D. Marr, A theory of cerebellar cortex, J Physiol (Lond ), vol.202, p.437470, 1969.

J. Albus, A theory of cerebellar function, Mathematical Biosciences, vol.10, issue.1-2, p.167171, 1971.
DOI : 10.1016/0025-5564(71)90051-4

M. Ito, M. Sakurai, and P. Tongroach, Climbing fiber induced depression of both mossy fiber responsiveness and glutamate sensitivity of cerebellar Purkinje cells, J Physiol (Lond), vol.324, p.113134, 1982.

L. Karachot, R. Kado, and M. Ito, Stimulus parameters for induction of long-term depression in in vitro rat Purkinje cells, Neuroscience Research, vol.21, issue.2, p.161168, 1995.
DOI : 10.1016/0168-0102(94)90158-9

A. Konnerth, J. Dreessen, and G. Augustine, Brief dendritic calcium signals initiate long-lasting synaptic depression in cerebellar Purkinje cells., Proceedings of the National Academy of Sciences, vol.89, issue.15, pp.7051-7055, 1992.
DOI : 10.1073/pnas.89.15.7051

A. Aiba, M. Kano, C. Chen, M. Stanton, G. Fox et al., Deficient cerebellar longterm depression and impaired motor learning in mGluR1 mutant mice, Cell, vol.79, pp.377-388, 1994.

F. Conquet, Z. Bashir, C. Davies, H. Daniel, F. Ferraguti et al., Motor deficit and impairment of synaptic plasticity in mice lacking mGluR1, Nature, vol.372, issue.6503, p.237243, 1994.
DOI : 10.1038/372237a0

N. Hartell, Induction of cerebellar long-term depression requires activation of glutamate metabotropic receptors, NeuroReport, vol.5, issue.8, p.913916, 1994.
DOI : 10.1097/00001756-199404000-00015

N. Hemart, H. Daniel, D. Jaillard, and F. Crepel, Properties of glutamate receptors are modi. ed during long-term depression in rat cerebellar Purkinje cells, Neurosci, vol.19, p.213221, 1994.

S. Matsuda, T. Launey, S. Mikawa, and H. Hirai, Disruption of AMPA receptor GluR2 clusters following long-term depression induction in cerebellar Purkinje neurons, The EMBO Journal, vol.19, issue.12, p.27652774, 2000.
DOI : 10.1093/emboj/19.12.2765

V. Lev-ram, S. Wong, D. Storm, and R. Tsien, A new form of cerebellar long-term potentiation is postsynaptic and depends on nitric oxide but not cAMP, Proceedings of the National Academy of Sciences, vol.99, issue.12, pp.8389-8393, 2002.
DOI : 10.1073/pnas.122206399

M. Coesmans, J. Weber, D. Zeeuw, C. Hansel, and C. , Bidirectional Parallel Fiber Plasticity in the Cerebellum under Climbing Fiber Control, Neuron, vol.44, issue.4, pp.691-700, 2004.
DOI : 10.1016/j.neuron.2004.10.031

H. Jörntell and C. Hansel, Synaptic Memories Upside Down: Bidirectional Plasticity at Cerebellar Parallel Fiber-Purkinje Cell Synapses, Neuron, vol.52, issue.2, pp.227-238, 2006.
DOI : 10.1016/j.neuron.2006.09.032

E. Bienenstock, L. Cooper, and P. Munro, THEORY FOR THE DEVELOPMENT OF NEURON SELECTIVITY: ORIENTATION SPECIFICITY AND BINOCULAR INTERACTION IN VISUAL CORTEX, J Neurosci, p.3248, 1982.
DOI : 10.1142/9789812795885_0006

M. Canepari and K. Vogt, Dendritic Spike Saturation of Endogenous Calcium Buffer and Induction of Postsynaptic Cerebellar LTP, PLoS ONE, vol.76, issue.12, p.4011, 2008.
DOI : 10.1371/journal.pone.0004011.s001

URL : https://hal.archives-ouvertes.fr/inserm-00449755

G. Augustine, Ca2+ requirements for cerebellar long-term synaptic depression: role for a postsynaptic leaky integrator, Neuron, vol.54, pp.787-800, 2007.

M. Ito, Cerebellar Long-Term Depression: Characterization, Signal Transduction, and Functional Roles, Physiol rev, vol.81, pp.1143-1195, 2001.

N. Hartell, Parallel fiber plasticity, The Cerebellum, vol.1, issue.1, pp.3-18, 2002.
DOI : 10.1080/147342202753203041

N. Hartell, Strong Activation of Parallel Fibers Produces Localized Calcium Transients and a Form of LTD That Spreads to Distant Synapses, Neuron, vol.16, issue.3, p.601610, 1996.
DOI : 10.1016/S0896-6273(00)80079-3

S. Wang, W. Denk, and M. Häusser, Coincidence detection in single dendritic spines mediated by calcium release, Nat Neurosci, vol.3, pp.1266-1273, 2000.

