G. Bergers and D. Hanahan, Modes of resistance to anti-angiogenic therapy, Nature Reviews Cancer, vol.25, issue.8, pp.592-603, 2008.
DOI : 10.1038/nrc2442

L. Mclean, R. J. Jorgensen, N. Gorin, F. Cala, and P. , Malignant gliomas display altered pH regulation by NHE1 compared with nontransformed astrocytes, Amer J Physiol Cell Physiol, vol.278, pp.676-688, 2000.

Y. Chiang, C. Chou, K. Hsu, Y. Huang, and M. Shen, EGF upregulates Na+/H+ exchanger NHE1 by post-translational regulation that is important for cervical cancer cell invasiveness, Journal of Cellular Physiology, vol.184, issue.3, pp.810-819, 2008.
DOI : 10.1002/jcp.21277

R. Gillies, Z. Liu, and Z. Bhujwalla, 31 P-MRS measurements of extracellular pH of tumors using 3-aminopropylphosphonate, Am J Physiol, vol.267, pp.195-203, 1994.

P. Swietach, A. Hulikova, R. Vaughan-jones, and A. Harris, New insights into the physiological role of carbonic anhydrase IX in tumour pH regulation, Oncogene, vol.82, issue.50, 2010.
DOI : 10.1038/onc.2010.455

J. Wike-hooley, J. Haveman, and H. Reinhold, The relevance of tumour pH to the treatment of malignant disease, Radiotherapy and Oncology, vol.2, issue.4, pp.343-366, 1984.
DOI : 10.1016/S0167-8140(84)80077-8

A. Ojugo, P. Mcsheehy, D. Mcintyre, C. Mccoy, and M. Stubbs, Measurement of the extracellular pH of solid tumours in mice by magnetic resonance spectroscopy: a comparison of exogenous19F and31P probes, NMR in Biomedicine, vol.64, issue.8, pp.495-504, 1999.
DOI : 10.1002/(SICI)1099-1492(199912)12:8<495::AID-NBM594>3.0.CO;2-K

M. Garcia-martin, G. Herigault, C. Remy, R. Farion, and P. Ballesteros, Mapping extracellular pH in rat brain gliomas in vivo by 1H magnetic resonance spectroscopic imaging: comparison with maps of metabolites, Cancer Res, vol.61, pp.6524-6531, 2001.

R. Gillies, N. Raghunand, M. Garcia-martin, and R. Gatenby, pH imaging, IEEE Engineering in Medicine and Biology Magazine, vol.23, issue.5, pp.57-64, 2004.
DOI : 10.1109/MEMB.2004.1360409

R. Gatenby, E. Gawlinski, A. Gmitro, B. Kaylor, and R. Gillies, Acid-Mediated Tumor Invasion: a Multidisciplinary Study, Cancer Research, vol.66, issue.10, pp.5216-5223, 2006.
DOI : 10.1158/0008-5472.CAN-05-4193

D. Milito, A. Canese, R. Marino, M. Borghi, M. Iero et al., pH-dependent antitumor activity of proton pump inhibitors against human melanoma is mediated by inhibition of tumor acidity, International Journal of Cancer, vol.14, issue.1, pp.207-219, 2010.
DOI : 10.1002/ijc.25009

X. Zhang, Y. Lin, and R. Gillies, Tumor pH and Its Measurement, Journal of Nuclear Medicine, vol.51, issue.8, pp.1167-1170, 2010.
DOI : 10.2967/jnumed.109.068981

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4351768

S. Mathupala, P. Parajuli, and A. Sloan, Silencing of Monocarboxylate Transporters via Small Interfering Ribonucleic Acid Inhibits Glycolysis and Induces Cell Death in Malignant Glioma: An in Vitro Study, Neurosurgery, vol.55, issue.6, pp.1410-1419, 2004.
DOI : 10.1227/01.NEU.0000143034.62913.59

P. Sonveaux, F. Vegran, T. Schroeder, M. Wergin, and J. Verrax, Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice, Journal of Clinical Investigation, vol.118, pp.3930-3942, 2008.
DOI : 10.1172/JCI36843DS1

M. Egeblad and Z. Werb, New functions for the matrix metalloproteinases in cancer progression, Nature Reviews Cancer, vol.78, issue.3, pp.161-174, 2002.
DOI : 10.1038/nrc745

