensitization of cancer cells treated with cytotoxic drugs to fasmediated cytotoxicity [56] Ivanov VN, Hei TK. Sodium arsenite accelerates TRAIL-mediated apoptosis in melanoma cells through upregulation of TRAIL- R1/R2 surface levels and downregulation of cFLIP expression, Expert Opin Ther Targets J Natl Cancer Inst Exp Cell Res, vol.75557, issue.31220, pp.559-73, 1997.

S. Frese, M. Frese-schaper, A. Andres, D. Miescher, B. Zumkehr et al., Cardiac glycosides initiate Apo2L/TRAIL-induced apoptosis in non-small cell lung cancer cells by up-regulation of death receptors 4 and 5 Upregulation of DR5 by proteasome inhibitors potently sensitizes glioma cells to TRAIL-induced apoptosis, Cancer Res FEBS J, vol.6659, issue.2758, pp.5867-74, 2006.

M. Nagane, G. Pan, J. Weddle, V. Dixit, W. Cavenee et al., Increased death receptor 5 expression by chemotherapeutic agents in human gliomas causes synergistic cytotoxicity with tumor necrosis factor-related apoptosis-inducing ligand in vitro and in vivo Celastrol, a triterpene, enhances TRAIL-induced apoptosis through the down-regulation of cell survival proteins and up-regulation of death receptors, Cancer Res J Biol Chem, vol.60, issue.28515, pp.847-53, 2000.

E. Zeise, M. Weichenthal, T. Schwarz, D. Kulms, H. Kinoshita et al., Resistance of human melanoma cells against the death ligand TRAIL is reversed by ultraviolet-B radiation via downregulation of FLIP Cisplatin (CDDP) sensitizes human osteosarcoma cell to Fas/CD95-mediated apoptosis by down-regulating FLIP-L expression, J Invest Dermatol Int J Cancer, vol.1236263, issue.886, pp.746-54, 2000.

C. Palacios, R. Yerbes, A. Lopez-rivas, J. Kim, E. Kim et al., Quercetin sensitizes human hepatoma cells to TRAIL-induced apoptosis via Sp1-mediated DR5 up-regulation and proteasome-mediated c- FLIPS down-regulation 5-Aza-2-deoxycytidine and IFN-gamma cooperate to sensitize for TRAIL-induced apoptosis by upregulating caspase-8 Sensitization for death receptor-or drug-induced apoptosis by re-expression of caspase-8 through demethylation or gene transfer LF 15-0195 immunosuppressive agent enhances activation-induced T-cell death by facilitating caspase-8 and caspase-10 activation at the DISC level8 recruitment to and activation at the DISC is critical for sensitisation of human hepatocellular carcinoma cells to TRAIL-induced apoptosis by chemotherapeutic drugs Fas ligand-independent, FADD-mediated activation of the Fas death pathway by anticancer drugs, breast tumor cells Chemotherapy enhances TNF-related apoptosisinducing Ligand DISC assembly in HT29 human colon cancer cells, pp.8858-69, 1999.

S. Inoue, N. Harper, R. Walewska, M. Dyer, G. Cohen et al., Enhanced Fas-associated death domain recruitment by histone deacetylase inhibitors is critical for the sensitization of chronic lymphocytic leukemia cells to TRAIL-induced apoptosis Down-regulation of HSP27 sensitizes TRAIL-resistant tumor cell to TRAIL-induced apoptosis Nitric oxide sensitizes prostate carcinoma cell lines to TRAIL-mediated apoptosis via inactivation of NF-kappa B and inhibition of Bcl-xl expression Trichostatin A sensitizes TRAILresistant myeloma cells by downregulation of the antiapoptotic Bcl- 2 proteins Myricetin sensitizes malignant glioma cells to TRAIL-mediated apoptosis by downregulation of the short isoform of FLIP and bcl-2, al. Inhibition of Akt signaling by the lignan matairesinol sensitizes prostate cancer cells to TRAIL-induced apoptosis, pp.3088-97, 2004.

M. Festa, A. Petrella, S. Alfano, L. Parente, J. Ammann et al., Sensitization of neuroblastoma cells for TRAIL-induced apoptosis by NF-kappaB inhibition Overexpression of Par-4 sensitizes TRAIL-induced apoptosis via inactivation of NF-kappaB and Akt signaling pathways in renal cancer cells TRAIL receptor-2 signals apoptosis through FADD and caspase-8 Death receptor 5, a new member of the TNFR family, and DR4 induce FADD-dependent apoptosis and activate the NF-kappaB pathway, [82] Chinnaiyan AM, O'Rourke K, Tewari M, Dixit VM. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis, pp.2728-2764, 1995.

Y. Huang, L. Chen, Y. Zhou, H. Liu, Y. J. Liu et al., UXT-V1 protects cells against TNF-induced apoptosis through modulating complex II formation Inhibition of death receptor signals by cellular FLIP, Mol Biol Cell Nature, vol.38885, issue.6638, pp.190-195, 1997.

