C. Robertson, M. Watt, and Y. Yasui, Changes in the Prevalence of Cerebral Palsy for Children Born Very Prematurely Within a Population-Based Program Over 30 Years, JAMA, vol.297, issue.24, 2007.
DOI : 10.1001/jama.297.24.2733

M. Vincer, A. Allen, K. Joseph, D. Stinson, H. Scott et al., Increasing Prevalence of Cerebral Palsy Among Very Preterm Infants: A Population-Based Study, PEDIATRICS, vol.118, issue.6, 2006.
DOI : 10.1542/peds.2006-1522

D. Wilson-costello, H. Friedman, N. Minich, B. Siner, G. Taylor et al., Improved Neurodevelopmental Outcomes for Extremely Low Birth Weight Infants in 2000-2002, PEDIATRICS, vol.119, issue.1, pp.37-45, 2000.
DOI : 10.1542/peds.2006-1416

D. Wilson-costello, H. Friedman, N. Minich, A. Fanaroff, and M. Hack, Improved Survival Rates With Increased Neurodevelopmental Disability for Extremely Low Birth Weight Infants in the 1990s, PEDIATRICS, vol.115, issue.4, pp.997-1003, 2005.
DOI : 10.1542/peds.2004-0221

O. Dammann, K. Kuban, and A. Leviton, Perinatal infection, fetal inflammatory response, white matter damage, and cognitive limitations in children born preterm, Mental Retardation and Developmental Disabilities Research Reviews, vol.182, issue.1, pp.46-50, 2002.
DOI : 10.1002/mrdd.10005

O. Dammann and A. Leviton, Perinatal Brain Damage Causation, Developmental Neuroscience, vol.29, issue.4-5, pp.280-288, 2007.
DOI : 10.1159/000105469

V. Degos, G. Favrais, A. Kaindl, S. Peineau, A. Guerrot et al., Inflammation processes in perinatal brain damage, Journal of Neural Transmission, vol.119, issue.7, pp.1009-1026, 2010.
DOI : 10.1007/s00702-010-0411-x

H. Hagberg, D. Peebles, and C. Mallard, Models of white matter injury: Comparison of infectious, hypoxic-ischemic, and excitotoxic insults, Mental Retardation and Developmental Disabilities Research Reviews, vol.17, issue.1, pp.30-38, 2002.
DOI : 10.1002/mrdd.10007

J. Volpe, Brain injury in premature infants: a complex amalgam of destructive and developmental disturbances, The Lancet Neurology, vol.8, issue.1, pp.110-134, 2009.
DOI : 10.1016/S1474-4422(08)70294-1

S. Marret, P. Gressens, and P. Evrard, Arrest of neuronal migration by excitatory amino acids in hamster developing brain Barkovich AJ, Gressens P, Evrard P. Formation, maturation, and disorders of brain neocortex, Proc Natl Acad Sci AJNR Am J Neuroradiol, vol.9313, issue.12, pp.15463-8423, 1992.

P. Gressens, Pathogenesis of migration disorders, Current Opinion in Neurology, vol.19, issue.2, pp.135-175, 2006.
DOI : 10.1097/01.wco.0000218228.73678.e1

S. Marret, R. Mukendi, J. Gadisseux, P. Gressens, and P. Evrard, Effect of Ibotenate on Brain Development, Journal of Neuropathology and Experimental Neurology, vol.54, issue.3, pp.358-70, 1995.
DOI : 10.1097/00005072-199505000-00009

C. Redecker, G. Hagemann, O. Witte, S. Marret, P. Evrard et al., Long-term evolution of excitotoxic cortical dysgenesis induced in the developing rat brain, Developmental Brain Research, vol.109, issue.1, pp.109-122, 1998.
DOI : 10.1016/S0165-3806(98)00065-0

C. Redecker, M. Lutzenburg, P. Gressens, P. Evrard, O. Witte et al., Excitability changes and glucose metabolism in experimentally induced focal cortical dysplasias. Cereb Cortex, pp.623-657, 1998.

S. Tahraoui, S. Marret, C. Bodenant, P. Leroux, M. Dommergues et al., Central Role of Microglia in Neonatal Excitotoxic Lesions of the Murine Periventricular White Matter, Brain Pathology, vol.38, issue.Suppl 5, pp.56-71, 2001.
DOI : 10.1111/j.1750-3639.2001.tb00381.x

D. Brenneman, T. Nicol, D. Warren, L. Bowers, D. Brenneman et al., Vasoactive intestinal peptide: a neurotrophic releasing agent and an astroglial mitogen Vasoactive intestinal peptide and electrical activity influence neuronal survival, J Neurosci Res. Proc Natl Acad Sci Feb, vol.2583, pp.386-941159, 1986.

D. Brenneman, L. Eiden, R. Siegel, D. Pincus, E. Dicicco-bloom et al., Vasoactive intestinal peptide regulates mitosis, differentiation and survival of cultured sympathetic neuroblasts Growth factor function of vasoactive intestinal peptide in whole cultured mouse embryos Severe microcephaly induced by blockade of vasoactive intestinal peptide function in the primitive neuroepithelium of the mouse VIP and PACAP induce selective neuronal differentiation of mouse embryonic stem cells Excitotoxicity in the lung: N-methyl-D-aspartate-induced, nitric oxide-dependent, pulmonary edema is attenuated by vasoactive intestinal peptide and by inhibitors of poly(ADP-ribose) polymerase al. VIP and PACAP 38 modulate ibotenate-induced neuronal heterotopias in the newborn hamster neocortex Vasoactive intestinal peptide prevents excitotoxic cell death in the murine developing brain, Peptides. Nature. Feb Nature. J Clin Invest. Cazillis M Eur J Neurosci Feb Proc Natl Acad Sci J Neuropathol Exp Neurol. J Clin Invest, vol.634336294199359100, issue.27, pp.35-9564, 1985.