S. Brenowitz and W. Regehr, Associative Short-Term Synaptic Plasticity Mediated by Endocannabinoids, Neuron, vol.45, issue.3, pp.419-431, 2005.
DOI : 10.1016/j.neuron.2004.12.045

P. Safo and W. Regehr, Endocannabinoids Control the Induction of Cerebellar LTD, Neuron, vol.48, issue.4, pp.647-659, 2006.
DOI : 10.1016/j.neuron.2005.09.020

X. Wang, G. Chen, W. Gao, and T. Ebner, Long-term potentiation of the responses to parallel fiber stimulation in mouse cerebellar cortex in vivo, Neuroscience, vol.162, issue.3, pp.713-722, 2009.
DOI : 10.1016/j.neuroscience.2009.01.071

A. Kuruma, T. Inoue, and K. Mikoshiba, Dynamics of Ca2+ and Na+ in the dendrites of mouse cerebellar Purkinje cells evoked by parallel fibre stimulation, European Journal of Neuroscience, vol.12, issue.10, pp.2677-2689, 2003.
DOI : 10.1038/76609

M. Renzi, M. Farrant, and S. Cull-candy, Climbing-fibre activation of NMDA receptors in Purkinje cells of adult mice, The Journal of Physiology, vol.263, issue.1, pp.91-101, 2007.
DOI : 10.1113/jphysiol.2007.141531

R. Llinas and M. Sugimori, Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices., The Journal of Physiology, vol.305, issue.1, 1980.
DOI : 10.1113/jphysiol.1980.sp013358

E. Rancz and M. Häusser, Dendritic Calcium Spikes Are Tunable Triggers of Cannabinoid Release and Short-Term Synaptic Plasticity in Cerebellar Purkinje Neurons, Journal of Neuroscience, vol.26, issue.20, pp.5428-5437, 2006.
DOI : 10.1523/JNEUROSCI.5284-05.2006

H. Schmidt, K. Stiefel, P. Racay, B. Schwaller, and J. Eilers, Mutational analysis of dendritic Ca2+ kinetics in rodent Purkinje cells: role of parvalbumin and calbindin D28k, The Journal of Physiology, vol.551, issue.1, pp.13-32, 2003.
DOI : 10.1113/jphysiol.2002.035824

M. Canepari and D. Ogden, signalling pathways mediated by type 1 metabotropic glutamate receptors in rat Purkinje neurones, The Journal of Physiology, vol.22, issue.5, pp.65-82, 2006.
DOI : 10.1113/jphysiol.2005.103770

URL : https://hal.archives-ouvertes.fr/inserm-00515646

E. Finch and G. Augustine, Local calcium signalling by inositol-1,4,5-trisphosphate in Purkinje cell dendrites, Nature, vol.396, p.753756, 1998.

H. Takechi, J. Eilers, and A. Konnerth, A new class of synaptic response involving calcium release in dendritic spines, Nature, vol.396, p.757760, 1998.

D. Sarkisov and S. Wang, Order-Dependent Coincidence Detection in Cerebellar Purkinje Neurons at the Inositol Trisphosphate Receptor, Journal of Neuroscience, vol.28, issue.1, pp.133-142, 2008.
DOI : 10.1523/JNEUROSCI.1729-07.2008

. Caneparim, C. Auger, and D. Ogden, Ca2+ ion permeability and single-channel properties of the metabotropic slow EPSC of rat Purkinje neurons, J Neurosci, vol.24, p.35633573, 2004.

J. Hartmann, E. Dragicevic, H. Adelsberger, H. Henning, M. Sumser et al., TRPC3 Channels Are Required for Synaptic Transmission and Motor Coordination, Neuron, vol.59, issue.3, pp.392-398, 2008.
DOI : 10.1016/j.neuron.2008.06.009

URL : http://doi.org/10.1016/j.neuron.2008.06.009

K. Roche, W. Tingley, and R. Huganir, Glutamate receptor phosphorylation and synaptic plasticity, Current Opinion in Neurobiology, vol.4, issue.3, pp.383-388, 1994.
DOI : 10.1016/0959-4388(94)90100-7

H. Chung, J. Xia, R. Scannevin, X. Zhang, and R. Huganir, Phosphorylation of the AMPA receptor subunit GluR2 differentially regulates its interaction with PDZ domain-containing proteins, J Neurosci, vol.20, pp.7258-7267, 2000.

