M. Reyes, T. Lund, and T. Lenvik, Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells, Blood, vol.98, issue.9, pp.2615-2625, 2001.
DOI : 10.1182/blood.V98.9.2615

A. Rodriguez, D. Pisani, and C. Dechesne, Transplantation of a multipotent cell population from human adipose tissue induces dystrophin expression in the immunocompetent mdx mouse, The Journal of Experimental Medicine, vol.90, issue.9, pp.1397-1405, 2005.
DOI : 10.1089/107632701753337681

URL : https://hal.archives-ouvertes.fr/hal-00304039

L. Blanc, K. Ringden, and O. , Immunomodulation by mesenchymal stem cells and clinical experience, Journal of Internal Medicine, vol.24, issue.5, pp.509-525, 2007.
DOI : 10.1097/01.TP.0000048488.35010.95

H. Kawada, J. Fujita, and K. Kinjo, Nonhematopoietic mesenchymal stem cells can be mobilized and differentiate into cardiomyocytes after myocardial infarction, Blood, vol.104, issue.12, pp.3581-3587, 2004.
DOI : 10.1182/blood-2004-04-1488

M. Rota, J. Kajstura, and T. Hosoda, Bone marrow cells adopt the cardiomyogenic fate in vivo, Proceedings of the National Academy of Sciences, vol.104, issue.45, pp.17783-17788, 2007.
DOI : 10.1073/pnas.0706406104

J. Yoon, W. Shim, and Y. Ro, Transdifferentiation of mesenchymal stem cells into cardiomyocytes by direct cell-to-cell contact with neonatal cardiomyocyte but not adult cardiomyocytes, Annals of Hematology, vol.73, issue.11, pp.715-721, 2005.
DOI : 10.1007/s00277-005-1068-7

M. Mirotsou, T. Jayawardena, and J. Schmeckpeper, Paracrine mechanisms of stem cell reparative and regenerative actions in the heart, Journal of Molecular and Cellular Cardiology, vol.50, issue.2, 2010.
DOI : 10.1016/j.yjmcc.2010.08.005

M. Alvarez-dolado, R. Pardal, and J. Garcia-verdugo, Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes, Nature, vol.425, issue.6961, pp.968-973, 2003.
DOI : 10.1038/nature02069

N. Terada, T. Hamazaki, and M. Oka, Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion, Nature, vol.416, issue.6880, pp.542-545, 2002.
DOI : 10.1038/nature730

Q. Ying, J. Nichols, and E. Evans, Changing potency by spontaneous fusion, Nature, vol.416, issue.6880, pp.545-548, 2002.
DOI : 10.1038/nature729

URL : https://www.era.lib.ed.ac.uk/bitstream/1842/707/2/Nichols_J.pdf

F. Ishikawa, H. Shimazu, and L. Shultz, Purified human hematopoietic stem cells contribute to the generation of cardiomyocytes through cell fusion, The FASEB Journal, vol.20, issue.7, pp.950-952, 2006.
DOI : 10.1096/fj.05-4863fje

A. Dedja, T. Zaglia, and D. Olmo-'l, Hybrid cardiomyocytes derived by cell fusion in heterotopic cardiac xenografts, The FASEB Journal, vol.20, issue.14, pp.2534-2536, 2006.
DOI : 10.1096/fj.06-6586fje

J. Nygren, S. Jovinge, and M. Breitbach, Bone marrow???derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation, Nature Medicine, vol.10, issue.5, pp.494-501, 2004.
DOI : 10.1038/nm1040

URL : http://lup.lub.lu.se/record/122412/file/623991.pdf

H. Oh, S. Bradfute, and T. Gallardo, Cardiac progenitor cells from adult myocardium: Homing, differentiation, and fusion after infarction, Proceedings of the National Academy of Sciences, vol.100, issue.21, pp.12313-12318, 2003.
DOI : 10.1073/pnas.2132126100

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC218755

T. Payne, H. Oshima, and T. Sakai, Regeneration of dystrophin-expressing myocytes in the mdx heart by skeletal muscle stem cells, Gene Therapy, vol.8, issue.16, pp.1264-1274, 2005.
DOI : 10.1038/sj.gt.3302521

J. Spees, M. Whitney, and D. Sullivan, Bone marrow progenitor cells contribute to repair and remodeling of the lung and heart in a rat model of progressive pulmonary hypertension, The FASEB Journal, vol.22, issue.4, pp.1226-1236, 2008.
DOI : 10.1096/fj.07-8076com

J. Kajstura, M. Rota, and B. Whang, Bone Marrow Cells Differentiate in Cardiac Cell Lineages After Infarction Independently of Cell Fusion, Circulation Research, vol.96, issue.1, pp.127-137, 2005.
DOI : 10.1161/01.RES.0000151843.79801.60

