C. Zhao, W. Deng, and F. Gage, Mechanisms and Functional Implications of Adult Neurogenesis, Cell, vol.132, issue.4, pp.645-660, 2008.
DOI : 10.1016/j.cell.2008.01.033

K. Young, M. Fogarty, N. Kessaris, and W. Richardson, Subventricular Zone Stem Cells Are Heterogeneous with Respect to Their Embryonic Origins and Neurogenic Fates in the Adult Olfactory Bulb, Journal of Neuroscience, vol.27, issue.31, pp.8286-8296, 2007.
DOI : 10.1523/JNEUROSCI.0476-07.2007

M. Luskin, Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone, Neuron, vol.11, issue.1, pp.173-189, 1993.
DOI : 10.1016/0896-6273(93)90281-U

H. Cameron, C. Woolley, B. Mcewen, and E. Gould, Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat, Neuroscience, vol.56, issue.2, pp.337-344, 1993.
DOI : 10.1016/0306-4522(93)90335-D

A. Arvidsson, T. Collin, D. Kirik, Z. Kokaia, and O. Lindvall, Neuronal replacement from endogenous precursors in the adult brain after stroke, Nature Medicine, vol.8, issue.9, pp.963-970, 2002.
DOI : 10.1006/exnr.1995.1085

H. Van-praag, A. Schinder, B. Christie, N. Toni, T. Palmer et al., Functional neurogenesis in the adult hippocampus, Nature, vol.415, issue.6875, pp.1030-1034, 2002.
DOI : 10.1038/4151030a

M. Carlen, R. Cassidy, H. Brismar, G. Smith, L. Enquist et al., Functional Integration of Adult-Born Neurons, Current Biology, vol.12, issue.7, pp.606-608, 2002.
DOI : 10.1016/S0960-9822(02)00771-6

V. Lemaire, M. Koehl, L. Moal, M. Abrous, and D. , Prenatal stress produces learning deficits associated with an inhibition of neurogenesis in the hippocampus, Proceedings of the National Academy of Sciences, vol.97, issue.20, pp.11032-11037, 2000.
DOI : 10.1073/pnas.97.20.11032

P. Lucassen, O. Bosch, E. Jousma, S. Kromer, R. Andrew et al., Prenatal stress reduces postnatal neurogenesis in rats selectively bred for high, but not low, anxiety: possible key role of placental 11??-hydroxysteroid dehydrogenase type 2, European Journal of Neuroscience, vol.226, issue.1, pp.97-103, 2009.
DOI : 10.1111/j.1460-9568.2008.06543.x

E. Gould, A. Beylin, P. Tanapat, A. Reeves, and T. Shors, Learning enhances adult neurogenesis in the hippocampal formation, Nature Neuroscience, vol.2, issue.3, pp.260-265, 1999.
DOI : 10.1038/6365

G. Keilhoff, A. Becker, G. Grecksch, H. Bernstein, and G. Wolf, Cell Proliferation is Influenced by Bulbectomy and Normalized by Imipramine Treatment in a Region-Specific Manner, Neuropsychopharmacology, vol.54, pp.1165-1176, 2006.
DOI : 10.1038/sj.npp.1300924

S. Hozumi, O. Nakagawasai, K. Tan-no, F. Niijima, F. Yamadera et al., Characteristics of changes in cholinergic function and impairment of learning and memory-related behavior induced by olfactory bulbectomy, Behavioural Brain Research, vol.138, issue.1, pp.9-15, 2003.
DOI : 10.1016/S0166-4328(02)00183-3

F. Han, N. Shioda, S. Moriguchi, Z. Qin, and K. Fukunaga, The vanadium (IV) compound rescues septo-hippocampal cholinergic neurons from neurodegeneration in olfactory bulbectomized mice, Neuroscience, vol.151, issue.3, pp.671-679, 2008.
DOI : 10.1016/j.neuroscience.2007.11.011