Z. Jin and W. El-deiry, Distinct Signaling Pathways in TRAIL- versus Tumor Necrosis Factor-Induced Apoptosis, Molecular and Cellular Biology, vol.26, issue.21, pp.8136-8184, 2006.
DOI : 10.1128/MCB.00257-06

P. Juo, C. Kuo, J. Yuan, J. Blenis, F. Kischkel et al., FLICE in the initiation of the Fas-induced apoptotic cascade Cytotoxicity-dependent APO-1 (Fas/CD95)- associated proteins form a death-inducing signaling complex (DISC) with the receptor Death receptor recruitment of endogenous caspase- 10 and apoptosis initiation in the absence of caspase-8 Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes, Caspase-10 triggers Bid cleavage and caspase cascade activation in FasL-induced apoptosis, pp.1001-1009, 1995.

C. Scaffidi, I. Schmitz, P. Krammer, M. Peter, T. Soderstrom et al., The role of c-FLIP in modulation of CD95-induced apoptosis Mitogen-activated protein kinase/extracellular signalregulated kinase signaling in activated T cells abrogates TRAILinduced apoptosis upstream of the mitochondrial amplification loop and caspase-8 Caspase-10 is recruited to and activated at the native TRAIL and CD95 death-inducing signalling complexes in a FADD-dependent manner but can not functionally substitute caspase-8, J Biol Chem J Immunol Embo J, vol.27494, issue.2117, pp.1541-1549, 1999.

M. Thome, P. Schneider, K. Hofmann, H. Fickenscher, E. Meinl et al., Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors [95] Vincenz C, Dixit VM. Fas-associated death domain protein interleukin-1beta-converting enzyme 2 (FLICE2), an ICE/Ced-3 homologue, is proximally involved in CD95-and p55-mediated death signaling, Nature J Biol Chem, vol.38696, issue.27210, pp.517-538, 1997.
DOI : 10.1038/386517a0

URL : http://my.unil.ch/serval/document/BIB_0C9041508C29.pdf

J. Wang, H. Chun, W. Wong, D. Spencer, and M. Lenardo, Caspase-10 is an initiator caspase in death receptor signaling, Proceedings of the National Academy of Sciences, vol.98, issue.24, pp.13884-13892, 2001.
DOI : 10.1073/pnas.241358198

J. Wang, A. Lobito, F. Shen, F. Hornung, A. Winoto et al., Inhibition of Fas-mediated apoptosis by the B cell antigen receptor through c-FLIP The distinct roles of TRAF2 and RIP in IKK activation by TNF-R1: TRAF2 recruits IKK to TNF-R1 while RIP mediates IKK activation The alpha and beta subunits of IkappaB kinase (IKK) mediate TRAF2-dependent IKK recruitment to tumor necrosis factor (TNF) receptor 1 in response to TNF, Eur J Immunol Immunity Mol Cell Biol, vol.30, issue.2112, pp.155-63, 2000.

P. Geserick, M. Hupe, M. Moulin, W. Wong, M. Feoktistova et al., Cellular IAPs inhibit a cryptic CD95-induced cell death by limiting RIP1 kinase recruitment, The Journal of Cell Biology, vol.159, issue.7, pp.1037-54, 2009.
DOI : 10.1126/science.1172308

T. Haas, C. Emmerich, B. Gerlach, A. Schmukle, S. Cordier et al., Recruitment of the Linear Ubiquitin Chain Assembly Complex Stabilizes the TNF-R1 Signaling Complex and??Is Required for TNF-Mediated Gene Induction, Molecular Cell, vol.36, issue.5, pp.831-875, 2009.
DOI : 10.1016/j.molcel.2009.10.013

H. Hsu, J. Huang, H. Shu, V. Baichwal, and D. Goeddel, TNF-Dependent Recruitment of the Protein Kinase RIP to the TNF Receptor-1 Signaling Complex, Immunity, vol.4, issue.4, pp.387-96, 1996.
DOI : 10.1016/S1074-7613(00)80252-6

H. Hsu, H. Shu, M. Pan, and D. Goeddel, TRADD???TRAF2 and TRADD???FADD Interactions Define Two Distinct TNF Receptor 1 Signal Transduction Pathways, Cell, vol.84, issue.2, pp.299-308, 1996.
DOI : 10.1016/S0092-8674(00)80984-8

H. Hsu, J. Xiong, and D. Goeddel, The TNF receptor 1-associated protein TRADD signals cell death and NF-??B activation, Cell, vol.81, issue.4, pp.495-504, 1995.
DOI : 10.1016/0092-8674(95)90070-5

