N. Hearle, V. Schumacher, F. Menko, S. Olschwang, L. Boardman et al., Frequency and Spectrum of Cancers in the Peutz-Jeghers Syndrome, Clinical Cancer Research, vol.12, issue.10, pp.3209-3215, 2006.
DOI : 10.1158/1078-0432.CCR-06-0083

F. Giardiello, J. Brensinger, A. Tersmette, S. Goodman, G. Petersen et al., Very high risk of cancer in familial Peutz???Jeghers syndrome, Gastroenterology, vol.119, issue.6, pp.1447-1453, 2000.
DOI : 10.1053/gast.2000.20228

M. Sanchez-cespedes, A role for LKB1 gene in human cancer beyond the Peutz???Jeghers syndrome, Oncogene, vol.36, issue.57, pp.7825-7832, 2007.
DOI : 10.1126/science.1062074

O. Sansom, LKB1 haploinsufficiency cooperates with Kras to promote pancreatic cancer through suppression of p21-dependent growth arrest, Gastroenterology, vol.139, pp.586-597

Z. Shen, X. Wen, F. Lan, Z. Shen, and Z. Shao, The tumor suppressor gene LKB1 is associated with prognosis in human breast carcinoma, Clin Cancer Res, vol.8, pp.2085-2090, 2002.

C. Contreras, S. Gurumurthy, J. Haynie, L. Shirley, E. Akbay et al., Loss of Lkb1 Provokes Highly Invasive Endometrial Adenocarcinomas, Cancer Research, vol.68, issue.3, pp.759-766, 2008.
DOI : 10.1158/0008-5472.CAN-07-5014

C. Kim, Y. Cho, J. Park, T. Kim, J. Lee et al., Genetic analysis of the LKB1/STK11 gene in hepatocellular carcinomas, European Journal of Cancer, vol.40, issue.1, pp.136-141, 2004.
DOI : 10.1016/S0959-8049(03)00659-2

A. Ylikorkala, D. Rossi, N. Korsisaari, K. Luukko, K. Alitalo et al., Vascular Abnormalities and Deregulation of VEGF in Lkb1-Deficient Mice, Science, vol.293, issue.5533, pp.1323-1326, 2001.
DOI : 10.1126/science.1062074

N. Bardeesy, M. Sinha, A. Hezel, S. Signoretti, N. Hathaway et al., Loss of the Lkb1 tumour suppressor provokes intestinal polyposis but resistance to transformation, Nature, vol.99, issue.6903, pp.162-167, 2002.
DOI : 10.1038/35092592

A. Mccarthy, C. Lord, K. Savage, A. Grigoriadis, D. Smith et al., gene in the mouse mammary gland induces tumour formation, The Journal of Pathology, vol.127, issue.3, pp.306-316, 2009.
DOI : 10.1002/path.2599

A. Hezel, S. Gurumurthy, Z. Granot, A. Swisa, G. Chu et al., Pancreatic Lkb1 Deletion Leads to Acinar Polarity Defects and Cystic Neoplasms, Molecular and Cellular Biology, vol.28, issue.7, pp.2414-2425, 2008.
DOI : 10.1128/MCB.01621-07

H. Pearson, A. Mccarthy, C. Collins, A. Ashworth, and A. Clarke, Lkb1 Deficiency Causes Prostate Neoplasia in the Mouse, Cancer Research, vol.68, issue.7, pp.2223-2232, 2008.
DOI : 10.1158/0008-5472.CAN-07-5169

S. Gurumurthy, A. Hezel, J. Berger, M. Bosenberg, and N. Bardeesy, LKB1 Deficiency Sensitizes Mice to Carcinogen-Induced Tumorigenesis, Cancer Research, vol.68, issue.1, pp.55-63, 2008.
DOI : 10.1158/0008-5472.CAN-07-3225

Z. Granot, A. Swisa, J. Magenheim, M. Stolovich-rain, W. Fujimoto et al., LKB1 Regulates Pancreatic ?? Cell Size, Polarity, and Function, LKB1 regulates pancreatic beta cell size, polarity, and function, pp.296-308, 2009.
DOI : 10.1016/j.cmet.2009.08.010

G. Sun, A. Tarasov, J. Mcginty, P. French, A. Mcdonald et al., LKB1 deletion with the RIP2.Cre transgene modifies pancreatic ??-cell morphology and enhances insulin secretion in vivo, AJP: Endocrinology and Metabolism, vol.298, issue.6, pp.1261-1273
DOI : 10.1152/ajpendo.00100.2010

