J. Folkman, Role of angiogenesis in tumor growth and metastasis, Seminars in Oncology, vol.29, issue.6Q, pp.15-18, 2002.
DOI : 10.1053/sonc.2002.37263

N. Burnet, A. Lynch, S. Jefferies, S. Price, P. Jones et al., High grade glioma: Imaging combined with pathological grade defines management and predicts prognosis, Radiotherapy and Oncology, vol.85, issue.3, pp.371-378, 2007.
DOI : 10.1016/j.radonc.2007.10.008

G. Tabatabai and R. Stupp, Primetime for antiangiogenic therapy, Current Opinion in Neurology, vol.22, issue.6, 2009.
DOI : 10.1097/WCO.0b013e328332ba28

J. Dietrich, A. Norden, and P. Wen, Emerging antiangiogenic treatments for gliomas ??? efficacy and safety issues, Current Opinion in Neurology, vol.21, issue.6, pp.736-744, 2008.
DOI : 10.1097/WCO.0b013e3283131370

J. Husband, L. Schwartz, J. Spencer, L. Ollivier, D. King et al., Evaluation of the response to treatment of solid tumours ??? a consensus statement of the International Cancer Imaging Society, British Journal of Cancer, vol.138
DOI : 10.1016/S0009-9260(99)91250-3

J. Gagner, M. Law, I. Fischer, E. Newcomb, and D. Zagzag, Angiogenesis in Gliomas: Imaging and Experimental Therapeutics, Brain Pathology, vol.278, issue.suppl, pp.342-363, 2005.
DOI : 10.1111/j.1750-3639.2005.tb00119.x

R. Jain, D. Duda, C. Willett, D. Sahani, A. Zhu et al., Biomarkers of response and resistance to antiangiogenic therapy, Nature Reviews Clinical Oncology, vol.14, issue.6, pp.327-338, 2009.
DOI : 10.1038/nrclinonc.2009.63

D. Hamstra, T. Chenevert, B. Moffat, T. Johnson, C. Meyer et al., Evaluation of the functional diffusion map as an early biomarker of time-to-progression and overall survival in high-grade glioma, Proceedings of the National Academy of Sciences, vol.102, issue.46, pp.16759-16764, 2005.
DOI : 10.1073/pnas.0508347102

B. Ross, B. Moffat, T. Lawrence, S. Mukherji, S. Gebarski et al., Evaluation of cancer therapy using diffusion magnetic resonance imaging, Mol Cancer Ther, vol.2, issue.6, pp.581-587, 2003.

S. Cha, Neuroimaging in neuro-oncology, Neurotherapeutics, vol.243, issue.Suppl 1, pp.465-477, 2009.
DOI : 10.1016/j.nurt.2009.05.002

T. Barrett, M. Brechbiel, M. Bernardo, and P. Choyke, MRI of tumor angiogenesis, Journal of Magnetic Resonance Imaging, vol.14, issue.2, pp.235-249, 2007.
DOI : 10.1002/jmri.20991

M. Pike, C. Stoops, C. Langford, N. Akella, L. Nabors et al., High-resolution longitudinal assessment of flow and permeability in mouse glioma vasculature: Sequential small molecule and SPIO dynamic contrast agent MRI, Magnetic Resonance in Medicine, vol.54, issue.3, pp.615-625, 2009.
DOI : 10.1002/mrm.21931

M. Beaumont, B. Lemasson, R. Farion, C. Segebarth, C. Rémy et al., Characterization of tumor angiogenesis in rat brain using iron-based vessel size index MRI in combination with gadolinium-based dynamic contrastenhanced MRI, J Cereb Blood Flow Metab, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00410316

K. Flaherty, M. Rosen, D. Heitjan, M. Gallagher, B. Schwartz et al., Pilot study of DCE-MRI to predict progression-free survival with sorafenib therapy in renal cell carcinoma, Cancer Biology & Therapy, vol.7, issue.4, pp.496-501, 2008.
DOI : 10.4161/cbt.7.4.5624

S. Zwick, R. Strecker, V. Kiselev, P. Gall, J. Huppert et al., Assessment of vascular remodeling under antiangiogenic therapy using DCE-MRI and vessel size imaging, Journal of Magnetic Resonance Imaging, vol.22, issue.Spec No 1, pp.1125-1133, 2009.
DOI : 10.1002/jmri.21710

C. Varallyay, L. Muldoon, S. Gahramanov, Y. Wu, J. Goodman et al., Dynamic MRI Using Iron Oxide Nanoparticles to Assess Early Vascular Effects of Antiangiogenic versus Corticosteroid Treatment in a Glioma Model, Journal of Cerebral Blood Flow & Metabolism, vol.25, issue.4, pp.853-860, 2009.
DOI : 10.1038/jcbfm.2008.162