D. Pijnappels, M. Schalij, and A. Ramkisoensing, Forced Alignment of Mesenchymal Stem Cells Undergoing Cardiomyogenic Differentiation Affects Functional Integration With Cardiomyocyte Cultures, Circulation Research, vol.103, issue.2, pp.167-176, 2008.
DOI : 10.1161/CIRCRESAHA.108.176131

M. Koyanagi, R. Brandes, and J. Haendeler, Cell-to-Cell Connection of Endothelial Progenitor Cells With Cardiac Myocytes by Nanotubes: A Novel Mechanism for Cell Fate Changes?, Circulation Research, vol.96, issue.10, pp.1039-1041, 2005.
DOI : 10.1161/01.RES.0000168650.23479.0c

E. Plotnikov, T. Khryapenkova, and A. Vasileva, Cell-to-cell cross-talk between mesenchymal stem cells and cardiomyocytes in co-culture, Journal of Cellular and Molecular Medicine, vol.8, issue.5a, pp.1622-1631, 2008.
DOI : 10.1111/j.1582-4934.2007.00205.x

A. Rustom, R. Saffrich, and I. Markovic, Nanotubular Highways for Intercellular Organelle Transport, Science, vol.303, issue.5660, pp.1007-1010, 2004.
DOI : 10.1126/science.1093133

H. Gerdes and R. Carvalho, Intercellular transfer mediated by tunneling nanotubes, Current Opinion in Cell Biology, vol.20, issue.4, pp.470-475, 2008.
DOI : 10.1016/j.ceb.2008.03.005

A. Levchenko, B. Mehta, and X. Niu, Intercellular transfer of P-glycoprotein mediates acquired multidrug resistance in tumor cells, Proceedings of the National Academy of Sciences, vol.102, issue.6, pp.1933-1938, 2005.
DOI : 10.1073/pnas.0401851102

N. Bukoreshtliev, X. Wang, and E. Hodneland, Selective block of tunneling nanotube (TNT) formation inhibits intercellular organelle transfer between PC12 cells, FEBS Letters, vol.42, issue.9, pp.1481-1488, 2009.
DOI : 10.1016/j.febslet.2009.03.065

E. Plotnikov, T. Khryapenkova, and S. Galkina, Cytoplasm and organelle transfer between mesenchymal multipotent stromal cells and renal tubular cells in co-culture, Experimental Cell Research, vol.316, issue.15
DOI : 10.1016/j.yexcr.2010.06.009

P. Tavi, T. Korhonen, and S. Hanninen, Myogenic skeletal muscle satellite cells communicate by tunnelling nanotubes, Journal of Cellular Physiology, vol.38, pp.376-383, 2010.
DOI : 10.1002/jcp.22044

K. Gousset, E. Schiff, and C. Langevin, Prions hijack tunnelling nanotubes for intercellular spread, Nature Cell Biology, vol.177, issue.3, pp.328-336, 2009.
DOI : 10.1038/nprot.2006.356

URL : https://hal.archives-ouvertes.fr/pasteur-00368712

B. Onfelt, S. Nedvetzki, and R. Benninger, Structurally Distinct Membrane Nanotubes between Human Macrophages Support Long-Distance Vesicular Traffic or Surfing of Bacteria, The Journal of Immunology, vol.177, issue.12, pp.8476-8483, 2006.
DOI : 10.4049/jimmunol.177.12.8476

S. Sowinski, C. Jolly, and O. Berninghausen, Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission, Nature Cell Biology, vol.8, issue.2, pp.211-219, 2008.
DOI : 10.1074/jbc.C400046200

N. Chevallier, F. Anagnostou, and S. Zilber, Osteoblastic differentiation of human mesenchymal stem cells with platelet lysate, Biomaterials, vol.31, issue.2, pp.270-278, 2010.
DOI : 10.1016/j.biomaterials.2009.09.043

M. King and G. Attardi, Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation, Science, vol.246, issue.4929, pp.500-503, 1989.
DOI : 10.1126/science.2814477

S. Miller, P. Trimmer, W. Parker, and . Jr, Creation and Characterization of Mitochondrial DNA-Depleted Cell Lines with ???Neuronal-Like??? Properties, Journal of Neurochemistry, vol.67, issue.5, pp.1897-1907, 1996.
DOI : 10.1046/j.1471-4159.1996.67051897.x

J. Spees, S. Olson, and M. Whitney, Mitochondrial transfer between cells can rescue aerobic respiration, Proceedings of the National Academy of Sciences, vol.103, issue.5, pp.1283-1288, 2006.
DOI : 10.1073/pnas.0510511103

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1345715

R. Mitra and M. Morad, A uniform enzymatic method for dissociation of myocytes from hearts and stomachs of vertebrates, Am J Physiol, vol.249, pp.1056-1060, 1985.