P. Tamas, A. Macintyre, D. Finlay, R. Clarke, C. Feijoo-carnero et al., LKB1 is essential for the proliferation of T-cell progenitors and mature peripheral T cells, European Journal of Immunology, vol.21, issue.1, pp.242-253
DOI : 10.1002/eji.200939677

R. Shaw, K. Lamia, D. Vasquez, S. Koo, N. Bardeesy et al., The Kinase LKB1 Mediates Glucose Homeostasis in Liver and Therapeutic Effects of Metformin, Science, vol.310, issue.5754, pp.1642-1646, 2005.
DOI : 10.1126/science.1120781

M. Tiainen, K. Vaahtomeri, A. Ylikorkala, and T. Makela, Growth arrest by the LKB1 tumor suppressor: induction of p21WAF1/CIP1, Human Molecular Genetics, vol.11, issue.13, pp.1497-1504, 2002.
DOI : 10.1093/hmg/11.13.1497

M. Tiainen, A. Ylikorkala, and T. Makela, Growth suppression by Lkb1 is mediated by a G1 cell cycle arrest, Proceedings of the National Academy of Sciences, vol.96, issue.16, pp.9248-9251, 1999.
DOI : 10.1073/pnas.96.16.9248

P. Karuman, O. Gozani, R. Odze, X. Zhou, H. Zhu et al., The Peutz-Jegher Gene Product LKB1 Is a Mediator of p53-Dependent Cell Death, Molecular Cell, vol.7, issue.6, pp.1307-1319, 2001.
DOI : 10.1016/S1097-2765(01)00258-1

J. Liang, S. Shao, Z. Xu, B. Hennessy, Z. Ding et al., The energy sensing LKB1???AMPK pathway regulates p27kip1 phosphorylation mediating the decision to enter autophagy or apoptosis, Nature Cell Biology, vol.4, issue.2, pp.218-224, 2007.
DOI : 10.1074/jbc.M303621200

D. Shackelford and R. Shaw, The LKB1???AMPK pathway: metabolism and growth control in tumour suppression, Nature Reviews Cancer, vol.28, issue.8, pp.563-575, 2009.
DOI : 10.1038/nrc2676

C. Forcet, S. Etienne-manneville, H. Gaude, L. Fournier, S. Debilly et al., Functional analysis of Peutz-Jeghers mutations reveals that the LKB1 C-terminal region exerts a crucial role in regulating both the AMPK pathway and the cell polarity, Human Molecular Genetics, vol.14, issue.10, pp.1283-1292, 2005.
DOI : 10.1093/hmg/ddi139

S. Zhang, K. Schafer-hales, F. Khuri, W. Zhou, P. Vertino et al., The Tumor Suppressor LKB1 Regulates Lung Cancer Cell Polarity by Mediating cdc42 Recruitment and Activity, Cancer Research, vol.68, issue.3, pp.740-748, 2008.
DOI : 10.1158/0008-5472.CAN-07-2989

A. Baas, J. Kuipers, N. Van-der-wel, E. Batlle, H. Koerten et al., Complete Polarization of Single Intestinal Epithelial Cells upon Activation of LKB1 by STRAD, Cell, vol.116, issue.3, pp.457-466, 2004.
DOI : 10.1016/S0092-8674(04)00114-X

J. Lizcano, O. Goransson, R. Toth, M. Deak, N. Morrice et al., LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1, The EMBO Journal, vol.23, issue.4, pp.833-843, 2004.
DOI : 10.1038/sj.emboj.7600110

A. Al-hakim, O. Goransson, M. Deak, R. Toth, D. Campbell et al., 14-3-3 cooperates with LKB1 to regulate the activity and localization of QSK and SIK, Journal of Cell Science, vol.118, issue.23, pp.5661-5673, 2005.
DOI : 10.1242/jcs.02670

A. Baas, J. Boudeau, G. Sapkota, L. Smit, R. Medema et al., Activation of the tumour suppressor kinase LKB1 by the STE20-like pseudokinase STRAD, The EMBO Journal, vol.22, issue.12, pp.3062-3072, 2003.
DOI : 10.1093/emboj/cdg292

J. Boudeau, A. Baas, M. Deak, N. Morrice, A. Kieloch et al., MO25??/?? interact with STRAD??/?? enhancing their ability to bind, activate and localize LKB1 in the cytoplasm, The EMBO Journal, vol.22, issue.19, pp.5102-5114, 2003.
DOI : 10.1093/emboj/cdg490

