M. Trenker, R. Malli, I. Fertschai, S. Levak-frank, and W. Graier, Uncoupling proteins 2 and 3 are fundamental for mitochondrial Ca2+ uniport, Nature Cell Biology, vol.9, issue.4, pp.445-452, 2007.
DOI : 10.1038/ncb1556

J. Taanman, The mitochondrial genome: structure, transcription, translation and replication, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1410, issue.2, pp.103-123, 1999.
DOI : 10.1016/S0005-2728(98)00161-3

D. Mokranjac and W. Neupert, Protein Import Into Isolated Mitochondria, Methods Mol Biol, vol.372, pp.277-286, 2007.
DOI : 10.1007/978-1-59745-365-3_20

O. Schmidt, N. Pfanner, and C. Meisinger, Mitochondrial protein import: from proteomics to functional mechanisms, Nature Reviews Molecular Cell Biology, vol.271, issue.9, pp.655-667, 2010.
DOI : 10.1038/nrm2959

P. Chinnery, N. Howell, R. Andrews, and D. Turnbull, Clinical mitochondrial genetics, J Med Genet, vol.36, pp.425-436, 1999.

N. Entelis, O. Kolesnikova, S. Dogan, R. Martin, and I. Tarassov, 5 S rRNA and tRNA Import into Human Mitochondria: COMPARISON OF IN VITROREQUIREMENTS, Journal of Biological Chemistry, vol.276, issue.49, pp.45642-45653, 2001.
DOI : 10.1074/jbc.M103906200

M. Rubio, J. Rinehart, B. Krett, S. Duvezin-caubet, and A. Reichert, Mammalian mitochondria have the innate ability to import tRNAs by a mechanism distinct from protein import, Proceedings of the National Academy of Sciences, vol.105, issue.27, pp.9186-9191, 2008.
DOI : 10.1073/pnas.0804283105

J. Lee, S. Sharma, J. Kim, R. Ferrante, and H. Ryu, Mitochondrial nuclear receptors and transcription factors: Who's minding the cell?, Journal of Neuroscience Research, vol.17, issue.103, pp.961-971, 2008.
DOI : 10.1002/jnr.21564

G. Cannino, D. Liegro, C. Rinaldi, and A. , Nuclear???mitochondrial interaction, Mitochondrion, vol.7, issue.6, pp.359-366, 2007.
DOI : 10.1016/j.mito.2007.07.001

G. Biswas, O. Adebanjo, B. Freedman, H. Anandatheerthavarada, and C. Vijayasarathy, Retrograde Ca2+ signaling in C2C12 skeletal myocytes in response to mitochondrial genetic and metabolic stress: a novel mode of inter-organelle crosstalk, The EMBO Journal, vol.18, issue.3, pp.522-533, 1999.
DOI : 10.1093/emboj/18.3.522

G. Amuthan, G. Biswas, H. Ananadatheerthavarada, C. Vijayasarathy, and H. Shephard, Mitochondrial stress-induced calcium signaling, phenotypic changes and invasive behavior in human lung carcinoma A549 cells, Oncogene, vol.21, issue.51, pp.7839-7849, 2002.
DOI : 10.1038/sj.onc.1205983

S. Giannattasio, Z. Liu, J. Thornton, and R. Butow, Retrograde Response to Mitochondrial Dysfunction Is Separable from TOR1/2 Regulation of Retrograde Gene Expression, Journal of Biological Chemistry, vol.280, issue.52, pp.42528-4235, 2005.
DOI : 10.1074/jbc.M509187200

G. Cannino, D. Liegro, C. , D. Liegro, I. Rinaldi et al., Analysis of cytochrome C oxidase subunits III and IV expression in developing rat brain, Neuroscience, vol.128, issue.1, pp.91-98, 2004.
DOI : 10.1016/j.neuroscience.2004.06.018

R. Lee, R. Feinbaum, and A. V. , The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14, Cell, vol.75, issue.5, pp.843-854, 1993.
DOI : 10.1016/0092-8674(93)90529-Y

