Trimmed-likelihood estimation for focal lesions and tissue segmentation in multisequence MRI for multiple sclerosis.

Daniel García-Lorenzo 1, 2, * Sylvain Prima 1 Douglas Arnold 2 Louis Collins 2 Christian Barillot 1
* Auteur correspondant
1 VisAGeS - Vision, Action et Gestion d'informations en Santé
INSERM - Institut National de la Santé et de la Recherche Médicale : U746, Inria Rennes – Bretagne Atlantique , IRISA-D5 - SIGNAUX ET IMAGES NUMÉRIQUES, ROBOTIQUE
Abstract : We present a new automatic method for segmentation of multiple sclerosis (MS) lesions in magnetic resonance images. The method performs tissue classification using a model of intensities of the normal appearing brain tissues. In order to estimate the model, a trimmed likelihood estimator is initialized with a hierarchical random approach in order to be robust to MS lesions and other outliers present in real images. The algorithm is first evaluated with simulated images to assess the importance of the robust estimator in presence of outliers. The method is then validated using clinical data in which MS lesions were delineated manually by several experts. Our method obtains an average Dice similarity coefficient (DSC) of 0.65, which is close to the average DSC obtained by raters (0.66).
Type de document :
Article dans une revue
IEEE Transactions on Medical Imaging, Institute of Electrical and Electronics Engineers, 2011, 30 (8), pp.1455-67. 〈10.1109/TMI.2011.2114671〉
Liste complète des métadonnées

Littérature citée [50 références]  Voir  Masquer  Télécharger

http://www.hal.inserm.fr/inserm-00590724
Contributeur : Sylvain Prima <>
Soumis le : mercredi 4 mai 2011 - 19:01:00
Dernière modification le : mercredi 16 mai 2018 - 11:23:11
Document(s) archivé(s) le : vendredi 5 août 2011 - 02:42:40

Fichiers

TMI2011.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Daniel García-Lorenzo, Sylvain Prima, Douglas Arnold, Louis Collins, Christian Barillot. Trimmed-likelihood estimation for focal lesions and tissue segmentation in multisequence MRI for multiple sclerosis.. IEEE Transactions on Medical Imaging, Institute of Electrical and Electronics Engineers, 2011, 30 (8), pp.1455-67. 〈10.1109/TMI.2011.2114671〉. 〈inserm-00590724〉

Partager

Métriques

Consultations de la notice

438

Téléchargements de fichiers

712