D. Vaudry, B. Gonzalez, M. Basille, Y. L. Fournier, A. Vaudry et al., Pituitary adenylate cyclase-activating polypeptide and its receptors: from structure to functions, Pharmacol Rev, vol.52, pp.269-324, 2000.

P. Gressens, S. Marret, J. Martin, A. Laquerriere, A. Lombet et al., Regulation of neuroprotective action of vasoactive intestinal peptide in the murine developing brain by protein kinase C and mitogen-activated protein kinase cascades: in vivo and in vitro studies Neuroprotection of the developing brain by systemic administration of vasoactive intestinal peptide derivatives al. VPAC2 receptors mediate vasoactive intestinal peptide-induced neuroprotection against neonatal excitotoxic brain lesions in mice, J Neurochem. J Pharmacol Exp Ther. J Pharmacol Exp Ther, vol.70288314, issue.30, pp.2574-841207, 1998.

I. Pilzer, I. Gozes, E. Ekblad, H. Jongsma, P. Brabet et al., VIP provides cellular protection through a specific splice variant of the PACAP receptor: a new neuroprotection target. Peptides Characterization of intestinal receptors for VIP and PACAP in rat and in PAC1 receptor knockout mouse, Ann N Y Acad Sci, vol.27921, issue.33, pp.2867-76137, 2000.

G. Milligan, G Protein-Coupled Receptor Dimerization: Function and Ligand Pharmacology, Molecular Pharmacology, vol.66, issue.1
DOI : 10.1124/mol.104.000497.

C. Grinninger, W. Wang, K. Oskoui, J. Voice, and E. Goetzl, A Natural Variant Type II G Protein-coupled Receptor for Vasoactive Intestinal Peptide with Altered Function, Journal of Biological Chemistry, vol.279, issue.39, pp.40259-62, 2004.
DOI : 10.1074/jbc.C400332200

I. Langer, P. Robberecht, . Ap, P. Sachs, and J. Mallet, Mutations in the carboxy-terminus of the third intracellular loop of the human recombinant VPAC1 receptor impair VIP-stimulated [Ca2+]i increase but not adenylate cyclase stimulation. Cell Signal BDNFinduced white matter neuroprotection and stage-dependent neuronal survival following a neonatal excitotoxic challenge. Cereb Cortex, pp.17-24250, 2005.

M. Reichenstein, M. Rehavi, P. Adonnell, M. Garippa, R. Rinaldi et al., Involvement of Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) and its Receptors in the Mechanism of Antidepressant Action, Journal of Molecular Neuroscience, vol.31, issue.1-3, pp.330-81282, 1994.
DOI : 10.1007/s12031-008-9116-0

P. Gourlet, P. Vertongen, A. Vandermeers, M. Vandermeers-piret, J. Rathe et al., The Long-Acting Vasoactive Intestinal Polypeptide Agonist RO 25-1553 Is Highly Selective of the VIP2 Receptor Subclass, Peptides, vol.18, issue.3, pp.403-411, 1997.
DOI : 10.1016/S0196-9781(96)00322-1

V. Zupan, J. Hill, D. Brenneman, I. Gozes, M. Fridkin et al., Involvement of pituitary adenylate cyclase-activating polypeptide II vasoactive intestinal peptide 2 receptor in mouse neocortical astrocytogenesis Interaction of lipophilic VIP derivatives with recombinant VIP1/PACAP and VIP2/PACAP receptors Superactive lipophilic peptides discriminate multiple vasoactive intestinal peptide receptors, J Neurochem. Eur J Pharmacol Jul J Pharmacol Exp Ther, vol.70354273, issue.31, pp.2165-73105, 1995.

L. Beni-adani, I. Gozes, Y. Cohen, Y. Assaf, R. Steingart et al., A peptide derived from activity-dependent neuroprotective protein (ADNP) ameliorates injury response in closed head injury in mice, J Pharmacol Exp Ther, vol.296, pp.57-63, 2001.

S. Chen, M. Charness, M. Wilkemeyer, K. Sulik, I. Gozes et al., Peptide-mediated protection from ethanol-induced neural tube defects. Dev Neurosci Activity-dependent neurotrophic factor: intranasal administration of femtomolar-acting peptides improve performance in a water maze, J Pharmacol Exp Ther, vol.27293, issue.48, pp.13-91091, 2000.

M. Rotstein, H. Bassan, N. Kariv, Z. Speiser, S. Harel et al., NAP Enhances Neurodevelopment of Newborn Apolipoprotein E-Deficient Mice Subjected to Hypoxia, Journal of Pharmacology and Experimental Therapeutics, vol.319, issue.1, pp.332-341, 2006.
DOI : 10.1124/jpet.106.106898

I. Gozes, A. Stewart, B. Morimoto, A. Fox, K. Sutherland et al., Addressing Alzheimers Disease Tangles: From NAP to AL-108, Current Alzheimer Research, vol.6, issue.5, pp.455-60, 2009.
DOI : 10.2174/156720509789207895