J. Parent, Injury-Induced Neurogenesis in the Adult Mammalian Brain, The Neuroscientist, vol.9, issue.4, pp.261-272, 2003.
DOI : 10.1177/1073858403252680

B. Hattiangady and A. Shetty, Implications of decreased hippocampal neurogenesis in chronic temporal lobe epilepsy, Epilepsia, vol.11, issue.8, pp.26-41, 2008.
DOI : 10.1016/j.bbr.2005.02.038

T. Hagg, From Neurotransmitters to Neurotrophic Factors to Neurogenesis, The Neuroscientist, vol.62, issue.1, pp.20-27, 2009.
DOI : 10.1177/1073858408324789

C. Trujillo, T. Schwindt, A. Martins, J. Alves, L. Mello et al., Novel perspectives of neural stem cell differentiation: From neurotransmitters to therapeutics, Cytometry Part A, vol.144, issue.Pt 5, pp.38-53, 2009.
DOI : 10.1002/cyto.a.20666

M. Mattson, Glutamate and Neurotrophic Factors in Neuronal Plasticity and Disease, Annals of the New York Academy of Sciences, vol.94, issue.Suppl., pp.97-112, 2008.
DOI : 10.1196/annals.1418.005

R. Ihrie and A. Alvarez-buylla, Cells in the astroglial lineage are neural stem cells. Cell and tissue research, pp.179-191, 2008.

F. Li and X. Ling, Survivin study: An update of ???What is the next wave????, Journal of Cellular Physiology, vol.23, issue.3, pp.476-486, 2006.
DOI : 10.1002/jcp.20634

D. Altieri, New wirings in the survivin networks, Oncogene, vol.113, issue.48, pp.6276-6284, 2008.
DOI : 10.1016/S0092-8674(02)01250-3

C. Adida, P. Crotty, J. Mcgrath, D. Berrebi, J. Diebold et al., Developmentally regulated expression of the novel cancer antiapoptosis gene survivin in human and mouse differentiation, Am J Path, vol.152, pp.43-49, 1998.

Y. Jiang, A. De-bruin, H. Caldas, J. Fangusaro, J. Hayes et al., Essential Role for Survivin in Early Brain Development, Journal of Neuroscience, vol.25, issue.30, pp.6962-6970, 2005.
DOI : 10.1523/JNEUROSCI.1446-05.2005

T. Zerucha, T. Stuhmer, G. Hatch, B. Park, Q. Long et al., A highly conserved enhancer in the Dlx5/Dlx6 intergenic region is the site of cross-regulatory interactions between Dlx genes in the embryonic forebrain, J Neurosci, vol.20, pp.709-721, 2000.

J. Kele, N. Simplicio, A. Ferri, H. Mira, F. Guillemot et al., Neurogenin 2 is required for the development of ventral midbrain dopaminergic neurons, Development, vol.133, issue.3, pp.495-505, 2006.
DOI : 10.1242/dev.02223

G. Panganiban and J. Rubenstein, Developmental functions of the Distal-less/ Dlx homeobox genes, Development, vol.129, pp.4371-4386, 2002.

S. Pennartz, R. Belvindrah, S. Tomiuk, C. Zimmer, K. Hofmann et al., Purification of neuronal precursors from the adult mouse brain: comprehensive gene expression analysis provides new insights into the control of cell migration, differentiation, and homeostasis, Molecular and Cellular Neuroscience, vol.25, issue.4, pp.692-706, 2004.
DOI : 10.1016/j.mcn.2003.12.011

URL : https://hal.archives-ouvertes.fr/hal-00310876

J. Gleeson, P. Lin, L. Flanagan, and C. Walsh, Doublecortin Is a Microtubule-Associated Protein and Is Expressed Widely by Migrating Neurons, Neuron, vol.23, issue.2, pp.257-271, 1999.
DOI : 10.1016/S0896-6273(00)80778-3

R. Mullen, C. Buck, and A. Smith, NeuN, a neuronal specific nuclear protein in vertebrates, Development, vol.116, pp.201-211, 1992.