R. Jain, AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients, Cancer Cell, vol.11, issue.1, pp.83-95, 2007.

S. Wilhelm, C. Carter, M. Lynch, T. Lowinger, J. Dumas et al., Discovery and development of sorafenib: a multikinase inhibitor for treating cancer, Nature Reviews Drug Discovery, vol.47, issue.10, pp.835-844, 2006.
DOI : 10.1038/nrd2130

F. Yang, V. Meter, T. Buettner, R. Hedvat, M. Liang et al., Sorafenib inhibits signal transducer and activator of transcription 3 signaling associated with growth arrest and apoptosis of medulloblastomas, Molecular Cancer Therapeutics, vol.7, issue.11, pp.3519-3526, 2008.
DOI : 10.1158/1535-7163.MCT-08-0138

M. Siegelin, C. Raskett, C. Gilbert, A. Ross, and D. Altieri, Sorafenib exerts anti-glioma activity in vitro and in vivo, Neuroscience Letters, vol.478, issue.3, 2010.
DOI : 10.1016/j.neulet.2010.05.009

A. Jacquier, M. Wendland, L. Do, P. Robert, C. Corot et al., MR imaging assessment of the kinetics of P846, a new gadolinium-based MR contrast medium, in ischemically injured myocardium, Contrast Media & Molecular Imaging, vol.107, issue.3, pp.112-119, 2008.
DOI : 10.1002/cmmi.237

E. Redgate, M. Deutsch, and S. Boggs, Time of death of CNS tumor-bearing rats can be reliably predicted by body weight-loss patterns, Lab Anim Sci, vol.41, issue.3, pp.269-273, 1991.

S. Valable, B. Lemasson, R. Farion, M. Beaumont, C. Segebarth et al., study, NMR in Biomedicine, vol.90, issue.3, pp.1043-1056, 2008.
DOI : 10.1002/nbm.1278

URL : https://hal.archives-ouvertes.fr/inserm-00861168

D. Koh and D. Collins, Diffusion-Weighted MRI in the Body: Applications and Challenges in Oncology, American Journal of Roentgenology, vol.188, issue.6, pp.1622-1635, 2007.
DOI : 10.2214/AJR.06.1403

T. Inai, M. Mancuso, H. Hashizume, F. Baffert, A. Haskell et al., Inhibition of Vascular Endothelial Growth Factor (VEGF) Signaling in Cancer Causes Loss of Endothelial Fenestrations, Regression of Tumor Vessels, and Appearance of Basement Membrane Ghosts, The American Journal of Pathology, vol.165, issue.1, pp.35-52, 2004.
DOI : 10.1016/S0002-9440(10)63273-7

K. Turetschek, A. Preda, V. Novikov, R. Brasch, H. Weinmann et al., Tumor microvascular changes in antiangiogenic treatment: Assessment by magnetic resonance contrast media of different molecular weights, Journal of Magnetic Resonance Imaging, vol.10, issue.1, pp.138-144, 2004.
DOI : 10.1002/jmri.20049

R. Jain, Normalization of Tumor Vasculature: An Emerging Concept in Antiangiogenic Therapy, Science, vol.307, issue.5706, pp.58-62, 2005.
DOI : 10.1126/science.1104819

P. Tofts, B. Berkowitz, and M. Schnall, Quantitative Analysis of Dynamic Gd-DTPA Enhancement in Breast Tumors Using a Permeability Model, Magnetic Resonance in Medicine, vol.26, issue.4, pp.564-568, 1995.
DOI : 10.1002/mrm.1910330416

P. Tofts and A. Kermode, Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts, Magnetic Resonance in Medicine, vol.113, issue.2
DOI : 10.1002/mrm.1910170208

M. Beaumont, B. Lemasson, R. Farion, C. Segebarth, C. Remy et al., Characterization of Tumor Angiogenesis in Rat Brain Using Iron-Based Vessel Size Index MRI in Combination with Gadolinium-Based Dynamic Contrast-Enhanced MRI, Journal of Cerebral Blood Flow & Metabolism, vol.10, issue.10, pp.1714-1726, 2009.
DOI : 10.1002/nbm.881

URL : https://hal.archives-ouvertes.fr/inserm-00410316

E. Barbier, L. Lamalle, and M. Décorps, Methodology of brain perfusion imaging, Journal of Magnetic Resonance Imaging, vol.11, issue.Suppl 5, pp.496-520, 2001.
DOI : 10.1002/jmri.1073

X. He and D. Yablonskiy, Quantitative BOLD: Mapping of human cerebral deoxygenated blood volume and oxygen extraction fraction: Default state, Magnetic Resonance in Medicine, vol.48, issue.1
DOI : 10.1002/mrm.21108