I. Lavrik, T. Mock, A. Golks, J. Hoffmann, S. Baumann et al., CD95 Stimulation Results in the Formation of a Novel Death Effector Domain Protein-containing Complex, Journal of Biological Chemistry, vol.283, issue.39, pp.26401-26409, 2008.
DOI : 10.1074/jbc.M800823200

D. Mahoney, H. Cheung, R. Mrad, S. Plenchette, C. Simard et al., Both cIAP1 and cIAP2 regulate TNF??-mediated NF-??B activation, Proceedings of the National Academy of Sciences, vol.105, issue.33, pp.11778-83, 2008.
DOI : 10.1073/pnas.0711122105

S. Petersen, M. Peyton, J. Minna, and X. Wang, Overcoming cancer cell resistance to Smac mimetic induced apoptosis by modulating cIAP-2 expression, Proceedings of the National Academy of Sciences, vol.107, issue.26, pp.11936-11977, 2010.
DOI : 10.1073/pnas.1005667107

H. Shu, M. Takeuchi, and D. Goeddel, The tumor necrosis factor receptor 2 signal transducers TRAF2 and c-IAP1 are components of the tumor necrosis factor receptor 1 signaling complex, Proceedings of the National Academy of Sciences, vol.93, issue.24, pp.13973-13981, 1996.
DOI : 10.1073/pnas.93.24.13973

F. Tokunaga, S. Sakata, Y. Saeki, Y. Satomi, T. Kirisako et al., Involvement of linear polyubiquitylation of NEMO in NF-??B activation, Nature Cell Biology, vol.177, issue.2, pp.123-155, 2009.
DOI : 10.1002/(SICI)1522-2683(20000501)21:9<1694::AID-ELPS1694>3.0.CO;2-W

E. Varfolomeev, H. Maecker, D. Sharp, D. Lawrence, M. Renz et al., Molecular Determinants of Kinase Pathway Activation by Apo2 Ligand/Tumor Necrosis Factor-related Apoptosis-inducing Ligand, Journal of Biological Chemistry, vol.280, issue.49, pp.40599-608, 2005.
DOI : 10.1074/jbc.M509560200

P. Juo, M. Woo, C. Kuo, P. Signorelli, H. Biemann et al., FADD is required for multiple signaling events downstream of the receptor Fas, Cell Growth Differ, vol.10, issue.12, pp.797-804, 1999.

H. Leblanc, D. Lawrence, E. Varfolomeev, K. Totpal, J. Morlan et al., Tumor-cell resistance to death receptor???induced apoptosis through mutational inactivation of the proapoptotic Bcl-2 homolog Bax, Nature Medicine, vol.8, issue.3, pp.274-81, 2002.
DOI : 10.1038/nm0302-274

M. Irmler, M. Thome, M. Hahne, P. Schneider, K. Hofmann et al., Inhibition of death receptor signals by cellular FLIP, Nature, vol.388, issue.6638, pp.190-195, 1997.

S. Fulda, E. Meyer, and K. Debatin, Inhibition of TRAIL-induced apoptosis by Bcl-2 overexpression, Oncogene, vol.21, issue.15, pp.2283-94, 2002.
DOI : 10.1038/sj.onc.1205258

J. Cummins, M. Kohli, C. Rago, K. Kinzler, B. Vogelstein et al., X-Linked Inhibitor of Apoptosis Protein (XIAP) Is a Nonredundant Modulator of Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL)- Mediated Apoptosis in Human Cancer Cells, Cancer Research, vol.64, issue.9, pp.3006-3014, 2004.
DOI : 10.1158/0008-5472.CAN-04-0046

O. Ndozangue-touriguine, M. Sebbagh, D. Merino, O. Micheau, J. Bertoglio et al., A mitochondrial block and expression of XIAP lead to resistance to TRAIL-induced apoptosis during progression to metastasis of a colon carcinoma, Oncogene, vol.278, issue.46, pp.6012-6034, 2008.
DOI : 10.1038/onc.2008.197

M. Siegelin, D. Reuss, A. Habel, A. Rami, and A. Von-deimling, Quercetin promotes degradation of survivin and thereby enhances death-receptor-mediated apoptosis in glioma cells, Neuro-Oncology, vol.11, issue.2, pp.122-153, 2009.
DOI : 10.1215/15228517-2008-085

N. Wu, T. Lee, T. Tsai, and W. Lin, TRAIL-Induced Keratinocyte Differentiation Requires Caspase Activation and p63 Expression, Journal of Investigative Dermatology, vol.131, issue.4, 2011.
DOI : 10.1038/jid.2010.402

I. Viard-leveugle, R. Bullani, P. Meda, O. Micheau, A. Limat et al., Intracellular Localization of Keratinocyte Fas Ligand Explains Lack of Cytolytic Activity under Physiological Conditions, Journal of Biological Chemistry, vol.278, issue.18, pp.16183-16191, 2003.
DOI : 10.1074/jbc.M212188200