E. Casanova, S. Fehsenfeld, T. Mantamadiotis, T. Lemberger, E. Greiner et al., A CamKII?? iCre BAC allows brain-specific gene inactivation, genesis, vol.20, issue.1, pp.37-42, 2001.
DOI : 10.1002/gene.1078

T. Belz, H. Liu, D. Bock, A. Takacs, M. Vogt et al., Inactivation of the gene for the nuclear receptor tailless in the brain preserving its function in the eye. The European journal of neuroscience, pp.2222-2227, 2007.

Z. Xing, E. Conway, C. Kang, and A. Winoto, Essential Role of Survivin, an Inhibitor of Apoptosis Protein, in T Cell Development, Maturation, and Homeostasis, The Journal of Experimental Medicine, vol.2, issue.1, pp.69-80, 2004.
DOI : 10.4049/jimmunol.170.9.4548

C. Zimmer, M. Tiveron, R. Bodmer, and H. Cremer, Dynamics of Cux2 Expression Suggests that an Early Pool of SVZ Precursors is Fated to Become Upper Cortical Layer Neurons, Cerebral Cortex, vol.14, issue.12, pp.1408-1420, 2004.
DOI : 10.1093/cercor/bhh102

URL : https://hal.archives-ouvertes.fr/hal-00310874

A. David, M. Tiveron, A. Defays, C. Beclin, V. Camosseto et al., BAD-LAMP defines a subset of early endocytic organelles in subpopulations of cortical projection neurons, Journal of Cell Science, vol.120, issue.2, pp.353-365, 2007.
DOI : 10.1242/jcs.03316

URL : https://hal.archives-ouvertes.fr/hal-00159427

J. Lin, T. Saito, D. Anderson, L. , C. Jessell et al., Functionally Related Motor Neuron Pool and Muscle Sensory Afferent Subtypes Defined by Coordinate ETS Gene Expression, Cell, vol.95, issue.3, pp.393-407, 1998.
DOI : 10.1016/S0092-8674(00)81770-5

URL : http://doi.org/10.1016/s0092-8674(00)81770-5

A. Sorensen, L. Nikitidou, M. Ledri, E. Lin, and M. During, Hippocampal NPY gene transfer attenuates seizures without affecting epilepsy-induced impairment of LTP, Experimental Neurology, vol.215, issue.2, pp.328-361, 2008.
DOI : 10.1016/j.expneurol.2008.10.015

G. Sperk, T. Hamilton, and W. Colmers, Neuropeptide Y in the dentate gyrus Progress in brain research, pp.285-297, 2007.

G. Kempermann, E. Brandon, and F. Gage, Environmental stimulation of 129/SvJ mice causes increased cell proliferation and neurogenesis in the adult dentate gyrus, Current Biology, vol.8, issue.16, pp.939-942, 1998.
DOI : 10.1016/S0960-9822(07)00377-6

J. Snyder, N. Hong, R. Mcdonald, and J. Wojtowicz, A role for adult neurogenesis in spatial long-term memory, Neuroscience, vol.130, issue.4, pp.843-852, 2005.
DOI : 10.1016/j.neuroscience.2004.10.009

K. Jaako-movits and A. Zharkovsky, Impaired fear memory and decreased hippocampal neurogenesis following olfactory bulbectomy in rats. The European journal of neuroscience, pp.2871-2878, 2005.

A. Kriegstein and S. Noctor, Patterns of neuronal migration in the embryonic cortex, Trends in Neurosciences, vol.27, issue.7, pp.392-399, 2004.
DOI : 10.1016/j.tins.2004.05.001

H. Wichterle, D. Turnbull, S. Nery, G. Fishell, and A. Alvarez-buylla, In utero fate mapping reveals distinct migratory pathways and fates of neurons born in the mammalian basal forebrain, Development, vol.128, pp.3759-3771, 2001.