E. Zeqiraj, B. Filippi, M. Deak, D. Alessi, and D. Van-aalten, Structure of the LKB1-STRAD-MO25 Complex Reveals an Allosteric Mechanism of Kinase Activation, Science, vol.326, issue.5960, pp.1707-1711, 2009.
DOI : 10.1126/science.1178377

P. Marignani, K. Scott, R. Bagnulo, D. Cannone, E. Ferrari et al., Novel splice isoforms of STRAD?? differentially affect LKB1 activity, complex assembly and subcellular localization., Cancer Biology & Therapy, vol.6, issue.10, pp.1627-1631, 2007.
DOI : 10.4161/cbt.6.10.4787

M. Sanna, J. Da-silva-correia, Y. Luo, B. Chuang, L. Paulson et al., ILPIP, a Novel Anti-apoptotic Protein That Enhances XIAP-mediated Activation of JNK1 and Protection against Apoptosis, Journal of Biological Chemistry, vol.277, issue.34, pp.30454-30462, 2002.
DOI : 10.1074/jbc.M203312200

G. Sapkota, M. Deak, A. Kieloch, N. Morrice, A. Goodarzi et al., Ionizing radiation induces ataxia telangiectasia mutated kinase (ATM)-mediated phosphorylation of LKB1/STK11 at Thr-366, Biochemical Journal, vol.368, issue.2, pp.507-516, 2002.
DOI : 10.1042/bj20021284

M. Sherman, A. Kuraishy, C. Deshpande, J. Hong, N. Cacalano et al., AID-Induced Genotoxic Stress Promotes B Cell Differentiation in the Germinal Center via ATM and LKB1 Signaling, Molecular Cell, vol.39, issue.6, pp.873-885
DOI : 10.1016/j.molcel.2010.08.019

G. Sapkota, A. Kieloch, J. Lizcano, S. Lain, J. Arthur et al., Phosphorylation of the Protein Kinase Mutated in Peutz-Jeghers Cancer Syndrome, LKB1/STK11, at Ser431 by p90RSK and cAMP-dependent Protein Kinase, but Not Its Farnesylation at Cys433, Is Essential for LKB1 to Suppress Cell Growth, Journal of Biological Chemistry, vol.276, issue.22, pp.19469-19482, 2001.
DOI : 10.1074/jbc.M009953200

B. Zheng, J. Jeong, J. Asara, Y. Yuan, S. Granter et al., Oncogenic B-RAF Negatively Regulates the Tumor Suppressor LKB1 to Promote Melanoma Cell Proliferation, Molecular Cell, vol.33, issue.2, pp.237-247, 2009.
DOI : 10.1016/j.molcel.2008.12.026

S. Fogarty and D. Hardie, C-terminal phosphorylation of LKB1 is not required for regulation of AMP-activated protein kinase, 2009.

G. Sapkota, J. Boudeau, M. Deak, A. Kieloch, N. Morrice et al., Identification and characterization of four novel phosphorylation sites (Ser31, Ser325, Thr336 and Thr366) on LKB1/STK11, the protein kinase mutated in Peutz-Jeghers cancer syndrome, Biochem J, vol.362, pp.481-490, 2002.

M. Sebbagh, M. Santoni, B. Hall, J. Borg, and M. Schwartz, Regulation of LKB1/STRAD Localization and Function by E-Cadherin, Current Biology, vol.19, issue.1, pp.37-42, 2009.
DOI : 10.1016/j.cub.2008.11.033

S. Martin, S. Johnston, and D. , A role for Drosophila LKB1 in anterior???posterior axis formation and epithelial polarity, Nature, vol.3, issue.6921, pp.379-384, 2003.
DOI : 10.1038/nature01296

F. Lan, J. Cacicedo, N. Ruderman, and Y. Ido, SIRT1 Modulation of the Acetylation Status, Cytosolic Localization, and Activity of LKB1: POSSIBLE ROLE IN AMP-ACTIVATED PROTEIN KINASE ACTIVATION, Journal of Biological Chemistry, vol.283, issue.41, pp.27628-27635, 2008.
DOI : 10.1074/jbc.M805711200

J. Dorfman and I. Macara, STRAD?? Regulates LKB1 Localization by Blocking Access to Importin-??, and by Association with Crm1 and Exportin-7, Molecular Biology of the Cell, vol.19, issue.4, pp.1614-1626, 2008.
DOI : 10.1091/mbc.E07-05-0454