E. Rimondi, P. Secchiero, A. Quaroni, C. Zerbinati, S. Capitani et al., Involvement of TRAIL/TRAIL-receptors in human intestinal cell differentiation, Journal of Cellular Physiology, vol.21, issue.3, pp.647-54, 2006.
DOI : 10.1002/jcp.20512

M. Freer-prokop, O. Flaherty, J. Ross, J. Weyman, and C. , Non-canonical role for the TRAIL receptor DR5/FADD/caspase pathway in the regulation of MyoD expression and skeletal myoblast differentiation, Differentiation, vol.78, issue.4, pp.205-217, 2009.
DOI : 10.1016/j.diff.2009.05.002

O. Flaherty, J. Mei, Y. Freer, M. Weyman, and C. , Signaling through the TRAIL receptor DR5/FADD pathway plays a role in the apoptosis associated with skeletal myoblast differentiation, Apoptosis, vol.62, issue.12, pp.2103-2116, 2006.
DOI : 10.1007/s10495-006-0196-4

M. Yen, H. Tsai, Y. Wu, H. Hwa, B. Lee et al., TNF-related apoptosis-inducing ligand (TRAIL) induces osteoclast differentiation from monocyte/macrophage lineage precursor cells, Molecular Immunology, vol.45, issue.8, pp.2205-2218, 2008.
DOI : 10.1016/j.molimm.2007.12.003

X. Zhang, L. Zhang, S. Devadas, L. Li, A. Keegan et al., Reciprocal expression of TRAIL and CD95L in Th1 and Th2 cells: role of apoptosis in T helper subset differentiation, Cell Death and Differentiation, vol.10, issue.2, pp.203-213, 2003.
DOI : 10.1038/sj.cdd.4401138

Y. Cho, S. Challa, L. Clancy, and F. Chan, Lipopolysaccharide-induced expression of TRAIL promotes dendritic cell differentiation, Immunology, vol.13, issue.4, pp.504-519, 2010.
DOI : 10.1111/j.1365-2567.2010.03266.x

G. Pan, J. Ni, Y. Wei, G. Yu, R. Gentz et al., An Antagonist Decoy Receptor and a Death Domain-Containing Receptor for TRAIL, Science, vol.277, issue.5327, pp.815-823, 1997.
DOI : 10.1126/science.277.5327.815

L. Clancy, K. Mruk, K. Archer, M. Woelfel, J. Mongkolsapaya et al., Preligand assembly domain-mediated ligand-independent association between TRAIL receptor 4 (TR4) and TR2 regulates TRAIL-induced apoptosis, Proceedings of the National Academy of Sciences, vol.102, issue.50, pp.18099-104, 2005.
DOI : 10.1073/pnas.0507329102

M. Muzio, B. Stockwell, H. Stennicke, G. Salvesen, and V. Dixit, An Induced Proximity Model for Caspase-8 Activation, Journal of Biological Chemistry, vol.273, issue.5, pp.2926-2956, 1998.
DOI : 10.1074/jbc.273.5.2926

M. Hughes, N. Harper, M. Butterworth, K. Cain, G. Cohen et al., Reconstitution of the Death-Inducing Signaling Complex Reveals a Substrate Switch that Determines CD95-Mediated Death or Survival, Molecular Cell, vol.35, issue.3, pp.265-79, 2009.
DOI : 10.1016/j.molcel.2009.06.012

H. Park, E. Logette, S. Raunser, S. Cuenin, T. Walz et al., Death Domain Assembly Mechanism Revealed by Crystal Structure of the??Oligomeric PIDDosome Core Complex, Cell, vol.128, issue.3, pp.533-579, 2007.
DOI : 10.1016/j.cell.2007.01.019

F. Scott, B. Stec, C. Pop, M. Dobaczewska, J. Lee et al., The Fas???FADD death domain complex structure unravels signalling by receptor clustering, Nature, vol.11, issue.7232, pp.1019-1041, 2009.
DOI : 10.1038/nature07606

D. Berg, M. Lehne, N. Muller, D. Siegmund, S. Munkel et al., Enforced covalent trimerization increases the activity of the TNF ligand family members TRAIL and CD95L, Cell Death and Differentiation, vol.240, issue.12, pp.2021-2055, 2007.
DOI : 10.1038/sj.cdd.4402213

B. P. Monia, B. F. Baker, H. Zhang, and L. M. Cowsert, Antisense modulation of FADD expression, p.6015712, 2000.

W. Yeh, J. Pompa, M. Mccurrach, H. Shu, A. Elia et al., FADD: Essential for Embryo Development and Signaling from Some, But Not All, Inducers of Apoptosis, Science, vol.279, issue.5358, pp.1954-1962, 1998.
DOI : 10.1126/science.279.5358.1954

Y. Jiang, J. Woronicz, W. Liu, and D. Goeddel, Prevention of Constitutive TNF Receptor 1&nbsp;Signaling by Silencer of Death Domains, Science, vol.283, issue.5401, pp.543-549, 1999.
DOI : 10.1126/science.283.5401.543