H. Wichterle, J. Garcia-verdugo, and D. Herrera, Alvarez-Buylla A: Young neurons from medial ganglionic eminence disperse in adult and embryonic brain, Nature Neuroscience, vol.2, issue.5, pp.461-466, 1999.
DOI : 10.1038/8131

S. Pleasure, S. Anderson, R. Hevner, A. Bagri, O. Marin et al., Cell Migration from the Ganglionic Eminences Is Required for the Development of Hippocampal GABAergic Interneurons, Neuron, vol.28, issue.3, pp.727-740, 2000.
DOI : 10.1016/S0896-6273(00)00149-5

D. Inta, A. J. Von-engelhardt, J. Kreuzberg, M. Meyer, A. Van-hooft et al., Neurogenesis and widespread forebrain migration of distinct GABAergic neurons from the postnatal subventricular zone, Proceedings of the National Academy of Sciences, vol.105, issue.52, pp.20994-20999, 2008.
DOI : 10.1073/pnas.0807059105

I. Cobos, M. Calcagnotto, A. Vilaythong, M. Thwin, J. Noebels et al., Mice lacking Dlx1 show subtype-specific loss of interneurons, reduced inhibition and epilepsy, Nature Neuroscience, vol.23, issue.8, pp.1059-1068, 2005.
DOI : 10.1038/ng1491

J. Gant, O. Thibault, E. Blalock, J. Yang, A. Bachstetter et al., Decreased number of interneurons and increased seizures in neuropilin 2 deficient mice: Implications for autism and epilepsy, Epilepsia, vol.131, issue.1, pp.629-674, 2008.
DOI : 10.1111/j.1528-1167.2008.01725.x

Y. Bozzi, D. Vallone, and E. Borrelli, Neuroprotective role of dopamine against hippocampal cell death, J Neurosci, vol.20, pp.8643-8649, 2000.

A. Mita, M. Mita, S. Nawrocki, and F. Giles, Survivin: Key Regulator of Mitosis and Apoptosis and Novel Target for Cancer Therapeutics, Clinical Cancer Research, vol.14, issue.16, pp.5000-5005, 2008.
DOI : 10.1158/1078-0432.CCR-08-0746

B. Seri, J. Garcia-verdugo, L. Collado-morente, and B. Mcewen, Cell types, lineage, and architecture of the germinal zone in the adult dentate gyrus, Journal of Comparative Neurology, vol.21, issue.4, pp.359-378, 2004.
DOI : 10.1002/cne.20288

S. Ge, D. Pradhan, G. Ming, and H. Song, GABA sets the tempo for activitydependent adult neurogenesis. Trends in neurosciences, pp.1-8, 2007.

D. Balu and I. Lucki, Adult hippocampal neurogenesis: regulation, functional implications, and contribution to disease pathology. Neuroscience and biobehavioral reviews, pp.232-252, 2009.

I. Imayoshi, M. Sakamoto, T. Ohtsuka, K. Takao, T. Miyakawa et al., Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain, Nature Neuroscience, vol.28, issue.10, pp.1153-1161, 2008.
DOI : 10.1038/nn.2185

J. Dusek and H. Eichenbaum, The hippocampus and memory for orderly stimulus relations, Proceedings of the National Academy of Sciences, vol.94, issue.13, pp.7109-7114, 1997.
DOI : 10.1073/pnas.94.13.7109

C. Rossi, A. Angelucci, L. Costantin, C. Braschi, M. Mazzantini et al., Brain-derived neurotrophic factor (BDNF) is required for the enhancement of hippocampal neurogenesis following environmental enrichment. The European journal of neuroscience, pp.1850-1856, 2006.

