D. M. Parkin, Global Cancer Statistics, 2002, CA: A Cancer Journal for Clinicians, vol.55, issue.2, pp.74-108, 2002.
DOI : 10.3322/canjclin.55.2.74

M. J. Hayat, Cancer statistics, trends, and multiple primary cancer analyses from the Surveillance, Epidemiology, and End Results (SEER) Program. Oncologist, pp.20-37, 2007.

V. Gebski, Survival benefits from neoadjuvant chemoradiotherapy or chemotherapy in oesophageal carcinoma: a meta-analysis, The Lancet Oncology, vol.8, issue.3, pp.226-260, 2007.
DOI : 10.1016/S1470-2045(07)70039-6

D. P. Kelsen, Long-Term Results of RTOG Trial 8911 (USA Intergroup 113): A Random Assignment Trial Comparison of Chemotherapy Followed by Surgery Compared With Surgery Alone for Esophageal Cancer, Journal of Clinical Oncology, vol.25, issue.24, pp.25-3719, 2007.
DOI : 10.1200/JCO.2006.10.4760

L. R. Chirieac, Posttherapy pathologic stage predicts survival in patients with esophageal carcinoma receiving preoperative chemoradiation, Cancer, vol.68, issue.7, pp.1347-55, 2005.
DOI : 10.1002/cncr.20916

M. Stahl, Clinical response to induction chemotherapy predicts local control and long-term survival in multimodal treatment of patients with locally advanced esophageal cancer, Journal of Cancer Research and Clinical Oncology, vol.21, issue.1, pp.67-72, 2005.
DOI : 10.1007/s00432-004-0604-5

T. Dragovich and C. Campen, Anti-EGFR-Targeted Therapy for Esophageal and Gastric Cancers: An Evolving Concept, Journal of Oncology, vol.37, issue.13, p.804108, 2009.
DOI : 10.1158/1078-0432.CCR-05-0422

T. Makino, p53 Mutation Status Predicts Pathological Response to Chemoradiotherapy in Locally Advanced Esophageal Cancer, Annals of Surgical Oncology, vol.86, issue.9, pp.804-815, 2010.
DOI : 10.1245/s10434-009-0786-9

J. M. Lee, Polymorphism in Epidermal Growth Factor Receptor Intron 1 Predicts Prognosis of Patients with Esophageal Cancer after Chemoradiation and Surgery Systematic review of the staging performance of 18F-fluorodeoxyglucose positron emission tomography in esophageal cancer, Ann Surg Oncol J Clin Oncol, issue.18, pp.22-3805, 2004.

B. J. Krause, 18F-FDG PET and 18F-FDG PET/CT for Assessing Response to Therapy in Esophageal Cancer, Journal of Nuclear Medicine, vol.50, issue.Suppl_1, pp.89-96, 2009.
DOI : 10.2967/jnumed.108.057232

R. M. Kwee, F FDG PET: A Systematic Review, Radiology, vol.254, issue.3, pp.707-724, 2010.
DOI : 10.1148/radiol.09091324

K. Ott, Metabolic Imaging Predicts Response, Survival, and Recurrence in Adenocarcinomas of the Esophagogastric Junction, Journal of Clinical Oncology, vol.24, issue.29, pp.24-4692, 2006.
DOI : 10.1200/JCO.2006.06.7801

P. Therasse, New guidelines to evaluate the response to treatment in solid tumors European Organization for Research and Treatment of Cancer, National Cancer Institute of the United States, National Cancer Institute of Canada, J Natl Cancer Inst, issue.3, pp.92-205, 2000.

S. M. Larson, Tumor Treatment Response Based on Visual and Quantitative Changes in Global Tumor Glycolysis Using PET-FDG Imaging The Visual Response Score and the Change in Total Lesion Glycolysis, Clinical Positron Imaging, vol.2, issue.3, pp.159-171, 1999.
DOI : 10.1016/S1095-0397(99)00016-3

M. Hatt, Accurate Automatic Delineation of Heterogeneous Functional Volumes in Positron Emission Tomography for Oncology Applications, International Journal of Radiation Oncology*Biology*Physics, vol.77, issue.1, pp.301-309, 2010.
DOI : 10.1016/j.ijrobp.2009.08.018

URL : https://hal.archives-ouvertes.fr/inserm-00537776

M. Hatt, A Fuzzy Locally Adaptive Bayesian Segmentation Approach for Volume Determination in PET, IEEE Transactions on Medical Imaging, vol.28, issue.6, pp.881-93, 2009.
DOI : 10.1109/TMI.2008.2012036

URL : https://hal.archives-ouvertes.fr/inserm-00372910

A. Schaefer, A contrast-oriented algorithm for FDG-PET-based delineation of tumour volumes for the radiotherapy of lung cancer: derivation from phantom measurements and validation in patient data, European Journal of Nuclear Medicine and Molecular Imaging, vol.31, issue.11, pp.35-1989, 2008.
DOI : 10.1007/s00259-008-0875-1

W. Kruskal and W. Wallis, Use of ranks in one-criterion variance analysis, Journal of the American Statistical Association, issue.260, pp.47-583, 1952.

C. E. Metz, Basic principles of ROC analysis, Seminars in Nuclear Medicine, vol.8, issue.4, pp.283-98, 1978.
DOI : 10.1016/S0001-2998(78)80014-2

R. L. Wahl, From RECIST to PERCIST: Evolving Considerations for PET Response Criteria in Solid Tumors, Journal of Nuclear Medicine, vol.50, issue.Suppl_1, pp.122-50, 2009.
DOI : 10.2967/jnumed.108.057307

M. S. Hofman and R. J. Hicks, Restaging: Should We PERCIST Without Pattern Recognition?, Journal of Nuclear Medicine, vol.51, issue.12, pp.51-1830, 2010.
DOI : 10.2967/jnumed.110.079293

M. Hatt, Prognostic value of 18F-FDG PET image-based parameters in esophageal cancer: impact of tumor delineation methodology, European Journal of Nuclear Medicine and Molecular Imaging, 2011.