J. Nezu, A. Oku, and M. Shimane, Loss of Cytoplasmic Retention Ability of Mutant LKB1 Found in Peutz-Jeghers Syndrome Patients, Biochemical and Biophysical Research Communications, vol.261, issue.3, pp.750-755, 1999.
DOI : 10.1006/bbrc.1999.1047

D. Smith, J. Spicer, A. Smith, S. Swift, and A. Ashworth, The Mouse Peutz-Jeghers Syndrome Gene Lkbl Encodes a Nuclear Protein Kinase, Human Molecular Genetics, vol.8, issue.8, pp.1479-1485, 1999.
DOI : 10.1093/hmg/8.8.1479

P. Narbonne, V. Hyenne, S. Li, J. Labbe, and R. Roy, Differential requirements for STRAD in LKB1-dependent functions in C. elegans . Development, pp.661-670

V. Mirouse, L. Swick, N. Kazgan, S. Johnston, D. Brenman et al., LKB1 and AMPK maintain epithelial cell polarity under energetic stress, The Journal of Cell Biology, vol.62, issue.3, pp.387-392, 2007.
DOI : 10.1073/pnas.0610157104

C. Boehlke, F. Kotsis, V. Patel, S. Braeg, H. Voelker et al., Primary cilia regulate mTORC1 activity and cell size through Lkb1, Nature Cell Biology, vol.10, issue.11, pp.1115-1122
DOI : 10.1038/ncb2117

J. Boudeau, M. Deak, M. Lawlor, N. Morrice, and D. Alessi, Heat-shock protein 90 and Cdc37 interact with LKB1 and regulate its stability, Biochemical Journal, vol.370, issue.3, pp.849-857, 2003.
DOI : 10.1042/bj20021813

P. Nony, H. Gaude, M. Rossel, L. Fournier, J. Rouault et al., Stability of the Peutz???Jeghers syndrome kinase LKB1 requires its binding to the molecular chaperones Hsp90/Cdc37, Oncogene, vol.22, issue.57, pp.9165-9175, 2003.
DOI : 10.1038/sj.onc.1207179

D. Smith, S. Rayter, C. Niederlander, J. Spicer, C. Jones et al., LIP1, a cytoplasmic protein functionally linked to the Peutz-Jeghers syndrome kinase LKB1, Human Molecular Genetics, vol.10, issue.25, pp.2869-2877, 2001.
DOI : 10.1093/hmg/10.25.2869

H. Mehenni, N. Lin-marq, K. Buchet-poyau, A. Reymond, M. Collart et al., LKB1 interacts with and phosphorylates PTEN: a functional link between two proteins involved in cancer predisposing syndromes, Human Molecular Genetics, vol.14, issue.15, pp.2209-2219, 2005.
DOI : 10.1093/hmg/ddi225

A. Merg and J. Howe, Genetic conditions associated with intestinal juvenile polyps, American Journal of Medical Genetics, vol.89, issue.1, pp.44-55, 2004.
DOI : 10.1002/ajmg.c.30020

S. Nath-sain and P. Marignani, LKB1 Catalytic Activity Contributes to Estrogen Receptor ?? Signaling, Molecular Biology of the Cell, vol.20, issue.11, pp.2785-2795, 2009.
DOI : 10.1091/mbc.E08-11-1138

P. Marignani, F. Kanai, and C. Carpenter, LKB1 Associates with Brg1 and Is Necessary for Brg1-induced Growth Arrest, Journal of Biological Chemistry, vol.276, issue.35, pp.32415-32418, 2001.
DOI : 10.1074/jbc.C100207200

A. Woods, S. Johnstone, K. Dickerson, F. Leiper, L. Fryer et al., LKB1 Is the Upstream Kinase in the AMP-Activated Protein Kinase Cascade, Current Biology, vol.13, issue.22, pp.2004-2008, 2003.
DOI : 10.1016/j.cub.2003.10.031

URL : https://hal.archives-ouvertes.fr/inserm-00390855

S. Hong, F. Leiper, A. Woods, D. Carling, and M. Carlson, Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases, Proceedings of the National Academy of Sciences, vol.100, issue.15, pp.8839-8843, 2003.
DOI : 10.1073/pnas.1533136100

J. Scott, S. Hawley, K. Green, M. Anis, G. Stewart et al., CBS domains form energy-sensing modules whose binding of adenosine ligands is disrupted by disease mutations, Journal of Clinical Investigation, vol.113, issue.2, pp.274-284, 2004.
DOI : 10.1172/JCI19874