H. Takada, N. Chen, C. Mirtsos, S. Suzuki, N. Suzuki et al., Role of SODD in Regulation of Tumor Necrosis Factor Responses, Molecular and Cellular Biology, vol.23, issue.11, pp.4026-4059, 2003.
DOI : 10.1128/MCB.23.11.4026-4033.2003

A. Berroud, L. Roy, A. Voisin, and P. , Membrane oxidative damage induced by ionizing radiation detected by fluorescence polarization, Radiation and Environmental Biophysics, vol.35, issue.4, pp.289-95, 1996.
DOI : 10.1007/s004110050042

F. Gaboriau, P. Morliere, I. Marquis, A. Moysan, M. Geze et al., MEMBRANE DAMAGE INDUCED IN CULTURED HUMAN SKIN FIBROBLASTS BY UVA IRRADIATION, Photochemistry and Photobiology, vol.74, issue.4, pp.515-535, 1993.
DOI : 10.1073/pnas.77.3.1526

Y. Aragane, D. Kulms, D. Metze, G. Wilkes, B. Poppelmann et al., Ultraviolet Light Induces Apoptosis via Direct Activation of CD95 (Fas/APO-1) Independently of Its Ligand CD95L, The Journal of Cell Biology, vol.4, issue.1, pp.171-82, 1998.
DOI : 10.1038/372773a0

H. Huang, L. Fang, S. Lu, C. Chou, T. Luh et al., DNA-damaging reagents induce apoptosis through reactive oxygen species-dependent Fas aggregation, Oncogene, vol.22, issue.50, pp.8168-77, 2003.
DOI : 10.1038/sj.onc.1206979

R. Gniadecki, Depletion of membrane cholesterol causes ligand-independent activation of Fas and apoptosis, Biochemical and Biophysical Research Communications, vol.320, issue.1, pp.165-174, 2004.
DOI : 10.1016/j.bbrc.2004.05.145

B. Segui and P. Legembre, Redistribution of CD95 into the Lipid Rafts to Treat Cancer Cells?, Recent Patents on Anti-Cancer Drug Discovery, vol.5, issue.1, pp.22-30, 2010.
DOI : 10.2174/157489210789702190

C. Gajate and F. Mollinedo, Cytoskeleton-mediated Death Receptor and Ligand Concentration in Lipid Rafts Forms Apoptosis-promoting Clusters in Cancer Chemotherapy, Journal of Biological Chemistry, vol.280, issue.12, pp.11641-11648, 2005.
DOI : 10.1074/jbc.M411781200

M. Maldonado-celis, S. Bousserouel, F. Gosse, A. Lobstein, and R. F. , Apple procyanidins activate apoptotic signaling pathway in human colon adenocarcinoma cells by a lipid-raft independent mechanism, Biochemical and Biophysical Research Communications, vol.388, issue.2, pp.372-378, 2009.
DOI : 10.1016/j.bbrc.2009.08.016

A. Rossin, M. Derouet, F. Abdel-sater, and A. Hueber, Palmitoylation of the TRAIL receptor DR4 confers an efficient TRAIL-induced cell death signalling, Biochemical Journal, vol.419, issue.1, pp.185-92, 2009.
DOI : 10.1042/BJ20081212

URL : https://hal.archives-ouvertes.fr/hal-00370029

Y. Min, J. Shi, Y. Zhang, S. Liu, Y. Liu et al., Death receptor 5-recruited raft components contributes to the sensitivity of Jurkat leukemia cell lines to TRAIL-induced cell death, IUBMB Life, vol.67, issue.3, pp.261-268, 2009.
DOI : 10.1002/iub.166

L. Xu, X. Qu, Y. Zhang, X. Hu, X. Yang et al., Oxaliplatin enhances TRAIL-induced apoptosis in gastric cancer cells by CBL-regulated death receptor redistribution in lipid rafts, FEBS Letters, vol.6, issue.5, pp.943-951, 2009.
DOI : 10.1016/j.febslet.2009.02.014

J. Song, M. Tse, A. Bellail, S. Phuphanich, F. Khuri et al., Lipid Rafts and Nonrafts Mediate Tumor Necrosis Factor Related Apoptosis-Inducing Ligand Induced Apoptotic and Nonapoptotic Signals in Non Small Cell Lung Carcinoma Cells, Cancer Research, vol.67, issue.14, pp.6946-55, 2007.
DOI : 10.1158/0008-5472.CAN-06-3896

C. Gajate and F. Mollinedo, Edelfosine and perifosine induce selective apoptosis in multiple myeloma by recruitment of death receptors and downstream signaling molecules into lipid rafts, Blood, vol.109, issue.2, pp.711-720, 2007.
DOI : 10.1182/blood-2006-04-016824