C. Mandyam, G. Harburg, and A. Eisch, Determination of key aspects of precursor cell proliferation, cell cycle length and kinetics in the adult mouse subgranular zone, Neuroscience, vol.146, issue.1, pp.108-122, 2007.
DOI : 10.1016/j.neuroscience.2006.12.064

A. Schanzer, F. Wachs, D. Wilhelm, T. Acker, C. Cooper-kuhn et al., Direct Stimulation of Adult Neural Stem Cells In Vitro and Neurogenesis In Vivo by Vascular Endothelial Growth Factor, Brain Pathology, vol.285, issue.Suppl, pp.237-248, 2004.
DOI : 10.1111/j.1750-3639.2004.tb00060.x

A. Simeone, D. Acampora, M. Pannese, D. Esposito, M. Stornaiuolo et al., Cloning and characterization of two members of the vertebrate Dlx gene family., Proceedings of the National Academy of Sciences, vol.91, issue.6, pp.2250-2254, 1994.
DOI : 10.1073/pnas.91.6.2250

C. Wuenschell, R. Fisher, D. Kaufman, and A. Tobin, In situ hybridization to localize mRNA encoding the neurotransmitter synthetic enzyme glutamate decarboxylase in mouse cerebellum., Proceedings of the National Academy of Sciences, vol.83, issue.16, pp.6193-6197, 1986.
DOI : 10.1073/pnas.83.16.6193

G. Szabo, Z. Kartarova, B. Hoertnagl, R. Somogyi, and G. Sperk, Differential regulation of adult and embryonic glutamate decarboxylases in rat dentate granule cells after kainate-induced limbic seizures, Neuroscience, vol.100, issue.2, pp.287-295, 2000.
DOI : 10.1016/S0306-4522(00)00275-X

E. Conway, S. Pollefeyt, J. Cornelissen, I. Debaere, M. Steiner-mosonyi et al., Three differentially expressed survivin cDNA variants encode proteins with distinct antiapoptotic functions, Blood, vol.95, pp.1435-1442, 2000.

M. Tiveron, M. Hirsch, and J. Brunet, The expression pattern of the transcription factor Phox2 delineates synaptic pathways of the autonomic nervous system, J Neurosci, vol.16, pp.7649-7660, 1996.

P. Schauwecker and O. Steward, Genetic determinants of susceptibility to excitotoxic cell death: Implications for gene targeting approaches, Proceedings of the National Academy of Sciences, vol.94, issue.8, pp.4103-4108, 1997.
DOI : 10.1073/pnas.94.8.4103

S. Hogg, A review of the validity and variability of the elevated plusmaze as an animal model of anxiety. Pharmacology, biochemistry, and behavior, pp.21-30, 1996.

T. Miyakawa, M. Yamada, A. Duttaroy, and J. Wess, Hyperactivity and intact hippocampus-dependent learning in mice lacking the M1 muscarinic acetylcholine receptor, J Neurosci, vol.21, pp.5239-5250, 2001.

M. Picciotto and K. Wickman, Using knockout and transgenic mice to study neurophysiology and behavior. Physiological reviews, pp.1131-1163, 1998.

W. Paradee, H. Melikian, D. Rasmussen, A. Kenneson, P. Conn et al., Fragile X mouse: strain effects of knockout phenotype and evidence suggesting deficient amygdala function, Neuroscience, vol.94, issue.1, pp.185-192, 1999.
DOI : 10.1016/S0306-4522(99)00285-7

R. Paylor, R. Tracy, J. Wehner, and J. Rudy, DBA/2 and C57BL/6 mice differ in contextual fear but not auditory fear conditioning., Behavioral Neuroscience, vol.108, issue.4, pp.810-817, 1994.
DOI : 10.1037/0735-7044.108.4.810

L. Aloe, F. Properzi, L. Probert, K. Akassoglou, G. Kassiotis et al., Learning abilities, NGF and BDNF brain levels in two lines of TNF-?? transgenic mice, one characterized by neurological disorders, the other phenotypically normal, Brain Research, vol.840, issue.1-2, pp.125-137, 1999.
DOI : 10.1016/S0006-8993(99)01748-5

D. Hooge, R. , D. Deyn, and P. , Applications of the Morris water maze in the study of learning and memory, pp.60-90, 2001.