D. Guertin and D. Sabatini, Defining the Role of mTOR in Cancer, Cancer Cell, vol.12, issue.1, pp.9-22, 2007.
DOI : 10.1016/j.ccr.2007.05.008

R. Hurley, K. Anderson, J. Franzone, B. Kemp, A. Means et al., The Ca2+/Calmodulin-dependent Protein Kinase Kinases Are AMP-activated Protein Kinase Kinases, Journal of Biological Chemistry, vol.280, issue.32, pp.29060-29066, 2005.
DOI : 10.1074/jbc.M503824200

M. Xie, D. Zhang, J. Dyck, Y. Li, H. Zhang et al., A pivotal role for endogenous TGF-beta-activated kinase-1 in the LKB1/AMP-activated protein kinase energy-sensor pathway, Proceedings of the National Academy of Sciences, vol.103, issue.46, pp.17378-17383, 2006.
DOI : 10.1073/pnas.0604708103

A. Barnes, B. Lilley, Y. Pan, L. Plummer, A. Powell et al., LKB1 and SAD Kinases Define a Pathway Required for the Polarization of Cortical Neurons, Cell, vol.129, issue.3, pp.549-563, 2007.
DOI : 10.1016/j.cell.2007.03.025

M. Kishi, Y. Pan, J. Crump, and J. Sanes, Mammalian SAD Kinases Are Required for Neuronal Polarization, Science, vol.307, issue.5711, pp.929-932, 2005.
DOI : 10.1126/science.1107403

M. Alvarado-kristensson, M. Rodriguez, V. Silio, J. Valpuesta, and A. Carrera, SADB phosphorylation of ??-tubulin regulates centrosome duplication, Nature Cell Biology, vol.262, issue.9, pp.1081-1092, 2009.
DOI : 10.1128/MCB.25.19.8656-8668.2005

D. Cohen, P. Brennwald, E. Rodriguez-boulan, and A. Musch, Mammalian PAR-1 determines epithelial lumen polarity by organizing the microtubule cytoskeleton, The Journal of Cell Biology, vol.79, issue.5, pp.717-727, 2004.
DOI : 10.1016/S0962-8924(03)00036-9

A. Suzuki, M. Hirata, K. Kamimura, R. Maniwa, T. Yamanaka et al., aPKC Acts Upstream of PAR-1b in Both the Establishment and Maintenance of Mammalian Epithelial Polarity, Current Biology, vol.14, issue.16, pp.1425-1435, 2004.
DOI : 10.1016/j.cub.2004.08.021

T. Timm, X. Li, J. Biernat, J. Jiao, E. Mandelkow et al., MARKK, a Ste20-like kinase, activates the polarity-inducing kinase MARK/PAR-1, The EMBO Journal, vol.22, issue.19, pp.5090-5101, 2003.
DOI : 10.1093/emboj/cdg447

Y. Kojima, H. Miyoshi, H. Clevers, M. Oshima, M. Aoki et al., Suppression of Tubulin Polymerization by the LKB1-Microtubule-associated Protein/Microtubule Affinity-regulating Kinase Signaling, Journal of Biological Chemistry, vol.282, issue.32, pp.23532-23540, 2007.
DOI : 10.1074/jbc.M700590200

D. Glover, Genome-wide survey of protein kinases required for cell cycle progression, Nature, vol.432, pp.980-987, 2004.

H. Takemori, J. Doi, N. Horike, Y. Katoh, L. Min et al., Salt-inducible kinase-mediated regulation of steroidogenesis at the early stage of ACTH-stimulation, The Journal of Steroid Biochemistry and Molecular Biology, vol.85, issue.2-5, pp.397-400, 2003.
DOI : 10.1016/S0960-0760(03)00199-7

R. Screaton, M. Conkright, Y. Katoh, J. Best, G. Canettieri et al., The CREB Coactivator TORC2 Functions as a Calcium- and cAMP-Sensitive Coincidence Detector, Cell, vol.119, issue.1, pp.61-74, 2004.
DOI : 10.1016/j.cell.2004.09.015

K. Tsuchihara, T. Ogura, R. Fujioka, S. Fujii, W. Kuga et al., Susceptibility of Snark-deficient mice to azoxymethane-induced colorectal tumorigenesis and the formation of aberrant crypt foci, Cancer Science, vol.48, issue.4, pp.677-682, 2008.
DOI : 10.1093/carcin/bgi205