K. Wagner, E. Punnoose, T. Januario, D. Lawrence, R. Pitti et al., Death-receptor O-glycosylation controls tumor-cell sensitivity to the proapoptotic ligand Apo2L/TRAIL, Nature Medicine, vol.280, issue.9, pp.1070-1077, 2007.
DOI : 10.1038/nm1627

I. Rostenberg, J. Guizar-vazquez, P. Suarez, R. Rico, L. Nungaray et al., Distinct Glycosylation of Serum Proteins in Patients With Cancer: Brief Communication 2, JNCI: Journal of the National Cancer Institute, vol.60, issue.1, pp.83-90, 1978.
DOI : 10.1093/jnci/60.1.83

J. Dennis, M. Granovsky, and C. Warren, Glycoprotein glycosylation and cancer progression, Biochimica et Biophysica Acta (BBA) - General Subjects, vol.1473, issue.1, pp.21-34, 1999.
DOI : 10.1016/S0304-4165(99)00167-1

J. Rak, F. Basolo, J. Elliott, J. Russo, and F. Miller, Cell surface glycosylation changes accompanying immortalization and transformation of normal human mammary epithelial cells, Cancer Letters, vol.57, issue.1, pp.27-36, 1991.
DOI : 10.1016/0304-3835(91)90059-Q

M. Van-noesel, S. Van-bezouw, G. Salomons, P. Voute, R. Pieters et al., Tumor-specific down-regulation of the tumor necrosis factor-related apoptosis-inducing ligand decoy receptors DcR1 and DcR2 is associated with dense promoter hypermethylation, Cancer Res, vol.62, issue.7, pp.2157-61, 2002.

P. Horak, D. Pils, G. Haller, I. Pribill, M. Roessler et al., Contribution of Epigenetic Silencing of Tumor Necrosis Factor-Related Apoptosis Inducing Ligand Receptor 1 (DR4) to TRAIL Resistance and Ovarian Cancer, Molecular Cancer Research, vol.3, issue.6, pp.335-378, 2005.
DOI : 10.1158/1541-7786.MCR-04-0136

C. Margetts, D. Astuti, D. Gentle, W. Cooper, A. Cascon et al., Epigenetic analysis of HIC1, CASP8, FLIP, TSP1, DCR1, DCR2, DR4, DR5, KvDMR1, H19 and preferential 11p15.5 maternal-allele loss in von Hippel-Lindau and sporadic phaeochromocytomas, Endocrine Related Cancer, vol.12, issue.1, pp.161-72, 2005.
DOI : 10.1677/erc.1.00865

A. Elias, M. Siegelin, A. Steinmuller, A. Von-deimling, U. Lass et al., Epigenetic Silencing of Death Receptor 4 Mediates Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Resistance in Gliomas, Clinical Cancer Research, vol.15, issue.17, pp.5457-65, 2009.
DOI : 10.1158/1078-0432.CCR-09-1125

S. Simova, M. Klima, L. Cermak, V. Sourkova, and A. L. , Arf and Rho GAP adapter protein ARAP1 participates in the mobilization of TRAIL-R1/DR4 to the plasma membrane, Apoptosis, vol.2, issue.3, pp.423-459, 2008.
DOI : 10.1007/s10495-007-0171-8

H. Yoon, J. Lee, and P. Randazzo, ARAP1 Regulates Endocytosis of EGFR, Traffic, vol.6, issue.12, pp.2236-52, 2008.
DOI : 10.1111/j.1600-0854.2008.00839.x

O. Micheau, M. Thome, P. Schneider, N. Holler, J. Tschopp et al., The Long Form of FLIP Is an Activator of Caspase-8 at the Fas Death-inducing Signaling Complex, Journal of Biological Chemistry, vol.277, issue.47, pp.45162-71, 2002.
DOI : 10.1074/jbc.M206882200

N. Holler, R. Zaru, O. Micheau, M. Thome, A. Attinger et al., Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule, Nature Immunology, vol.1, issue.6, pp.489-95, 2000.
DOI : 10.1038/82732

M. Kelliher, S. Grimm, Y. Ishida, F. Kuo, B. Stanger et al., The Death Domain Kinase RIP Mediates the TNF-Induced NF-??B Signal, Immunity, vol.8, issue.3, pp.297-303, 1998.
DOI : 10.1016/S1074-7613(00)80535-X

P. Schneider, M. Thome, K. Burns, J. Bodmer, K. Hofmann et al., TRAIL Receptors 1 (DR4) and 2 (DR5) Signal FADD-Dependent Apoptosis and Activate NF-??B, Immunity, vol.7, issue.6, pp.831-837, 1997.
DOI : 10.1016/S1074-7613(00)80401-X

A. Golks, D. Brenner, C. Fritsch, P. Krammer, and I. Lavrik, c-FLIPR, a New Regulator of Death Receptor-induced Apoptosis, Journal of Biological Chemistry, vol.280, issue.15, pp.14507-14520, 2005.
DOI : 10.1074/jbc.M414425200

H. Wajant, K. Pfizenmaier, S. Limmer, R. Kreutzer, and H. Vornlocher, Compositions and methods for treating trail-resistant cancer cells, p.20040126791, 2004.