G. Lucignani and S. M. Larson, Doctor, what does my future hold? The prognostic value of FDG-PET in solid tumours, European Journal of Nuclear Medicine and Molecular Imaging, vol.115, issue.22, pp.1032-1040, 2010.
DOI : 10.1007/s00259-010-1428-y

E. A. Levine, Predictive Value of 18-Fluoro-Deoxy-Glucose-Positron Emission Tomography (18F-FDG-PET) in the Identification of Responders to Chemoradiation Therapy for the Treatment of Locally Advanced Esophageal Cancer, Annals of Surgery, vol.243, issue.4, pp.472-480, 2006.
DOI : 10.1097/01.sla.0000208430.07050.61

N. P. Rizk, Predictive Value of Initial PET-SUVmax in Patients with Locally Advanced Esophageal and Gastroesophageal Junction Adenocarcinoma, Journal of Thoracic Oncology, vol.4, issue.7, pp.875-884, 2009.
DOI : 10.1097/JTO.0b013e3181a8cebf

T. Makino, Utility of response evaluation to neo-adjuvant chemotherapy by 18F-fluorodeoxyglucose-positron emission tomography in locally advanced esophageal squamous cell carcinoma, Surgery, vol.148, issue.5, pp.908-926, 2010.
DOI : 10.1016/j.surg.2010.02.016

H. Kato, Prediction of response to definitive chemoradiotherapy in esophageal cancer using positron emission tomography, Anticancer Res, vol.27, issue.4C, pp.2627-2660, 2007.

S. Yendamuri, Esophageal tumor length is independently associated with long-term survival, Cancer, vol.11, issue.3, pp.508-524, 2009.
DOI : 10.1002/cncr.24062

K. Sillah, Computed tomography overestimation of esophageal tumor length: Implications for radiotherapy planning, World Journal of Gastrointestinal Oncology, vol.2, issue.4, pp.197-204, 2010.
DOI : 10.4251/wjgo.v2.i4.197

X. Zhong, Using 18F-Fluorodeoxyglucose Positron Emission Tomography to Estimate the Length of Gross Tumor in Patients With Squamous Cell Carcinoma of the Esophagus, International Journal of Radiation Oncology*Biology*Physics, vol.73, issue.1, pp.136-177, 2009.
DOI : 10.1016/j.ijrobp.2008.04.015

M. Mamede, FDG-PET/CT Tumor Segmentation-Derived Indices of Metabolic Activity to Assess Response to Neoadjuvant Therapy and Progression-Free Survival in Esophageal Cancer, American Journal of Clinical Oncology, vol.30, issue.4, pp.377-88, 2007.
DOI : 10.1097/COC.0b013e31803993f8

J. B. Roedl, Assessment of Treatment Response and Recurrence in Esophageal Carcinoma Based on Tumor Length and Standardized Uptake Value on Positron Emission Tomography???Computed Tomography, The Annals of Thoracic Surgery, vol.86, issue.4
DOI : 10.1016/j.athoracsur.2008.05.019

T. S. Hong, Impact of Manual and Automated Interpretation of Fused PET/CT Data on Esophageal Target Definitions in Radiation Planning, International Journal of Radiation Oncology*Biology*Physics, vol.72, issue.5, pp.1612-1620, 2002.
DOI : 10.1016/j.ijrobp.2008.07.061

J. B. Roedl, Adenocarcinomas of the esophagus: Response to chemoradiotherapy is associated with decrease of metabolic tumor volume as measured on PET???CT, Radiotherapy and Oncology, vol.89, issue.3, pp.278-86, 2008.
DOI : 10.1016/j.radonc.2008.06.014

H. Y. Lee, Volume-based parameter of 18)F-FDG PET/CT in malignant pleural mesothelioma: prediction of therapeutic response and prognostic implications, Ann Surg Oncol, issue.10, pp.17-2787, 2010.

T. Cazaentre, Pre-therapy 18F-FDG PET quantitative parameters help in predicting the response to radioimmunotherapy in non-Hodgkin lymphoma, European Journal of Nuclear Medicine and Molecular Imaging, vol.29, issue.suppl, pp.494-504, 2010.
DOI : 10.1007/s00259-009-1275-x

M. Hatt, PET functional volume delineation: a robustness and repeatability study, European Journal of Nuclear Medicine and Molecular Imaging, vol.97, issue.12, 2011.
DOI : 10.1007/s00259-010-1688-6

URL : https://hal.archives-ouvertes.fr/inserm-00574273

M. Hatt, Reproducibility of 18F-FDG and 3'-Deoxy-3'-18F-Fluorothymidine PET Tumor Volume Measurements, Journal of Nuclear Medicine, vol.51, issue.9, pp.51-1368, 2010.
DOI : 10.2967/jnumed.110.078501

URL : https://hal.archives-ouvertes.fr/inserm-00537774

S. H. Hyun, Prognostic Value of Metabolic Tumor Volume Measured by 18F-Fluorodeoxyglucose Positron Emission Tomography in Patients with Esophageal Carcinoma, Annals of Surgical Oncology, vol.34, issue.1, pp.115-137, 2010.
DOI : 10.1245/s10434-009-0719-7