E. Olson, T. Jiang, T. Aguilera, Q. Nguyen, and L. Ellies, Activatable cell penetrating peptides linked to nanoparticles as dual probes for in vivo fluorescence and MR imaging of proteases, Proceedings of the National Academy of Sciences, vol.107, issue.9, pp.4311-4316, 2010.
DOI : 10.1073/pnas.0910283107

L. Bourguignon, P. Singleton, F. Diedrich, R. Stern, and E. Gilad, CD44 Interaction with Na+-H+ Exchanger (NHE1) Creates Acidic Microenvironments Leading to Hyaluronidase-2 and Cathepsin B Activation and Breast Tumor Cell Invasion, Journal of Biological Chemistry, vol.279, issue.26, pp.26991-27007, 2004.
DOI : 10.1074/jbc.M311838200

M. Gioia, G. Fasciglione, S. Monaco, R. Iundusi, and D. Sbardella, pH dependence of the enzymatic processing of collagen I by MMP-1 (fibroblast collagenase), MMP-2 (gelatinase A), and MMP-14 ectodomain, JBIC Journal of Biological Inorganic Chemistry, vol.15, issue.19, pp.775-785, 2010.
DOI : 10.1007/s00775-010-0680-8

C. Sier, F. Kubben, S. Ganesh, M. Heerding, and G. Griffioen, Tissue levels of matrix metalloproteinases MMP-2 and MMP-9 are related to the overall survival of patients with gastric carcinoma, British Journal of Cancer, vol.74, issue.3, pp.413-417, 1996.
DOI : 10.1038/bjc.1996.374

L. Gerweck and K. Seetharaman, Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer, Cancer Res, vol.56, pp.1194-1198, 1996.

L. Gerweck, S. Vijayappa, and S. Kozin, Tumor pH controls the in vivo efficacy of weak acid and base chemotherapeutics, Molecular Cancer Therapeutics, vol.5, issue.5, pp.1275-1279, 2006.
DOI : 10.1158/1535-7163.MCT-06-0024

N. Raghunand, B. Mahoney, R. Van-sluis, B. Baggett, and R. Gillies, Acute Metabolic Alkalosis Enhances Response of C3H Mouse Mammary Tumors to the Weak Base Mitoxantrone, Neoplasia, vol.3, issue.3, pp.227-235, 2001.
DOI : 10.1038/sj.neo.7900151

O. Andreev, A. Dupuy, M. Segala, S. Sandugu, and D. Serra, Mechanism and uses of a membrane peptide that targets tumors and other acidic tissues in vivo, Proceedings of the National Academy of Sciences, vol.104, issue.19, pp.7893-7898, 2007.
DOI : 10.1073/pnas.0702439104

J. Segala, D. Engelman, Y. Reshnetnyak, and O. Andreev, Accurate Analysis of Tumor Margins Using a Fluorescent pH Low Insertion Peptide (pHLIP), International Journal of Molecular Sciences, vol.10, issue.8, pp.3478-3487, 2009.
DOI : 10.3390/ijms10083478

K. Min, J. Kim, S. Bae, H. Shin, and M. Kim, Tumoral acidic pH-responsive MPEG-poly(??-amino ester) polymeric micelles for cancer targeting therapy, Journal of Controlled Release, vol.144, issue.2, pp.259-266, 2010.
DOI : 10.1016/j.jconrel.2010.02.024

F. Gallagher, M. Kettunen, S. Day, D. Hu, and J. Ardenkjaer-larsen, Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate, Nature, vol.7, issue.7197, pp.940-943, 2008.
DOI : 10.1038/nature07017

C. Voegtlin, H. Kahler, and R. Fitch, THE ACTION OF THE PARENTERAL ADMINISTRATION OF SUGARS ON THE HYDROGEN-ION CONCENTRATION OF NORMAL AND MALIGNANT TISSUES IN LIVING ANIMALS, Science, vol.77, issue.2006, pp.567-568, 1933.
DOI : 10.1126/science.77.2006.567

S. Webb, J. Sherratt, and R. Fish, Modelling Tumour Acidity and Invasion, Novartis Found Symp, vol.240, pp.169-181, 2001.
DOI : 10.1002/0470868716.ch12

O. Warburg, E. Wind, and E. Negelin, THE METABOLISM OF TUMORS IN THE BODY, The Journal of General Physiology, vol.8, issue.6, pp.519-530, 1927.
DOI : 10.1085/jgp.8.6.519

E. Holm, E. Hagmuller, U. Staedt, G. Schlickeiser, and H. Gunther, Substrate balances across colonic carcinomas in humans, Cancer Res, vol.55, pp.1373-1378, 1995.