A. Al-zoubi, E. Efimova, S. Kaithamana, O. Martinez, E. Mel et al., Contrasting Effects of IG20 and Its Splice Isoforms, MADD and DENN-SV, on Tumor Necrosis Factor ??-induced Apoptosis and Activation of Caspase-8 and -3, Journal of Biological Chemistry, vol.276, issue.50, pp.47202-47213, 2001.
DOI : 10.1074/jbc.M104835200

A. Schievella, J. Chen, J. Graham, and L. Lin, MADD, a Novel Death Domain Protein That Interacts with the Type 1 Tumor Necrosis Factor Receptor and Activates Mitogen-activated Protein Kinase, Journal of Biological Chemistry, vol.272, issue.18, pp.12069-75, 1997.
DOI : 10.1074/jbc.272.18.12069

M. Ramaswamy, E. Efimova, O. Martinez, N. Mulherkar, S. Singh et al., IG20 (MADD splice variant-5), a proapoptotic protein, interacts with DR4/DR5 and enhances TRAIL-induced apoptosis by increasing recruitment of FADD and caspase-8 to the DISC, Oncogene, vol.23, issue.36, pp.6083-94, 2004.
DOI : 10.1038/sj.onc.1207804

B. S. Prabhakar and N. Mulherkar, IG20 splice variants therapeutics for cancer, p.20090075929, 2009.

H. Tanaka, Y. Hoshikawa, T. Oh-hara, S. Koike, M. Naito et al., PRMT5, a Novel TRAIL Receptor-Binding Protein, Inhibits TRAIL-Induced Apoptosis via Nuclear Factor-??B Activation, Molecular Cancer Research, vol.7, issue.4, pp.557-69, 2009.
DOI : 10.1158/1541-7786.MCR-08-0197

H. Kim, H. Chae, M. Thomas, T. Miyazaki, A. Monosov et al., Mammalian dap3 is an essential gene required for mitochondrial homeostasis in vivo and contributing to the extrinsic pathway for apoptosis, The FASEB Journal, vol.21, issue.1, pp.188-96, 2007.
DOI : 10.1096/fj.06-6283com

T. Miyazaki and J. Reed, A GTP-binding adapter protein couples TRAIL receptors to apoptosis-inducing proteins, Nature Immunology, vol.282, issue.6, pp.493-500, 2001.
DOI : 10.1038/88684

T. Berger and M. Kretzler, TRAIL-induced apoptosis is independent of the mitochondrial apoptosis mediator DAP3, Biochemical and Biophysical Research Communications, vol.297, issue.4, pp.880-884, 2002.
DOI : 10.1016/S0006-291X(02)02310-0

T. Berger and M. Kretzler, Interaction of DAP3 and FADD only after cellular disruption, Nature Immunology, vol.3, issue.1, pp.3-5, 2002.
DOI : 10.1038/ni0102-3b

S. Takeda, A. Iwai, M. Nakashima, D. Fujikura, S. Chiba et al., LKB1 is crucial for TRAIL-mediated apoptosis induction in osteosarcoma, Anticancer Res, vol.27, issue.2, pp.761-769, 2007.

G. Condorelli, G. Vigliotta, A. Cafieri, A. Trencia, P. Andalo et al., PED/PEA-15: an anti-apoptotic molecule that regulates FAS/TNFR1-induced apoptosis, Oncogene, vol.18, issue.31, pp.4409-4424, 1999.
DOI : 10.1038/sj.onc.1202831

C. Xiao, B. Yang, N. Asadi, F. Beguinot, and C. Hao, Tumor Necrosis Factor-related Apoptosis-inducing Ligand-induced Death-inducing Signaling Complex and Its Modulation by c-FLIP and PED/PEA-15 in Glioma Cells, Journal of Biological Chemistry, vol.277, issue.28, pp.25020-25025, 2002.
DOI : 10.1074/jbc.M202946200

H. Renganathan, H. Vaidyanathan, A. Knapinska, and J. Ramos, Phosphorylation of PEA-15 switches its binding specificity from ERK/MAPK to FADD, Biochemical Journal, vol.390, issue.3, pp.729-764, 2005.
DOI : 10.1042/BJ20050378

J. Peacock, J. Palmer, D. Fink, S. Ip, E. Pietras et al., PTEN Loss Promotes Mitochondrially Dependent Type II Fas-Induced Apoptosis via PEA-15, Molecular and Cellular Biology, vol.29, issue.5, pp.1222-1256, 2009.
DOI : 10.1128/MCB.01660-08