URL : https://hal.archives-ouvertes.fr/in2p3-00597159

C. Llave, K. Kasschau, M. Rector, and J. Carrington, Endogenous and Silencing-Associated Small RNAs in Plants, THE PLANT CELL ONLINE, vol.14, issue.7, pp.1605-1619, 2002.
DOI : 10.1105/tpc.003210

J. Carrington and A. V. , Role of MicroRNAs in Plant and Animal Development, Science, vol.301, issue.5631, pp.336-338, 2003.
DOI : 10.1126/science.1085242

G. Calin and C. Croce, MicroRNA signatures in human cancers, Nature Reviews Cancer, vol.59, issue.11, pp.857-866, 2006.
DOI : 10.1677/erc.1.01209

B. Kren, P. Wong, A. Sarver, X. Zhang, and Y. Zeng, MicroRNAs identified in highly purified liver-derived mitochondria may play a role in apoptosis, RNA Biology, vol.6, issue.1, pp.65-72, 2009.
DOI : 10.4161/rna.6.1.7534

Z. Bian, L. Li, R. Tang, D. Hou, and X. Chen, Identification of mouse liver mitochondria-associated miRNAs and their potential biological functions, Cell Research, vol.20, issue.9, pp.1076-1078, 2010.
DOI : 10.1152/ajpheart.00480.2004

A. Silahtaroglu, D. Nolting, L. Dyrskjøt, E. Berezikov, and M. Møller, Detection of microRNAs in frozen tissue sections by fluorescence in situ hybridization using locked nucleic acid probes and tyramide signal amplification, Nature Protocols, vol.43, issue.10, pp.2520-2528, 2007.
DOI : 10.1038/nprot.2007.313

J. Politz, F. Zhang, and T. Pederson, MicroRNA-206 colocalizes with ribosome-rich regions in both the nucleolus and cytoplasm of rat myogenic cells, Erratum in: Proc Natl Acad Sci, pp.18957-18962, 2006.
DOI : 10.1073/pnas.0609466103

H. Hornig-do, G. Günther, M. Bust, P. Lehnartz, and A. Bosio, Isolation of functional pure mitochondria by superparamagnetic microbeads, Analytical Biochemistry, vol.389, issue.1, pp.1-5, 2009.
DOI : 10.1016/j.ab.2009.02.040

A. Minet and M. Gaster, ATP synthesis is impaired in isolated mitochondria from myotubes established from type 2 diabetic subjects, Biochemical and Biophysical Research Communications, vol.402, issue.1, pp.70-74, 2010.
DOI : 10.1016/j.bbrc.2010.09.115

J. Chen, E. Mandel, J. Thomson, Q. Wu, and T. Callis, The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation, Nature Genetics, vol.132, issue.2, pp.228-233, 2006.
DOI : 10.1038/ng1725

I. Naguibneva, M. Ameyar-zazoua, A. Polesskaya, S. Ait-si-ali, and R. Groisman, The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation, Nature Cell Biology, vol.123, issue.3, pp.278-284, 2006.
DOI : 10.1038/ncb1373

URL : https://hal.archives-ouvertes.fr/inserm-00091598

J. Mccarthy and K. Esser, MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy, Journal of Applied Physiology, vol.102, issue.1, pp.306-313, 2007.
DOI : 10.1152/japplphysiol.00932.2006

O. Kolesnikova, N. Entelis, C. Jacquin-becker, F. Goltzene, and Z. Chrzanowska-lightowlers, Nuclear DNA-encoded tRNAs targeted into mitochondria can rescue a mitochondrial DNA mutation associated with the MERRF syndrome in cultured human cells, Human Molecular Genetics, vol.13, issue.20, pp.2519-2534, 2004.
DOI : 10.1093/hmg/ddh267

URL : https://hal.archives-ouvertes.fr/hal-00153771

T. Salinas, A. Duchêne, L. Delage, S. Nilsson, and E. Glaser, The voltage-dependent anion channel, a major component of the tRNA import machinery in plant mitochondria, Proceedings of the National Academy of Sciences, vol.103, issue.48, pp.18362-18367, 2006.
DOI : 10.1073/pnas.0606449103