H. Yamamoto, S. Takashima, Y. Shintani, S. Yamazaki, O. Seguchi et al., Identification of a novel substrate for TNF??-induced kinase NUAK2, Biochemical and Biophysical Research Communications, vol.365, issue.3, pp.541-547, 2008.
DOI : 10.1016/j.bbrc.2007.11.013

A. Zagorska, M. Deak, D. Campbell, S. Banerjee, M. Hirano et al., New Roles for the LKB1-NUAK Pathway in Controlling Myosin Phosphatase Complexes and Cell Adhesion, Science Signaling, vol.3, issue.115, p.25
DOI : 10.1126/scisignal.2000616

A. Suzuki, J. Lu, G. Kusakai, A. Kishimoto, T. Ogura et al., ARK5 Is a Tumor Invasion-Associated Factor Downstream of Akt Signaling, Molecular and Cellular Biology, vol.24, issue.8, pp.3526-3535, 2004.
DOI : 10.1128/MCB.24.8.3526-3535.2004

N. Humbert, N. Navaratnam, A. Augert, D. Costa, M. Martien et al., Regulation of ploidy and senescence by the AMPK-related kinase NUAK1, The EMBO Journal, vol.115, issue.2, pp.376-386
DOI : 10.1038/ncb1140

A. Suzuki, G. Kusakai, A. Kishimoto, Y. Shimojo, S. Miyamoto et al., Regulation of caspase-6 and FLIP by the AMPK family member ARK5, Oncogene, vol.23, issue.42, pp.7067-7075, 2004.
DOI : 10.1038/sj.onc.1207963

M. Hebert, S. Potin, M. Sebbagh, J. Bertoglio, J. Breard et al., Rho-ROCK-Dependent Ezrin-Radixin-Moesin Phosphorylation Regulates Fas-Mediated Apoptosis in Jurkat Cells, The Journal of Immunology, vol.181, issue.9, pp.5963-5973, 2008.
DOI : 10.4049/jimmunol.181.9.5963

M. Jaleel, A. Mcbride, J. Lizcano, M. Deak, R. Toth et al., Identification of the sucrose non-fermenting related kinase SNRK, as a novel LKB1 substrate, FEBS Letters, vol.97, issue.6, pp.1417-1423, 2005.
DOI : 10.1016/j.febslet.2005.01.042

K. Sakamoto, A. Mccarthy, D. Smith, K. Green, G. Hardie et al., Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction, The EMBO Journal, vol.108, issue.10, pp.1810-1820, 2005.
DOI : 10.1038/sj.emboj.7600667

A. Perl, P. Wilgenbus, U. Dahl, H. Semb, and G. Christofori, A causal role for E-cadherin in the transition from adenoma to carcinoma, Nature, vol.10, issue.6672, pp.190-193, 1998.
DOI : 10.1038/32433

U. Cavallaro and G. Christofori, Cell adhesion and signalling by cadherins and Ig-CAMs in cancer, Nature Reviews Cancer, vol.2, issue.2, pp.118-132, 2004.
DOI : 10.1038/nrc1276

L. Zhang, J. Li, L. Young, and M. Caplan, AMP-activated protein kinase regulates the assembly of epithelial tight junctions, Proceedings of the National Academy of Sciences, vol.103, issue.46, pp.17272-17277, 2006.
DOI : 10.1073/pnas.0608531103

B. Zheng and L. Cantley, Regulation of epithelial tight junction assembly and disassembly by AMP-activated protein kinase, Proceedings of the National Academy of Sciences, vol.104, issue.3, pp.819-822, 2007.
DOI : 10.1073/pnas.0610157104

F. Caudron and Y. Barral, Septins and the Lateral Compartmentalization of Eukaryotic Membranes, Developmental Cell, vol.16, issue.4, pp.493-506, 2009.
DOI : 10.1016/j.devcel.2009.04.003

J. Shao, B. Evers, and H. Sheng, Roles of Phosphatidylinositol 3'-Kinase and Mammalian Target of Rapamycin/p70 Ribosomal Protein S6 Kinase in K-Ras-Mediated Transformation of Intestinal Epithelial Cells, Cancer Research, vol.64, issue.1, pp.229-235, 2004.
DOI : 10.1158/0008-5472.CAN-03-1859

. Fig, Scheme of human LKB1 spliced variants, STRAD and Mo25 paralogues. Tilted and underline residues considered as autophosphorylation sites Phosphorylated residues targeted by mentioned kinases (arrow). NLS for nuclear localization sequence. CAAX for the site of farnesylation. (B) Schematic representation of active and functional complex