A. Trauzold, H. Wermann, A. Arlt, S. Schutze, H. Schafer et al., CD95 and TRAIL receptor-mediated activation of protein kinase C and NF-??B contributes to apoptosis resistance in ductal pancreatic adenocarcinoma cells, Oncogene, vol.20, issue.31, pp.4258-69, 2001.
DOI : 10.1038/sj.onc.1204559

N. Harper, M. Hughes, S. Farrow, G. Cohen, and M. Macfarlane, Protein Kinase C Modulates Tumor Necrosis Factor-related Apoptosis-inducing Ligand-induced Apoptosis by Targeting the Apical Events of Death Receptor Signaling, Journal of Biological Chemistry, vol.278, issue.45, pp.44338-44385, 2003.
DOI : 10.1074/jbc.M307376200

X. Meng, M. Heldebrant, and S. Kaufmann, Phorbol 12-myristate 13-Acetate Inhibits Death Receptor-mediated Apoptosis in Jurkat Cells by Disrupting Recruitment of Fas-associated Polypeptide with Death Domain, Journal of Biological Chemistry, vol.277, issue.5, pp.3776-83, 2002.
DOI : 10.1074/jbc.M107218200

A. Perfetti, F. Oriente, S. Iovino, A. Alberobello, A. Barbagallo et al., Phorbol Esters Induce Intracellular Accumulation of the Anti-apoptotic Protein PED/PEA-15 by Preventing Ubiquitinylation and Proteasomal Degradation, Journal of Biological Chemistry, vol.282, issue.12, pp.8648-57, 2007.
DOI : 10.1074/jbc.M608359200

C. Foley, H. Freedman, S. Choo, C. Onyskiw, N. Fu et al., Dynamics of RASSF1A/MOAP-1 Association with Death Receptors, Molecular and Cellular Biology, vol.28, issue.14, pp.4520-4555, 2008.
DOI : 10.1128/MCB.02011-07

S. Baksh, S. Tommasi, S. Fenton, V. Yu, L. Martins et al., The Tumor Suppressor RASSF1A and MAP-1 Link Death Receptor Signaling to Bax Conformational Change and Cell Death, Molecular Cell, vol.18, issue.6, pp.637-50, 2005.
DOI : 10.1016/j.molcel.2005.05.010

L. Hesson, W. Cooper, and F. Latif, The Role of RASSF1A Methylation in Cancer, Disease Markers, vol.23, issue.1-2, pp.73-87, 2007.
DOI : 10.1155/2007/291538

F. Kischkel, D. Lawrence, A. Chuntharapai, P. Schow, K. Kim et al., Apo2L/TRAIL-Dependent Recruitment of Endogenous FADD and Caspase-8 to Death Receptors 4 and 5, Immunity, vol.12, issue.6, pp.611-631, 2000.
DOI : 10.1016/S1074-7613(00)80212-5

D. Siegmund, S. Klose, D. Zhou, B. Baumann, C. Roder et al., Role of caspases in CD95L- and TRAIL-induced non-apoptotic signalling in pancreatic tumour cells, Cellular Signalling, vol.19, issue.6, pp.1172-84, 2007.
DOI : 10.1016/j.cellsig.2006.12.008

W. Wong, I. Gentle, U. Nachbur, H. Anderton, D. Vaux et al., RIPK1 is not essential for TNFR1-induced activation of NF-??B, Cell Death and Differentiation, vol.9, issue.3, pp.482-489, 2010.
DOI : 10.1038/cdd.2009.178

C. Palacios, A. Lopez-perez, and A. Lopez-rivas, Down-regulation of RIP expression by 17-dimethylaminoethylamino-17-demethoxygeldanamycin promotes TRAIL-induced apoptosis in breast tumor cells, Cancer Letters, vol.287, issue.2, pp.207-222, 2010.
DOI : 10.1016/j.canlet.2009.06.012

P. Wang, J. Zhang, A. Bellail, W. Jiang, J. Hugh et al., Inhibition of RIP and c-FLIP enhances TRAIL-induced apoptosis in pancreatic cancer cells, Cellular Signalling, vol.19, issue.11, pp.2237-2283, 2007.
DOI : 10.1016/j.cellsig.2007.06.001

W. Roth, F. Stenner-liewen, K. Pawlowski, A. Godzik, and J. Reed, Identification and Characterization of DEDD2, a Death Effector Domain-containing Protein, Journal of Biological Chemistry, vol.277, issue.9, pp.7501-7509, 2002.
DOI : 10.1074/jbc.M110749200

Y. Nam, K. Mani, A. Ashton, C. Peng, B. Krishnamurthy et al., Inhibition of Both the Extrinsic and Intrinsic Death Pathways through Nonhomotypic Death-Fold Interactions, Molecular Cell, vol.15, issue.6, pp.901-913, 2004.
DOI : 10.1016/j.molcel.2004.08.020