P. Provent, M. Benito, B. Hiba, R. Farion, and P. Lopez-larrubia, Serial In vivo Spectroscopic Nuclear Magnetic Resonance Imaging of Lactate and Extracellular pH in Rat Gliomas Shows Redistribution of Protons Away from Sites of Glycolysis, Cancer Research, vol.67, issue.16, pp.7638-7645, 2007.
DOI : 10.1158/0008-5472.CAN-06-3459

URL : https://hal.archives-ouvertes.fr/inserm-00381755

A. Halestrap and N. Price, The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation, Biochemical Journal, vol.343, issue.2, pp.281-299, 1999.
DOI : 10.1042/bj3430281

M. Froberg, D. Gerhart, B. Enerson, C. Manivel, and M. Guzman-paz, Expression of monocarboxylate transporter MCT1 in normal and neoplastic human CNS tissues, Neuroreport, vol.12, issue.4, pp.761-7659030, 2001.
DOI : 10.1097/00001756-200103260-00030

R. Deberardinis, A. Mancuso, E. Daikhin, I. Nissim, and M. Yudkoff, Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis, Proceedings of the National Academy of Sciences, vol.104, issue.49, pp.19345-19350, 2007.
DOI : 10.1073/pnas.0709747104

M. Vander-heiden, L. Cantley, and C. Thompson, Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation, Science, vol.324, issue.5930, pp.1029-1033, 2009.
DOI : 10.1126/science.1160809

O. Feron, Pyruvate into lactate and back: From the Warburg effect to symbiotic energy fuel exchange in cancer cells, Radiotherapy and Oncology, vol.92, issue.3, pp.329-333, 2009.
DOI : 10.1016/j.radonc.2009.06.025

R. Thomas, P. Kugler, S. Saparov, K. Sommer, and J. Mathai, Experimental displacement of intracellular pH and the mechanism of its subsequent recovery Carbon dioxide transport through membranes, J Physiol J Biol Chem, vol.354, issue.283, pp.25340-25347, 1984.

R. Musa-aziz, L. Chen, M. Pelletier, W. Boron, A. Aqp4 et al., Relative CO2/NH3 selectivities of AQP1, AQP4, AQP5, AmtB, and RhAG, Proceedings of the National Academy of Sciences, vol.106, issue.13, pp.5406-5411, 2009.
DOI : 10.1073/pnas.0813231106

A. Kersh, L. Hartzler, K. Havlin, B. Hubbell, and V. Nanagas, pH regulating transporters in neurons from various chemosensitive brainstem regions in neonatal rats, AJP: Regulatory, Integrative and Comparative Physiology, vol.297, issue.5, pp.1409-1420, 2009.
DOI : 10.1152/ajpregu.91038.2008

D. Majumdar and M. Bevensee, Na-coupled bicarbonate transporters of the solute carrier 4 family in the nervous system: function, localization, and relevance to neurologic function, Neuroscience, vol.171, issue.4, 2010.
DOI : 10.1016/j.neuroscience.2010.09.037

S. Sennoune and R. Martinez-zaguilan, Plasmalemmal vacuolar H+-ATPases in angiogenesis, diabetes and cancer, Journal of Bioenergetics and Biomembranes, vol.49, issue.5-6, pp.427-433, 2007.
DOI : 10.1007/s10863-007-9108-8

J. Pouysségur, C. Sardet, A. Franchi, L. 'allemain, G. Paris et al., A specific mutation abolishing Na+/H+ antiport activity in hamster fibroblasts precludes growth at neutral and acidic pH., Proceedings of the National Academy of Sciences, vol.81, issue.15, pp.4833-4837, 1984.
DOI : 10.1073/pnas.81.15.4833

R. Cardone, V. Casavola, and S. Reshkin, The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis, Nature Reviews Cancer, vol.96, issue.10, pp.786-795, 2005.
DOI : 10.1038/nrc1713

L. Stuwe, M. Muller, A. Fabian, J. Waning, and S. Mally, pH dependence of melanoma cell migration: protons extruded by NHE1 dominate protons of the bulk solution, The Journal of Physiology, vol.15, issue.2, pp.351-360, 2007.
DOI : 10.1113/jphysiol.2007.145185

C. Stock and A. Schwab, Protons make tumor cells move like clockwork, Pfl??gers Archiv - European Journal of Physiology, vol.32, issue.Suppl 5, pp.981-992, 2009.
DOI : 10.1007/s00424-009-0677-8

G. Busco, R. Cardone, M. Greco, A. Bellizzi, and M. Colella, NHE1 promotes invadopodial ECM proteolysis through acidification of the periinvadopodial space, FASEB J Epub, pp.9-149518, 2010.