K. Tanaka and G. Augustine, A Positive Feedback Signal Transduction Loop Determines Timing of Cerebellar Long-Term Depression, Neuron, vol.59, issue.4, pp.608-620, 2008.
DOI : 10.1016/j.neuron.2008.06.026

D. Okada, Protein Kinase C Modulates Calcium Sensitivity of Nitric Oxide Synthase in Cerebellar Slices, Journal of Neurochemistry, vol.64, issue.3, p.12981304, 1995.
DOI : 10.1046/j.1471-4159.1995.64031298.x

H. Daniel, N. Hemart, D. Jaillard, and F. Crepel, Long-term depression requires nitric oxide and guanosine 39,59 cyclic monophosphate production in rat cerebellar Purkinje cells, Eur J Neurosci, vol.5, p.10791082, 1993.

D. Linden and J. Connor, Participation of postsynaptic PKC in cerebellar long-term depression in culture, Science, vol.254, issue.5038, p.16561659, 1991.
DOI : 10.1126/science.1721243

A. Abellovich, C. Chen, Y. Goda, A. Silva, C. Stevens et al., Modified hippocampal long-term potentiation in PKC-mutant mice, Cell, vol.75, p.12531262, 1993.

A. Belmeguenai and C. Hansel, A Role for Protein Phosphatases 1, 2A, and 2B in Cerebellar Long-Term Potentiation, Journal of Neuroscience, vol.25, issue.46, pp.10768-10772, 2005.
DOI : 10.1523/JNEUROSCI.2876-05.2005

W. Kakegawa and M. Yuzaki, From The Cover: A mechanism underlying AMPA receptor trafficking during cerebellar long-term potentiation, Proceedings of the National Academy of Sciences, vol.102, issue.49, pp.17846-17851, 2005.
DOI : 10.1073/pnas.0508910102

G. Gundappa-sulur, D. Schutter, E. Bower, and J. , Ascending granule cell axon: An important component of cerebellar cortical circuitry, The Journal of Comparative Neurology, vol.190, issue.4, pp.580-596, 1999.
DOI : 10.1002/(SICI)1096-9861(19990614)408:4<580::AID-CNE11>3.0.CO;2-O

R. Sims and N. Hartell, Differences in Transmission Properties and Susceptibility to Long-Term Depression Reveal Functional Specialization of Ascending Axon and Parallel Fiber Synapses to Purkinje Cells, Journal of Neuroscience, vol.25, issue.12, pp.3246-3257, 2005.
DOI : 10.1523/JNEUROSCI.0073-05.2005

R. Sims and N. Hartell, Differential Susceptibility to Synaptic Plasticity Reveals a Functional Specialization of Ascending Axon and Parallel Fiber Synapses to Cerebellar Purkinje Cells, Journal of Neuroscience, vol.26, issue.19, pp.5153-5159, 2006.
DOI : 10.1523/JNEUROSCI.4121-05.2006

P. Marcaggi and D. Attwell, Endocannabinoid signaling depends on the spatial pattern of synapse activation, Nature Neuroscience, vol.23, issue.6, pp.776-781, 2005.
DOI : 10.1016/S0028-3908(01)00046-6

P. Marcaggi and D. Attwell, Short- and long-term depression of rat cerebellar parallel fibre synaptic transmission mediated by synaptic crosstalk, The Journal of Physiology, vol.3, issue.2, pp.545-550, 2007.
DOI : 10.1113/jphysiol.2006.115014

V. Han, Y. Zhang, C. Bell, and C. Hansel, Synaptic Plasticity and Calcium Signaling in Purkinje Cells of the Central Cerebellar Lobes of Mormyrid Fish, Journal of Neuroscience, vol.27, issue.49, pp.13499-13512, 2007.
DOI : 10.1523/JNEUROSCI.2613-07.2007

W. Denk, R. Yuste, K. Svoboda, and D. Tank, Imaging calcium dynamics in dendritic spines, Current Opinion in Neurobiology, vol.6, issue.3
DOI : 10.1016/S0959-4388(96)80122-X

B. Sabatini, M. Maravall, and K. Svoboda, Ca(2+) signaling in dendritic spines, Curr Opin Neurobiol, pp.349-356, 2001.

J. Fisher, J. Barchi, C. Welle, G. Kim, P. Kosterin et al., Two-Photon Excitation of Potentiometric Probes Enables Optical Recording of Action Potentials From Mammalian Nerve Terminals In Situ, Journal of Neurophysiology, vol.99, issue.3, pp.1545-1553, 2008.
DOI : 10.1152/jn.00929.2007

. Fig, Possible spatial arrangement of two simultaneously active CGC-PN synapses. (a) Schematic of a sagittal/coronal section of the cerebellum with Molecular Layer (ML), PN Layer (PNL) and Granule Cell layer (GCL); PF stimulation: stimulation in the ML; AF stimulation: stimulation in the GCL behind the PN. (b) Adjacent: afferents contacting two adjacent spines in the same dendritic branch allowing for chemical crosstalk between the two synapses. (c) Same branch: afferents contacting non-adjacent spines but in the same dendritic branch allowing for local depolarisation of the dendrite