M. Okabe, M. Ikawa, and K. Kominami, ???Green mice??? as a source of ubiquitous green cells, FEBS Letters, vol.380, issue.3, pp.313-319, 1997.
DOI : 10.1016/S0014-5793(97)00313-X

P. Soriano, Generalized lacZ expression with the ROSA26 Cre reporter strain, Nature Genetics, vol.21, issue.1, pp.70-71, 1999.
DOI : 10.1038/5007

K. Brown, J. Baxter, and D. Graf, Dynamic Repositioning of Genes in the Nucleus of Lymphocytes Preparing for Cell Division, Molecular Cell, vol.3, issue.2, pp.207-217, 1999.
DOI : 10.1016/S1097-2765(00)80311-1

T. Yanazume, K. Hasegawa, and T. Morimoto, Cardiac p300 Is Involved in Myocyte Growth with Decompensated Heart Failure, Molecular and Cellular Biology, vol.23, issue.10, pp.3593-3606, 2003.
DOI : 10.1128/MCB.23.10.3593-3606.2003

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC154243

J. Yoon, S. Choi, and C. Park, Bone marrow-derived side population cells are capable of functional cardiomyogenic differentiation, Mol Cells, vol.25, pp.216-223, 2008.

A. Wurmser, K. Nakashima, and R. Summers, Cell fusion-independent differentiation of neural stem cells to the endothelial lineage, Nature, vol.19, issue.6997, pp.350-356, 2004.
DOI : 10.1126/science.287.5457.1442

V. Vacquier, THE FERTILIZING CAPACITY OF SEA URCHIN SPERM RAPIDLY DECREASES AFTER INDUCTION OF THE ACROSOME REACTION*, Development, Growth and Differentiation, vol.4, issue.1, pp.61-69, 1979.
DOI : 10.1016/0014-4827(73)90265-6

G. Sambrano, I. Fraser, and H. Han, Navigating the signalling network in mouse cardiac myocytes, Nature, vol.74, issue.6916, pp.712-714, 2002.
DOI : 10.1074/jbc.M107631200

S. Gurke, J. Barroso, and H. Gerdes, The art of cellular communication: tunneling nanotubes bridge the divide, Histochemistry and Cell Biology, vol.118, issue.5, pp.539-550, 2008.
DOI : 10.1007/s00418-008-0412-0

A. Beltrami, L. Barlucchi, and D. Torella, Adult Cardiac Stem Cells Are Multipotent and Support Myocardial Regeneration, Cell, vol.114, issue.6, pp.763-776, 2003.
DOI : 10.1016/S0092-8674(03)00687-1

URL : http://doi.org/10.1016/s0092-8674(03)00687-1

B. Dawn, A. Stein, and K. Urbanek, Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function, Proceedings of the National Academy of Sciences, vol.102, issue.10
DOI : 10.1073/pnas.0405957102

E. Messina, D. Angelis, L. Frati, and G. , Isolation and Expansion of Adult Cardiac Stem Cells From Human and Murine Heart, Circulation Research, vol.95, issue.9, pp.911-921, 2004.
DOI : 10.1161/01.RES.0000147315.71699.51

A. Cselenyak, E. Pankotai, and E. Horvath, Mesenchymal stem cells rescue cardiomyoblasts from cell death in an in vitro ischemia model via direct cell-to-cell connections, BMC Cell Biology, vol.11, issue.1
DOI : 10.1186/1471-2121-11-29

N. Nishiyama, S. Miyoshi, and N. Hida, The Significant Cardiomyogenic Potential of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells In Vitro, Stem Cells, vol.61, issue.12, pp.2017-2024, 2007.
DOI : 10.1634/stemcells.2006-0662

R. Rose, H. Jiang, and X. Wang, Bone Marrow-Derived Mesenchymal Stromal Cells Express Cardiac-Specific Markers, Retain the Stromal Phenotype, and Do Not Become Functional Cardiomyocytes In Vitro, Stem Cells, vol.50, issue.11, pp.2884-2892, 2008.
DOI : 10.1634/stemcells.2008-0329

Z. Liu and R. Butow, Mitochondrial Retrograde Signaling, Annual Review of Genetics, vol.40, issue.1, pp.159-185, 2006.
DOI : 10.1146/annurev.genet.40.110405.090613

H. Chinnery, E. Pearlman, and P. Mcmenamin, Cells in the Mouse Cornea, The Journal of Immunology, vol.180, issue.9, pp.5779-5783, 2008.
DOI : 10.4049/jimmunol.180.9.5779

C. Jopling, E. Sleep, and M. Raya, Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation, Nature, vol.313, issue.7288, pp.606-609, 2010.
DOI : 10.1038/nature08899

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2846535