S. Denker and D. Barber, Cell migration requires both ion translocation and cytoskeletal anchoring by the Na-H exchanger NHE1, The Journal of Cell Biology, vol.261, issue.6, pp.1087-1096, 2002.
DOI : 10.1083/jcb.143.5.1295

A. Lagarde, A. Franchi, S. Paris, and J. Pouyssegur, antiport activity on tumorigenic potential of hamster lung fibroblasts, Journal of Cellular Biochemistry, vol.261, issue.6, pp.249-260, 1988.
DOI : 10.1002/jcb.240360306

D. Rotin, D. Steele-norwood, S. Grinstein, and I. Tannock, Requirement of the Na + /H + exchanger for tumor growth, Cancer Res, vol.49, pp.205-211, 1989.

L. Bergersen, Is lactate food for neurons? Comparison of monocarboxylate transporter subtypes in brain and muscle, Neuroscience, vol.145, issue.1, pp.11-19, 2007.
DOI : 10.1016/j.neuroscience.2006.11.062

J. Ord, E. Streeter, I. Roberts, D. Cranston, and A. Harris, Comparison of hypoxia transcriptome in vitro with in vivo gene expression in human bladder cancer, British Journal of Cancer, vol.60, issue.3, pp.346-354, 2005.
DOI : 10.1038/sj.bjc.6602666

C. Pinheiro, R. Reis, R. S. Longatto-filho, A. Schmitt, and F. , Expression of Monocarboxylate Transporters 1, 2, and 4 in Human Tumours and Their Association with CD147 and CD44, Journal of Biomedicine and Biotechnology, vol.92, issue.5, p.427694, 2010.
DOI : 10.1016/j.ygyno.2005.03.043

J. Chiche, K. Ilc, J. Laferriere, E. Trottier, and F. Dayan, Hypoxia-Inducible Carbonic Anhydrase IX and XII Promote Tumor Cell Growth by Counteracting Acidosis through the Regulation of the Intracellular pH, Cancer Research, vol.69, issue.1, pp.358-368, 2009.
DOI : 10.1158/0008-5472.CAN-08-2470

URL : https://hal.archives-ouvertes.fr/hal-00358780

J. Haapasalo, K. Nordfors, M. Hilvo, I. Rantala, and Y. Soini, Expression of Carbonic Anhydrase IX in Astrocytic Tumors Predicts Poor Prognosis, Clinical Cancer Research, vol.12, issue.2, pp.473-477, 2006.
DOI : 10.1158/1078-0432.CCR-05-0848

J. Loncaster, A. Harris, S. Davidson, J. Logue, and R. Hunter, Carbonic anhydrase (CA IX) expression, a potential new intrinsic marker of hypoxia: correlations with tumor oxygen measurements and prognosis in locally advanced carcinoma of the cervix, Cancer Res, vol.61, pp.6394-6399, 2001.

S. Parkkila, A. Parkkila, J. Saarnio, J. Kivela, and T. Karttunen, Expression of the Membrane-associated Carbonic Anhydrase Isozyme XII in the Human Kidney and Renal Tumors, Journal of Histochemistry & Cytochemistry, vol.265, issue.12, pp.1601-1608, 2000.
DOI : 10.1177/27.4.109495

M. Proescholdt, C. Mayer, M. Kubitza, T. Schubert, and S. Liao, Expression of hypoxia-inducible carbonic anhydrases in brain tumors, Neuro-Oncology, vol.7, issue.4, pp.465-475, 2005.
DOI : 10.1215/S1152851705000025

P. Korkolopoulou, M. Perdiki, I. Thymara, E. Boviatsis, and G. Agrogiannis, Expression of hypoxia-related tissue factors in astrocytic gliomas. A multivariate survival study with emphasis upon carbonic anhydrase IX, Human Pathology, vol.38, issue.4, pp.629-638, 2007.
DOI : 10.1016/j.humpath.2006.07.020

