A. Krogh, B. Larsson, G. Von-heijne, and E. Sonnhammer, Predicting transmembrane protein topology with a hidden markov model: application to complete genomes11Edited by F. Cohen, Journal of Molecular Biology, vol.305, issue.3, pp.567-580, 2001.
DOI : 10.1006/jmbi.2000.4315

H. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. Bhat et al., The Protein Data Bank, Nucleic Acids Research, vol.28, issue.1, pp.235-242, 2000.
DOI : 10.1093/nar/28.1.235

G. Tusnady, L. Kalmar, and I. Simon, TOPDB: topology data bank of transmembrane proteins, Nucleic Acids Research, vol.36, issue.Database, pp.234-239, 2008.
DOI : 10.1093/nar/gkm751

J. Kyte and R. Doolittle, A simple method for displaying the hydropathic character of a protein, Journal of Molecular Biology, vol.157, issue.1, pp.105-132, 1982.
DOI : 10.1016/0022-2836(82)90515-0

D. Engelman, T. Steitz, and A. Goldman, Identifying Nonpolar Transbilayer Helices in Amino Acid Sequences of Membrane Proteins, Annual Review of Biophysics and Biophysical Chemistry, vol.15, issue.1, pp.321-353, 1986.
DOI : 10.1146/annurev.bb.15.060186.001541

D. Eisenberg, R. Weiss, and T. Terwilliger, The hydrophobic moment detects periodicity in protein hydrophobicity., Proceedings of the National Academy of Sciences, vol.81, issue.1, pp.140-144, 1984.
DOI : 10.1073/pnas.81.1.140

W. Wimley and S. White, Experimentally determined hydrophobicity scale for proteins at membrane interfaces, Nature Structural Biology, vol.1, issue.10, pp.842-848, 1996.
DOI : 10.1016/0005-2736(86)90302-0

G. Zhao and E. London, An amino acid ???transmembrane tendency??? scale that approaches the theoretical limit to accuracy for prediction of transmembrane helices: Relationship to biological hydrophobicity, Protein Science, vol.225, issue.8, pp.1987-2001, 2006.
DOI : 10.1110/ps.062286306

E. Sonnhammer, G. Von-heijne, and A. Krogh, A hidden Markov model for predicting transmembrane helices in protein sequences, Proc Int Conf Intell Syst Mol Biol, vol.6, pp.175-182, 1998.

B. Rost, [31] PHD: Predicting one-dimensional protein structure by profile-based neural networks, Methods Enzymol, vol.266, pp.525-539, 1996.
DOI : 10.1016/S0076-6879(96)66033-9

Z. Yuan, J. Mattick, and R. Teasdale, SVMtm: Support vector machines to predict transmembrane segments, Journal of Computational Chemistry, vol.312, issue.5, pp.632-636, 2004.
DOI : 10.1002/jcc.10411

J. Popot and D. Engelman, Membrane protein folding and oligomerization: the two-stage model, Biochemistry, vol.29, issue.17, pp.4031-4037, 1990.
DOI : 10.1021/bi00469a001

S. White and W. Wimley, MEMBRANE PROTEIN FOLDING AND STABILITY: Physical Principles, Annual Review of Biophysics and Biomolecular Structure, vol.28, issue.1, pp.319-365, 1999.
DOI : 10.1146/annurev.biophys.28.1.319

A. Ladokhin and S. White, Folding of amphipathic ??-helices on membranes: energetics of helix formation by melittin, Journal of Molecular Biology, vol.285, issue.4, pp.1363-1369, 1999.
DOI : 10.1006/jmbi.1998.2346

T. Murata, I. Yamato, Y. Kakinuma, A. Leslie, and J. Walker, Structure of the Rotor of the V-Type Na+-ATPase from Enterococcus hirae, Science, vol.308, issue.5722, pp.654-659, 2005.
DOI : 10.1126/science.1110064

D. Doyle, M. Cabral, J. Pfuetzner, R. Kuo, A. Gulbis et al., The Structure of the Potassium Channel: Molecular Basis of K+ Conduction and Selectivity, Science, vol.280, issue.5360, pp.69-77, 1998.
DOI : 10.1126/science.280.5360.69

J. Abramson, I. Smirnova, V. Kasho, G. Verner, H. Kaback et al., Structure and Mechanism of the Lactose Permease of Escherichia coli, Science, vol.301, issue.5633, pp.610-615, 2003.
DOI : 10.1126/science.1088196

O. Mirza, L. Guan, G. Verner, S. Iwata, and H. Kaback, Structural evidence for induced fit and a mechanism for sugar/H+ symport in LacY, The EMBO Journal, vol.272, issue.6, pp.1177-1183, 2006.
DOI : 10.1093/emboj/cdg145

L. Guan, O. Mirza, G. Verner, S. Iwata, and H. Kaback, Structural determination of wild-type lactose permease, Proceedings of the National Academy of Sciences, vol.104, issue.39, pp.15294-15298, 2007.
DOI : 10.1073/pnas.0707688104

S. Long, X. Tao, E. Campbell, and R. Mackinnon, Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment, Nature, vol.114, issue.7168, pp.376-382, 2007.
DOI : 10.1038/nature06265

S. Hall, K. Roberts, and N. Vaidehi, Position of helical kinks in membrane protein crystal structures and the accuracy of computational prediction, Journal of Molecular Graphics and Modelling, vol.27, issue.8
DOI : 10.1016/j.jmgm.2009.02.004

H. Luecke, B. Schobert, H. Richter, J. Cartailler, and J. Lanyi, Structure of bacteriorhodopsin at 1.55 ?? resolution, Journal of Molecular Biology, vol.291, issue.4, pp.899-911, 1999.
DOI : 10.1006/jmbi.1999.3027

W. Li and A. Godzik, Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences, Bioinformatics, vol.22, issue.13, pp.1658-1659, 2006.
DOI : 10.1093/bioinformatics/btl158

M. Heinig and D. Frishman, STRIDE: a web server for secondary structure assignment from known atomic coordinates of proteins, Nucleic Acids Research, vol.32, issue.Web Server, pp.500-502, 2004.
DOI : 10.1093/nar/gkh429

G. Tusnady, Z. Dosztanyi, and I. Simon, Transmembrane proteins in the Protein Data Bank: identification and classification, Bioinformatics, vol.20, issue.17, pp.2964-2972, 2004.
DOI : 10.1093/bioinformatics/bth340

G. Tusnady, Z. Dosztanyi, and I. Simon, PDB_TM: selection and membrane localization of transmembrane proteins in the protein data bank, Nucleic Acids Research, vol.33, issue.Database issue, pp.275-278, 2005.
DOI : 10.1093/nar/gki002