URL : https://hal.archives-ouvertes.fr/hal-00118577

N. Entelis, O. Kolesnikova, R. Martin, and I. Tarassov, RNA delivery into mitochondria, Advanced Drug Delivery Reviews, vol.49, issue.1-2, pp.199-215, 2001.
DOI : 10.1016/S0169-409X(01)00135-1

URL : https://hal.archives-ouvertes.fr/hal-00153776

A. Duchêne, C. Pujol, and L. Maréchal-drouard, Import of tRNAs and aminoacyl-tRNA synthetases into mitochondria, Current Genetics, vol.7, issue.1, pp.1-18, 2009.
DOI : 10.1007/s00294-008-0223-9

E. Maniataki and Z. Mourelatos, Human mitochondrial tRNAMet is exported to the cytoplasm and associates with the Argonaute 2 protein, RNA, vol.11, issue.6, pp.849-852, 2005.
DOI : 10.1261/rna.2210805

C. Roderburg, G. Urban, K. Bettermann, M. Vucur, and H. Zimmermann, Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis, Hepatology, vol.110, issue.1, pp.209-218, 2010.
DOI : 10.1002/hep.23922

B. Maurer, J. Stanczyk, A. Jüngel, A. Akhmetshina, and M. Trenkmann, MicroRNA-29, a key regulator of collagen expression in systemic sclerosis, Arthritis & Rheumatism, vol.309, issue.6, pp.1733-1743, 2010.
DOI : 10.1002/art.27443

O. Teague, E. Van-der-hoek, K. Van-der-hoek, M. Perry, N. Wagaarachchi et al., MicroRNA-Regulated Pathways Associated with Endometriosis, Molecular Endocrinology, vol.23, issue.2, pp.265-275, 2009.
DOI : 10.1210/me.2008-0387

L. Guo, Z. Huang, X. Chen, Q. Deng, and W. Yan, Differential Expression Profiles of microRNAs in NIH3T3 Cells in Response to UVB Irradiation, Photochemistry and Photobiology, vol.26, issue.48, pp.765-773, 2009.
DOI : 10.1111/j.1751-1097.2008.00482.x

E. Bandrés, E. Cubedo, X. Agirre, R. Malumbres, and R. Zárate, Identification by Real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues, Molecular Cancer, vol.5, issue.1, p.29, 2006.
DOI : 10.1186/1476-4598-5-29

M. Tetzlaff, A. Liu, X. Xu, S. Master, and D. Baldwin, Differential Expression of miRNAs in Papillary Thyroid Carcinoma Compared to Multinodular Goiter Using Formalin Fixed Paraffin Embedded Tissues, Endocrine Pathology, vol.8, issue.4, pp.163-173, 2007.
DOI : 10.1007/s12022-007-0023-7

T. Wong, X. Liu, B. Wong, R. Ng, and A. Yuen, Mature miR-184 as Potential Oncogenic microRNA of Squamous Cell Carcinoma of Tongue, Clinical Cancer Research, vol.14, issue.9, pp.2588-2592, 2008.
DOI : 10.1158/1078-0432.CCR-07-0666

S. Lin, D. Chang, C. Lin, S. Ying, and D. Leu, Regulation of somatic cell reprogramming through inducible mir-302 expression, Nucleic Acids Research, vol.39, issue.3, pp.1054-1065, 2010.
DOI : 10.1093/nar/gkq850

L. Poliseno, L. Salmena, L. Riccardi, A. Fornari, and M. Song, Identification of the miR-106b??25 MicroRNA Cluster as a Proto-Oncogenic PTEN-Targeting Intron That Cooperates with Its Host Gene MCM7 in Transformation, Science Signaling, vol.3, issue.117, p.29, 2010.
DOI : 10.1126/scisignal.2000594

D. Iliopoulos, S. Jaeger, H. Hirsch, M. Bulyk, and K. Struhl, STAT3 Activation of miR-21 and miR-181b-1 via PTEN and CYLD Are Part of the Epigenetic Switch Linking Inflammation to Cancer, Molecular Cell, vol.39, issue.4, pp.493-506, 2010.
DOI : 10.1016/j.molcel.2010.07.023