P. Swietach, S. Patiar, C. Supuran, A. Harris, and R. Vaughan-jones, The Role of Carbonic Anhydrase 9 in Regulating Extracellular and Intracellular pH in Three-dimensional Tumor Cell Growths, Journal of Biological Chemistry, vol.284, issue.30, pp.20299-20310, 2009.
DOI : 10.1074/jbc.M109.006478

H. Becker and J. Deitmer, Nonenzymatic Proton Handling by Carbonic Anhydrase II during H+-Lactate Cotransport via Monocarboxylate Transporter 1, Journal of Biological Chemistry, vol.283, issue.31, pp.21655-21667, 2008.
DOI : 10.1074/jbc.M802134200

S. Zoula, P. Rijken, J. Peters, R. Farion, and B. Van-der-sanden, Pimonidazole binding in C6 rat brain glioma: relation with lipid droplet detection, British Journal of Cancer, vol.88, issue.9, pp.1439-1444, 2003.
DOI : 10.1038/sj.bjc.6600837

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2741029

A. Halestrap and D. Meredith, The SLC16 gene family?from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond, Pfl???gers Archiv European Journal of Physiology, vol.447, issue.5, pp.619-628, 2004.
DOI : 10.1007/s00424-003-1067-2

J. Engasser and C. Horvath, Dynamic role of buffers: facilitated transport of protons, weak acids and bases, Physiol Chem Phys, vol.6, pp.541-543, 1974.

C. Stock, R. Cardone, G. Busco, H. Krahling, and A. Schwab, Protons extruded by NHE1: Digestive or glue?, European Journal of Cell Biology, vol.87, issue.8-9, pp.591-599, 2008.
DOI : 10.1016/j.ejcb.2008.01.007

G. Lee, C. Yan, S. Shin, S. Hong, and T. Ahn, BAX inhibitor-1 enhances cancer metastasis by altering glucose metabolism and activating the sodium-hydrogen exchanger: the alteration of mitochondrial function, Oncogene, vol.13, issue.14, pp.2130-2141, 2010.
DOI : 10.1016/S1097-2765(00)80034-9

J. Bolanos, A. Almeida, S. Moncada, T. Fan, and R. Higashi, Glycolysis: a bioenergetic or a survival pathway?, Trends in Biochemical Sciences, vol.35, issue.3, pp.145-149163, 2009.
DOI : 10.1016/j.tibs.2009.10.006

T. Hunter and R. Marais, Genetic and cellular mechanisms of oncogenesis, Current Opinion in Genetics & Development, vol.20, issue.1, pp.1-3, 2010.
DOI : 10.1016/j.gde.2010.01.001

R. Deberardinis, N. Sayed, D. Ditsworth, and C. Thompson, Brick by brick: metabolism and tumor cell growth, Current Opinion in Genetics & Development, vol.18, issue.1, pp.54-61, 2008.
DOI : 10.1016/j.gde.2008.02.003

H. Kallio, S. Pastorekova, J. Pastorek, A. Waheed, and W. Sly, Expression of carbonic anhydrases IX and XII during mouse embryonic development Transport activity of MCT1 expressed in Xenopus oocytes is increased by interaction with carbonic anhydrase, BMC Developmental Biology, vol.6, issue.1, pp.22-7339882, 2005.
DOI : 10.1186/1471-213X-6-22

C. Supuran, Carbonic anhydrases: novel therapeutic applications for inhibitors and activators, Nature Reviews Drug Discovery, vol.17, issue.2, pp.168-181, 2008.
DOI : 10.1038/nrd2467

P. Benda, K. Someda, J. Messer, and W. Sweet, Morphological and immunochemical studies of rat glial tumors and clonal strains propagated in culture, Journal of Neurosurgery, vol.34, issue.3, pp.310-323, 1971.
DOI : 10.3171/jns.1971.34.3.0310

C. Julien, J. Payen, I. Tropres, R. Farion, and E. Grillon, Assessment of vascular reactivity in rat brain glioma by measuring regional blood volume during graded hypoxic hypoxia, British Journal of Cancer, vol.117, pp.374-380, 2004.
DOI : 10.1002/1522-2594(200103)45:3<397::AID-MRM1052>3.3.CO;2-V

P. Moulin, Y. Guiot, J. Jonas, J. Rahier, and O. Devuyst, Identification and subcellular localization of the Na+/H+ exchanger and a novel related protein in the endocrine pancreas and adrenal medulla, Journal of Molecular Endocrinology, vol.38, issue.3, pp.409-422, 2007.
DOI : 10.1677/jme.1.02164