H. Chen, Q. Chen, M. Fang, and Y. Mi, microRNA-181b targets MLK2 in HL-60 cells, Science China Life Sciences, vol.277, issue.1, pp.101-116, 2010.
DOI : 10.1007/s11427-010-0002-y

S. Lee, K. Chu, H. Oh, W. Im, and J. Lim, Let-7 microRNA inhibits the proliferation of human glioblastoma cells, Journal of Neuro-Oncology, vol.284, issue.1, pp.19-24, 2010.
DOI : 10.1007/s11060-010-0286-6

B. Kefas, J. Godlewski, L. Comeau, Y. Li, R. Abounader et al., microRNA-7 Inhibits the Epidermal Growth Factor Receptor and the Akt Pathway and Is Down-regulated in Glioblastoma, Cancer Research, vol.68, issue.10, pp.3566-3572, 2008.
DOI : 10.1158/0008-5472.CAN-07-6639

R. Webster, K. Giles, K. Price, P. Zhang, and J. Mattick, Regulation of Epidermal Growth Factor Receptor Signaling in Human Cancer Cells by MicroRNA-7, Journal of Biological Chemistry, vol.284, issue.9, pp.5731-5741, 2009.
DOI : 10.1074/jbc.M804280200

S. Reddy, K. Ohshiro, S. Rayala, and R. Kumar, MicroRNA-7, a Homeobox D10 Target, Inhibits p21-Activated Kinase 1 and Regulates Its Functions, Cancer Research, vol.68, issue.20, pp.8195-8200, 2008.
DOI : 10.1158/0008-5472.CAN-08-2103

A. Jakymiw, R. Patel, N. Deming, I. Bhattacharyya, and P. Shah, Overexpression of dicer as a result of reduced let-7 MicroRNA levels contributes to increased cell proliferation of oral cancer cells, Genes, Chromosomes and Cancer, vol.13, issue.6, pp.549-559, 2010.
DOI : 10.1002/gcc.20765

N. Marchenko, A. Zaika, and U. Moll, Death Signal-induced Localization of p53 Protein to Mitochondria. A POTENTIAL ROLE IN APOPTOTIC SIGNALING, Journal of Biological Chemistry, vol.275, issue.21, pp.16202-16212, 2000.
DOI : 10.1074/jbc.275.21.16202

L. Boominathan, The Tumor Suppressors p53, p63, and p73 Are Regulators of MicroRNA Processing Complex, PLoS ONE, vol.14, issue.7, p.10615, 2010.
DOI : 10.1371/journal.pone.0010615.s003

J. Penta, F. Johnson, J. Wachsman, and W. Copeland, Mitochondrial DNA in human malignancy, Mutation Research/Reviews in Mutation Research, vol.488, issue.2, pp.119-152, 2001.
DOI : 10.1016/S1383-5742(01)00053-9

M. Sharp, S. Adams, R. Walker, W. Brammar, and J. Varley, Differential expression of the mitochondrial gene cytochrome oxidase ii in benign and malignant breast tissue, The Journal of Pathology, vol.133, issue.2, pp.163-168, 1992.
DOI : 10.1002/path.1711680203

C. Aude-garcia, V. Collin-faure, H. Bausinger, D. Hanau, and T. Rabilloud, Dual roles for MEF2A and MEF2D during human macrophage terminal differentiation and c-Jun expression, Biochemical Journal, vol.15, issue.2, pp.237-244, 2010.
DOI : 10.1074/jbc.M109.000539

URL : https://hal.archives-ouvertes.fr/hal-00509879

C. Becker, A. Hammerle-fickinger, I. Riedmaier, and M. Pfaffl, mRNA and microRNA quality control for RT-qPCR analysis, Methods, vol.50, issue.4, pp.237-243, 2010.
DOI : 10.1016/j.ymeth.2010.01.010

S. Griffiths-jones, R. Grocock, S. Van-dongen, A. Bateman, and A. Enright, miRBase: microRNA sequences, targets and gene nomenclature, Nucleic Acids Research, vol.34, issue.90001, pp.140-144, 2006.
DOI : 10.1093/nar/gkj112